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Abstract

Background: Cichlid fish from East Africa are remarkable for phenotypic and behavioral diversity
on a backdrop of genomic similarity. In 2006, the Joint Genome Institute completed low coverage
survey sequencing of the genomes of five phenotypically and ecologically diverse Lake Malawi
species. We report a computational and comparative analysis of these data that provides insight
into the mechanisms that make closely related species different from one another.

Results: We produced assemblies for the five species ranging in aggregate length from 68 to 79
megabase pairs, identified putative orthologs for more than 12,000 human genes, and predicted
more than 32,000 cross-species single nucleotide polymorphisms (SNPs). Nucleotide diversity was
lower than that found among laboratory strains of the zebrafish. We collected around 36,000
genotypes to validate a subset of SNPs within and among populations and across multiple individuals
of about 75 Lake Malawi species. Notably, there were no fixed differences observed between focal
species nor between major lineages. Roughly 3% to 5% of loci surveyed are statistical outliers for
genetic differentiation (Fsy) within species, between species, and between major lineages. Outliers
for Fgy are candidate genes that may have experienced a history of natural selection in the Malawi
lineage.

Conclusion: We present a novel genome sequencing strategy, which is useful when evolutionary
diversity is the question of interest. Lake Malawi cichlids are phenotypically and behaviorally
diverse, but they appear genetically like a subdivided population. The unique structure of Lake
Malawl cichlid genomes should facilitate conceptually new experiments, employing SNPs to identity
genotype-phenotype association, using the entire species flock as a mapping panel.

Background fishes is a significant model of the evolutionary process and
Cichlid fishes from the East African Rift lakes Victoria, Tan-  the coding of genotype to phenotype, largely because tremen-
ganyika, and Malawi represent a preeminent example of rep-  dous diversity has evolved in a short period of time among lin-

licated and rapid evolutionary radiation [1]. This group of = eages with similar genomes [2-4]. Recently evolved cichlid
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species segregate ancestral polymorphism [5,6] and may
exchange genes [7,8]. Numerous genomic resources have
been developed for East African cichlids (many of which are
summarized by the Cichlid Genome Consortium [9]). These
include the following: genetic linkage maps for tilapia [10-12]
and Lake Malawi species [10,13]; fingerprinted bacterial arti-
ficial chromosome libraries [14]; expressed sequence tag
sequences for Lake Tanganyika and Lake Victoria cichlids
[15]; and first-generation microarrays [16,17]. Many studies
have used these resources to study cichlid population genet-
ics, molecular ecology, and phylogeny (for review [18,19]).
Recent reports have capitalized on the diversity among East
African cichlids to study the evolution and genetic basis of
many traits, including behavior [20], olfaction [21], pigmen-
tation [22-24], vision [25,26], sex determination [24,27], the
brain [28], and craniofacial development [10,13,29].

In 2006, under the auspices of the Community Sequencing
Program, the Joint Genome Institute (JGI) completed low
coverage survey sequencing of the genomes of five Lake
Malawi species. Species were chosen to maximize the mor-
phological, behavioral, and genetic diversity among the
Malawi species flock. This represents a novel genome project.
Low coverage sequencing is now a routine strategy to uncover
functional or 'constrained' genomic elements [30]. The
rationale is as follows; one compares genome sequences of
distantly related organisms (for example, shark, diverse
mammals) with that of a reference (for instance, human,
mouse), and outliers of similarity will be observed against the
background expectation of divergence [31-34]. Our interests
in diversity suggest a conceptually similar but logically
reversed research objective. When the background expecta-
tion is similarity, how does one use low coverage genome
sequencing to detect that which makes organisms distinct?

Here, we report computational and comparative analyses of
survey sequence data to address the question of diversity. We
had four major goals: to produce a low coverage assembly for
each of the five Lake Malawi species; to identify orthologs of
vertebrate genes in these data; to predict single nucleotide
polymorphisms (SNPs) segregating between species; and to
use SNPs to evaluate the degree of genomic polymorphism
and divergence at different evolutionary scales. Conse-
quently, we produced assemblies for the five species ranging
in aggregate length from 68 to 79 megabases (Mb), identified
putative orthologs for more than 12,000 human genes, and
predicted more than 32,000 cross-species segregating sites
(with about 2,700 located in genic regions). We genotyped a
set of these SNPs within and between Lake Malawi cichlid lin-
eages and demonstrate signatures of differentiation on the
background of similarity and polymorphism. Our work
should facilitate further understanding of evolutionary proc-
esses in the species flocks of East African cichlids. Moreover,
the approach we outline should be broadly applicable in other
lineages where phenotypic and behavioral diversity has
evolved in a short window of evolutionary time.
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Results

Sequence assembly

Trace sequences of five Lake Malawi cichlid species, namely
Mchenga conophorus (MC; formerly genus Copadichromis),
Labeotropheus fuelleborni (LF), Melanochromis auratus
(MA), Maylandia zebra (MZ; formerly genus Metriaclima)
and Rhamphochromis esox (RE), were downloaded from the
GenBank Trace Archive and assembled into contiguous (con-
tig) sequences. The average cichlid genome is 1.1 x 109 bases
[35], so the traces represent a sequence coverage of 12-17%
for each of the five species (see Additional data file 1).
Through several quality filtering and assembly steps (see
Materials and methods [below]), the resultant genomic
assemblies of the five cichlid species yielded an average of
60,862 contigs with a mean length of 1,193 bases per contig.
The total first-pass assembly sequence length for each species
ranged from 68,238,634 bases (MA) to 79,168,277 bases
(MZ), or about 7% of an average cichlid genome. Assembly
statistics are shown in Table 1.

We noted that these first-pass assemblies were 'over-assem-
bled' by roughly a factor of 2 when compared with theoretical
expectations [36]. Theory suggests that random shotgun
sequencing of single copy DNA, at 15% coverage of a 1.1 giga-
base genome, will result in an assembly length of about 153
Mb. We reasoned that our assemblies might be shorter than
expected because multicopy elements were grouped as if they
were single copy sequence. Given the theoretical expectation
(again for 15% coverage of a 1.1 gigabase genome) that indi-
vidual bases should only be sequenced a maximum of four to
five times, we examined whether contigs were built from five
or more trace sequences contributing overlapping bases. We
observed that about 10 Mb of each first-pass assembly were
derived from such contigs, and excluded these data from sub-
sequent analyses (for example SNP prediction [see below]).
Notably, individual sequences contributing to these 'high
trace number' contigs were not identified by RepeatMasker
but did sometimes have Basic Local Alignment Search Tool
(BLAST) matches to putative repetitive elements (for exam-
ple, pol polyprotein, reverse transcriptase). Because of the
keen interest in repetitive DNA families in cichlids [37] and
other organisms [38], we have retained alignments of these
'high trace number' contigs and have marked them as such
(see Additional data files 3 and 4).

Gene content and coverage

To establish the extent of gene content and coverage present
in each assembly, we carried out BLASTX similarity searches
(10710 E value cutoff) for each of the five assemblies against a
reference human proteome (RefSeq proteins). The average
proportion of putative genic sequence amounted to 3.9% of
the available genomes. The MZ assembly contained the high-
est gene coverage, possessing genic loci that were signifi-
cantly similar to approximately 5,240 unique human
proteins. The remaining four species yielded approximately
similar numbers ranging from 5,020 to 5,170 genes. It must
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Table |
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First-pass genomic assembly statistics for five Lake Malawi cichlid species

MC LF MA MZ RE
Total number of contigs in assembly 61,923 58,245 63,297 65,094 55,751
Total length (bases) 73,425,564 70,858,381 68,238,634 79,168,277 71,295,074
Genome coverage? (%) 6.68 6.44 6.20 7.20 6.48
Mean trace length (bases) 1,055 1,092 991 1,145 1,153
Shortest contig length (bases) 50 50 50 50 50
Longest contig length (bases) 19,632 17,437 21,601 15,371 21,351
Mean contig length (bases) 1,186 1,217 1,078 1,216 1,279
Q25 contig length (bases) 759 846 783 805 934
Q50 (median) contig length (bases) 966 1,063 949 1,163 1,13
Q75 contig length (bases) 1,403 1,355 1,102 1,417 1,407

Total genic length (bases) 2,863,110 (3.9%)

2,841,933 (4.0%)

2,761,941 (4.0%) 2,851,968 (3.6%) 2,797,548 (3.9%)

aUsing an average cichlid genome size of 1.l x 109 bases. LF, Labeotropheus fuelleborni; MA, Melanochromis auratus; MC, Mchenga conophorus; MZ,
Maylandia zebra; RE, Rhamphochromis esox; Q25, 25t percentile; Q50, median or 50t percentile; Q75, 75t percentile.

be noted, however, that most of these genes are highly frag-
mented and incomplete, because of low coverage of the
assembly. In all, a total of 36% (12,211 genes out of 34,180; see
Additional data file 2) of the reference human proteome could
be identified in one or more of the cichlid species.

Clustering and alignment

We obtained 25,458 clusters of putatively orthologous
sequences, which were individually assembled into multi-
species alignments for subsequent comparative analyses.
Genic regions, as identified by similarity searches to known
human and fish genes, were marked onto each alignment.
Figure 1 illustrates a typical example of one such alignment.

Roughly 1% of the alignments (294 alignments) showed per-
centages of variable sites above 2% (about tenfold higher than
the average). It is impossible to know, given the low coverage
of the sequenced genomes, whether these represent ortholo-
gous but divergent regions of cichlid genomes or the align-
ment of paralogous sequence. We therefore retained these
alignments, and included a calculation of polymorphism for
each alignment (see Additional data file 3), for the considera-
tion of researchers using these data. For example, alignment
108,866 contains sequence with similarity to asteroid
homolog 1, with 8% of sites variable and a majority of replace-
ment polymorphism. Given the lack of functional information
about this novel signaling protein (first described in Dro-
sophila [39]), this alignment provides useful information
even if (and perhaps because) it includes paralogous loci.
Another 12% of the alignments (2,119 total) contained indi-
vidual species contigs that had consensus base positions
derived from five or more trace sequences (see above).

For all subsequent analyses, we excluded 2,413 alignments
that exhibited a high percentage of variable sites and/or
higher than expected coverage. More than 11.6 million bases

of multiple species alignments remain, of which roughly 1.06
Mb were inferred as genic. This included 10,902,011 (986,506
genic) bases of two-species alignments, 721,049 (75,371
genic) bases of three-species alignments, 27,951 (2,898 genic)
bases of four-species alignments, and 877 (193 genic) bases of
alignments containing all five species.

Segregating sites

Further analysis of these 11.6 million bases of multiple align-
ments identified a total of 32,417 (0.28%) cross-species SNPs.
In order to classify the quality of an identified variable site, a
polymorphism quality score (PQS) was defined, correspond-
ing to the first digit of the lowest Phrap quality score among
the nucleotides of the different species present at the poly-
morphic site (for example, a polymorphic site between four
species with base quality scores of 34, 45, 46, and 50 would be
assigned a PQS of 3). In total, 4,468 (13.8%) variable sites had
a PQS of 5 or higher, 7,952 (24.5%) had a PQS of 4, 8,236
(25.4%) a PQS of 3, and the remaining 11,761 (36.3%) had a
PQS of 2. PQS for each variable site are provided on the align-
ments described in Additional data file 3 (also available
online [40]). Nucleotide diversity (Watterson's 6,,) averaged
over two-, three-, and four-species alignments was 0.00257.
Roughly 8% of all polymorphic sites (2,709) were located
within the putative genic regions identified earlier. Align-
ments with fish and human proteins provided us with the
phase information required to further classify these into
1,066 synonymous and 1,643 nonsynonymous SNPs. Sum-
maries of all alignments containing genic and nongenic poly-
morphisms are provided in Additional data files 3 and 4.

In order to investigate the pair-wise differences between any
two of the five species, all sequence alignment segments with
two or more species were broken up into all possible pair-wise
alignments; this resulted in 1.06 to 1.55 Mb of alignment per
pair. We then calculated the Jukes-Cantor distance between
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Figure |

Alignment of a typical cluster of orthologous sequences. (a) Overall alignment of assembly contigs from three different cichlid species with alignment
positions indicated. (b) Expanded detail of nucleotide alignment. Filled pink block shows the expanded alignment corresponding to dotted red box in panel
a. Filled blue block shows the alignment of corresponding species' traces that made up the assembly sequences. Lower case nucleotides have base quality
scores under 20. Dashes '-' represent sequence unavailability. Asterisks "' represent gaps inserted into the sequences. Dots "' represent identity in
alignment. Cap 'M' represents segregating site. Alignment positions shown after consensus sequence. Polymorphism quality score shown below A-G single

nucleotide polymorphism site.

species pairs. The three shortest distances were between LF
and MZ (0.229%), followed by MA/MZ (0.232%) and LF/MA
(0.241%), and the greatest was between LF and RE (0.288%).
These genetic distances include both within-species polymor-
phism and the fixed differences between species. Currently,

there is no exhaustive estimate of within-species polymor-
phism for Malawi cichlids. Unpublished data from our own
group (Streelman JT) indicates that for LF and MZ, within-
species diversity (r) may be as high as 0.2%. Thus, the per-
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centage of fixed genetic differences is likely to be extremely
small in this assemblage (see following sections).

Finally, we calculated the ratio of replacement to synonymous
substitutions (K,/K,) for concatenated genic alignments
among all pairs of species. We used concatenated sequences
because each segment represented only a small fraction of a
gene, with only few nonsynonymous and synonymous sites.
K,/K ranged from 0.380 in MC/LF to 0.562 in LF/MA. These
numbers are greater than the ratios found between Fugu and
Tetraodon (0.127 to 0.144 [41]). Such high K, /K, values may
indicate that positive selection, driven by adaptive radiation,
is prevalent in cichlid fishes. However, given the expectation
of few fixed differences between groups, this topic should be
revisited with more data on the levels of segregating and fixed
nucleotide substitutions among lineages.

Validation and generality of SNPs

We genotyped 96 SNPs in 384 Lake Malawi cichlid samples
using Beckman Coulter SNPstream™ technology (Beckman
Coulter, Inc., Fullerton, CA). The SNPs were partitioned into
three categories to help us evaluate the comparative success
rate of automated SNP prediction. First, we included 13 posi-
tive controls: genes previously sequenced by others [3,25]
and by us (Streelman JT, unpublished data), with expected
variation in Malawi cichlids. Positive controls included genes
involved in morphogenesis (otx1, otx2, and pax9), pigmenta-
tion (mitf, ednrb, and aimi), and visual sensitivity (opsins
rhi, swsi, lws, sws2a, and sws2b). Next, we genotyped 59
SNPs identified using the automated procedure described in
this report. We selected these SNPs to represent a range of
PQS (from 2 to 5) and a variety of sequence types (genic, non-
genic with a BLAST match < e100to Tetraodon, and nongenic
with no BLAST match). Finally, we wished to compare our
automated SNP selection to a manual approach. Therefore,
we included an additional 24 SNPs identified by manual
inspection of BLAST matches between single JGI traces and
Tetraodon chromosome 11; we have previously shown
Tetraodon 11 to share orthologs with cichlid chromosome 5
[13]. Note that these SNPs were most often not discovered by
our automated procedure because they originated in single
traces that did not meet percentage quality cutoffs and/or

Table 2
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they did not align into comparative contigs because of overlap
cutoffs.

Our validation strategy sought to document the general use
and segregation of these markers among Lake Malawi cich-
lids. Given recent divergence times among species (some as
recent as 1,000 years [2]), we expected that SNPs might seg-
regate throughout the assemblage. Therefore, Malawi sam-
ples comprised about ten individuals from each of ten
populations of MZ and LF, as well as one to five individuals of
77 additional species (25 of which were rock-dwelling
mbuna). Taxa were included to represent the morphological,
functional, and behavioral diversity of the Malawi lineage,
which may contain more than 800 species [42].

Ten out of 13 (about 77%) positive controls gave reliable gen-
otypes and were variable across the dataset. For the 59 SNPs
predicted by our automated procedure, 11 were fixed (no var-
iation) in all samples, indicating an error in sequencing (or
genotyping), an error in prediction, or the presence of a low
frequency allele in the sequenced samples. Six predicted
SNPs did not produce data reliable enough for genotype calls.
The remaining 42 loci from automated predictions (about
71%) were polymorphic across the dataset. For 24 SNPs pre-
dicted using manual similarity searches, four were fixed and
four failed reliability for genotype calls, with the remaining 16
loci (about 67%) showing polymorphism (Table 2). Twelve
out of 20 (60%) predicted SNPs with PQS of 3 or less were
successful, whereas 30 out of 39 (76%) predictions with PQS
of at least 4 yielded polymorphisms (Table 3). There is evi-
dence of ascertainment bias in our genotypic data (see Addi-
tional data file 5). For example, three SNP loci (Aln100674,
Aln114498, and Aln102321) exhibit alleles unique to Rham-
phochromis. Similarly, SNPs predicted from comparisons of
RE and mbuna (LF, MA, and MZ) are sometimes fixed in
mbuna. Polymorphisms predicted from comparisons of
mbuna taxa are more likely to vary within LF and MZ popula-
tions and across mbuna species.

Genetic polymorphism and divergence at multiple
scales

Strikingly, among all 68 loci showing polymorphism, no SNP
locus was alternately fixed between LF and MZ, or between

SNP genotyping success categorized by detection method

SNP detection method Control genes Automated Manual BLAST
Number of genotyped loci 13 59 24

Number of polymorphic loci 10 42 16

Number of fixed loci 3 Il 4

Number of failed loci 0 6 4

Successful SNP detection (%) 76.9 71.2 66.7

BLAST, Basic Local Alignment Search Tool; SNP, single nucleotide polymorphism.
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Table 3

SNP genotyping success categorized by polymorphic quality
score

Polymorphic quality score 2 3 4 5
Number of genotyped loci 5 15 28 I
Number of polymorphic loci 2 10 24

Number of fixed/failed loci 3 5 4

Successful SNP detection (%) 40 66.7 85.7 545

SNP, single nucleotide polymorphism.

rock-dwelling mbuna and non-mbuna. We thus sought to
investigate the degree of polymorphism versus divergence at
multiple evolutionary scales.

The data (Additional data file 5) support the previously
reported population structures in MZ [43,44] and LF [45], as
well as the genetic distinction between these species (MC
Mims, unpublished data). For example, mean genetic differ-
entiation (Fgp) in MZ is 0.148 and in LF is 0.271. Mean Fgp
between LF and MZ was 0.215, and between mbuna (25 spe-
cies) and non-mbuna (52 species) it was 0.224, demonstrat-
ing that most genetic variation segregates within and not
between lineages, regardless of evolutionary scale. Neverthe-
less, these distributions of Fgp yielded statistical outliers,
which exhibit greater than average genetic differentiation
(Figure 2). Four loci were found to be statistical outliers for
Fgramong MZ and LF populations. In MZ the opsin loci lws
(Fgr = 0.514), swsi1 (0.572) and rhi1 (0.733), and in LF the
opsin locus rhi1 (0.853) exhibit differentiation between popu-
lations. Between LF and MZ, three loci were identified as out-
liers: a nonsynonymous polymorphism in csrp1 (Fgr= 0.893),
a synonymous polymorphism in #-catenin (Aln101106_1089;
Fgr = 0.904), and an intronic polymorphism in ptc2
(Aln100281_1741; Fgp = 0.863). Two statistical outliers were
identified for Fgq; between rock-dwelling mbuna and non-
mbuna groups: a nonsynonymous polymorphism in irxz
(Aln102504_1609; Fgr = 0.984), and a nongenic polymor-
phism (Aln103534_280; Fgr = 0.919) in sequence with simi-
larity to pufferfish and stickleback genomes between
contactin 3 and ncam L1.

Genetic clustering and ancestry

To further visualize the segregation of SNPs across the
Malawi cichlid flock, we utilized a Bayesian approach that
assigns individuals to a predefined number of genetic clusters
[46]. Specifically, we were interested in how species would be
assigned to major Malawi cichlid lineages identified in previ-
ous studies [3,4,47]. There are three such groups supported
by the majority of molecular data: the rock-dwelling mbuna;
pelagic and sand-dwelling species; and a group comprised of
Rhamphochromis, Diplotaxodon, and other deep-water taxa.
Analysis of 68 SNP loci accurately classifies species to respec-
tive lineages (Figure 3). For instance, all species considered
mbuna (blue) cluster with other mbuna, to the exclusion of
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Box-and-whisker plots of Fg values. Fsy values were calculated for the
following: within MZ, within LF, LF versus MZ, and Mbuna versus non-
Mbuna. Upper and lower box bounds represent 75th and 25th percentiles,
respectively. The solid lines within boxes represent the median value.
Whiskers mark the furthest points from the median that are not classified
as outliers. Unfilled circles represent outliers that are more than 1.5 times
the interquartile range higher than the upper box bound. Fg, genetic
differentiation; LF, Labeotropheus fuelleborni; MA, Melanochromis auratus;
Mb, megabases; MC, Mchenga conophorus; MZ, Maylandia zebra.

other groups; species thought to represent the earliest diver-
gence within the species flock (Rhamphochromis) clustered
together as a separate group (green); all remaining non-
mbuna species formed the third group (red). Notably, deep-
water genera Diplotaxodon and Pallidochromis contain indi-
viduals with mosaic genomes (red and green) and Astatot-
ilapia calliptera, a nonendemic species and possible Malawi
ancestor [48] combines mbuna and non-mbuna genomes.

For comparison, additional analyses were performed setting
the predefined number of genetic clusters to from two to five.
When set to two genetic clusters, species were accurately clas-
sified as mbuna or non-mbuna. At settings of four or five, the
program was unable to yield stable classification results
between replicate runs. Thus, these latter three sets of analy-
ses (data not shown) did not provide any further insights into
the genetic lineages of Malawi cichlids.

Discussion

African cichlid fishes are important models of evolutionary
diversification in form and function [44]. They are singularly
remarkable for the extent of phenotypic and behavioral
diversity on a backdrop of genomic similarity. Lake Malawi is
home to the most species-rich assemblage of African cichlids;
as many as 800 to 1,000 species are thought to have evolved
from a common ancestor during the past 500,000 to 1 million
years ago [42]. These recently formed species segregate
ancestral polymorphism and exchange genes by hybridiza-
tion [5,7,49]. Such circumstances present both opportunities
and challenges for understanding evolutionary history and
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Figure 3

Bayesian assignment of Lake Malawi cichlids to different evolutionary lineages. We show the contribution to each individual genome (q, which ranges from
0% to 100%) from each of K = 3 predefined genetic clusters (blue, red, and green), for data derived from single nucleotide polymorphisms (SNPs) in Tables
2 and 3. Note that this method predefines the number but not the identity of genetic clusters. Species names are written once; multiple individuals from
species are grouped together (for example, four individuals of Pseudotropheus crabro). Species considered mbuna (blue) cluster with other mbuna, to the
exclusion of other groups; species thought to represent the earliest divergence within the species flock (Rhamphochromis) clustered together as a separate
group (green); and all remaining non-mbuna species formed the third group (red).

biological diversity. Opportunistically, researchers have used
molecular markers across studies to interrogate the genetic
basis of phenotypic differentiation [13,22,24,29]. This
approach views Malawi cichlid species as natural mutants
screened for function by natural selection, with essentially
identical ancestral genomes honed by contrasting historical
processes. By contrast, the task of reconstructing a phylogeny
of species has been hindered by the very same phenomena of
genomic similarity and mosaicism [2,3]; even the promising
approach of Amplified Fragment Length Polymorphism
(AFLP) does not provide strong resolution of the relation-
ships among genera [23,48,50,51]. The data we present here
should provide new resources and perspectives for cichlid
evolutionary genomics.

Cichlid species exhibit genomic polymorphism

Lake Malawi cichlid species sequenced by the JGI embody the
phylogenetic, morphological, and behavioral diversity found
within the assemblage. Rhamphochromis esox (RE) is a large
(about 0.5 m) pelagic predator that represents one of the
basal lineages of the species flock [3,4,47]. Mchenga cono-
phorus (MC) is a sand-dwelling species that breeds on leks,
where males construct 'bowers' to attract females. Melano-
chromis auratus (MA), Maylandia zebra (MZ), and Labeo-
tropheus fuelleborni (LF) are rock-dwelling (mbuna) species
that differ in color pattern, trophic ecology, body shape, and
craniofacial morphology (pictures of these and others are
available online [52]).
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Our data confirm the conclusions from previous genetic anal-
yses on a smaller scale; Lake Malawi species are genetically
similar. Nucleotide diversity observed among the five cichlid
species (Watterson's 0, = 0.26%) is less than that found
among laboratory strains of the zebrafish Danio rerio (Wat-
terson's 0,, = 0.48% [53]). Although overall nucleotide diver-
sity is less than that observed in Danio, the ratio of
replacement to silent change is nearly fivefold higher in the
Lake Malawi genomes. Such a result might suggest that East
African cichlid evolution is characterized by adaptive molec-
ular evolution, as has been indicated in a few instances
[25,54], or a relaxation of purifying selection attributable to
small effective population size. However, we should view this
estimate of K, /K with caution because of one of the remark-
able features of these data (see below). Variable sites identi-
fied from cross-species alignments are not substitutions fixed
between species. The K, /K, approach to identifying selection
may be largely inappropriate for such young species where
ancestral alleles segregate as polymorphisms.

The pattern of variation observed across the approximately 75
species genotyped in this study demonstrates that biallelic
polymorphisms segregate widely throughout the Malawi spe-
cies flock. SNPs segregate within and between MZ and LF
populations, as well as within and among mbuna species and
other lineages. No SNP locus surveyed is alternately fixed in
LF versus MZ, nor between mbuna and non-mbuna. Remark-
ably, the degree of genetic differentiation (Fgp) within species
is roughly equivalent to that between species and to that
between major lineages. Lake Malawi cichlid species are
mosaics of ancestrally polymorphic genomes. Add to this a
propensity of recently diverged species to exchange genes [2],
and Malawi cichlids present a case of complex and dynamic
evolutionary diversification, where recombination and the
sorting of ancestral polymorphism may be more important
than new mutation as sources of genetic variation. Despite
allele sharing, SNP frequencies contain a clear signal of
ancestry for the entire flock. Rock-dwelling mbuna comprise
a genetic cluster, as do pelagic and sand-dwelling species, in
addition to Rhamphochromis. Notably, Astatotilapia cal-
liptera, one of a few nonendemic haplochromines in Lake
Malawi, appears to retain a reservoir of ancestral polymor-
phisms from which mbuna and non-mbuna genomes have
emerged.

Genomic polymorphism and the divergence of Malawi
cichlids

Our hierarchical sampling design allows us to consider
whether there are loci exhibiting extreme genetic differentia-
tion against the background of shared polymorphism within
species, between species, and between major lineages. Strik-
ingly, regardless of the evolutionary scale, statistical outliers
comprise approximately 3% to 5% of loci surveyed. Opsin loci
lws, rh1, and sws1 are differentiated among populations of LF
and MZ, adding to reports that opsin polymorphisms are
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associated with population-specific color patterns or visual
environments [55].

SNPs in csrp1, f-catenin, and ptc2 exhibit greater than
expected differentiation between LF and MZ. Csrp1 (cysteine-
rich protein) is a vertebrate LIM-domain family member act-
ing in the noncanonical WNT pathway, expressed in gut,
intestine, and cardiac mesoderm [56]. f-catenin acts to trans-
duce signals in the canonical WNT pathway [57] and is
expressed in developing cichlid fins, dentitions, brains, and
lateral lines (Fraser GJ, Streelman JT, unpublished data).
Patched is a receptor for sonic hedgehog [58]; both areex-
pressed in developing cichlid dentitions, jaws, and brains
(Fraser GJ, Sylvester JB, Streelman JT, unpublished data). A
SNP in irxt nearly perfectly differentiates rock-dwelling
mbuna from the remainder of the Malawi species flock. Irx1
acts to position the boundary between the telencephalon and
the posterior forebrain [59]. Finally, a SNP located between
contactin 3 and ncam L1 exhibits differentiation between
mbuna and non-mbuna lineages; these genes are linked in
other genomes and functionally interact to pattern dendritic
branching in the neocortex [60]. Taken together, differenti-
ated loci are interesting in the context of -cichlid
diversification because they affect the phenotypes that vary
among lineages: color and vision [25,26], guts [61], dentitions
[13,62], jaws [10,29], and brains [28].

Discovery for evolutionary biology

There are obvious challenges when attempting to extract
information from low coverage genomic sequence, and also
obvious payoffs [31-34]. Most previous studies have used this
information for species-specific discovery (for example, dog
breeds) or broad evolutionary comparisons with respect to a
reference genome (for example, dog-human, shark-human,
or cat-mammal). Our goals in the present analysis stem from
the unique characteristics of Lake Malawi cichlids; these are
biologic species that behave genetically like a single subdi-
vided population. Therefore, our biggest challenge was to
devise a strategy that retains information from these low cov-
erage survey sequences (75% genomic coverage spread over
five closely related species), but minimizes error and bias in
assembly and cross-species alignment for SNP identification.
For example, we excluded many contigs because they
appeared to be over-assembled, and we excluded multi-spe-
cies alignments if they exceeded a polymorphism threshold.
The over-assembly problem limits the coverage of these
genomes in relation to expectation; this phenomenon,
observed in the cat genome and in simulation, has complex
and varying causes and has yet to be fully resolved [63]. It is
likely to be mitigated to some degree by comparison with a
higher coverage reference sequence. The power of the data we
present comes from the broad utility of the genic sequences
and SNPs we have identified for many questions in genomic
evolutionary biology.
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Our analyses identified about 12,000 Lake Malawi cichlid
sequences with similarity to human and fish proteins. This is
a significant advance in our understanding of cichlid genomic
content. To put this in context, approximately 13,500 unique
expressed sequence tags, from three different East African
cichlids, represent the sum total of such publicly released
sequences [15]. Our contribution roughly doubles the availa-
ble data.

The approximately 32,000 (2,700 genic) SNPs we identified
should provide a wealth of molecular markers for studies of
population genetics and molecular ecology, linkage and quan-
titative trait locus mapping, association mapping, and phyl-
ogeny. We convert about 70% of predicted SNPs to
polymorphic markers; this percentage is comparable to that
of other studies from white spruce (74% to 85%, depending
on quality cutoffs [64]), zebrafish (65% [53]), and cow (43%
[65]). We have shown these biallelic markers to be of general
use, many segregating across the major cichlid lineages of
Lake Malawi. We used the SNPs to assign Malawi species to
ancestral genetic clusters, and this approach should hold
promise for similar questions of genetic structure that span
the population versus species continuum. It is important to
note that early runs of this analysis, with fewer SNP loci,
resulted in stable results with more individuals showing
mosaic genomes. This suggests that careful consideration
should be given to the number of polymorphic loci necessary
to yield confidence in evolutionary interpretation. As more
SNP loci (with known genome coordinates) are assayed, it
will be possible to compute and compare ancestry propor-
tions across scales (for example, genome versus chromosome
versus gene cluster).

Notably, we have used the background level of genomic simi-
larity and polymorphism to identify loci that may have expe-
rienced a history of selection within species, between species
and between major lineages. Because SNP markers are co-
dominant, easy to genotype, reliable and reproducible from
laboratory to laboratory, and readily mapped in silico
(NHGRI will sequence a related cichlid, the tilapia, to 7-fold
draft assembly coverage in 2008), they are likely to comple-
ment microsatellites and AFLP for most applications in cich-
lid evolutionary genomics. Given the unique mosaic structure
of Lake Malawl cichlid genomes, it is exciting to envision
experiments employing SNPs to identity genotype-phenotype
associations, using the entire species flock as a mapping
panel. Finally, as sequencing costs continue to drop, the
approach we outline here should prove applicable to those
studying evolutionary and phenotypic diversity among
closely related species [44].

Materials and methods

Samples

Individuals of Mchenga conophorus (MC), Labeotropheus
fuelleborni (LF), Melanochromis auratus (MA), Maylandia
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zebra (MZ), and Rhamphochromis esox (RE) were sampled
from the wild during an expedition to Malawi in 2005. Speci-
mens prepared for survey sequencing by the JGI were col-
lected from Mazinzi Reef (MZ), Domwe Island (LF and MA),
and Otter Point (MC and RE), all of which are locales in the
southeastern portion of the lake. High-quality DNA was
extracted and prepared in the laboratory of TDK.

Trace sequences

Trace sequences generated by the JGI for MC, LF, MA, MZ,
and RE, together with their sequence quality scores, were
downloaded (6 May 2007) from the National Center for Bio-
technology Information (NCBI) Trace Archive. The dataset
for each species consisted of an average of about 152,000
individual trace reads with total read lengths ranging from
137 to 185 million bases. Detailed sequence statistics for each
species are provided in Additional data file 1.

Sequence preprocessing and assembly

The trace and quality sequences were first pre-processed for
assembly by masking out all possible vector sequences avail-
able from the NCBI UniVec vector sequence database (down-
loaded 6 May 2007). The vector masking was performed
using the cross_match.pl perl script provided by the Phred-
Phrap package [66]. In order to reduce the computational
complexity and time required for the final assembly, repeat
sequences were masked before assembly using RepeatMasker
version 3.1.8 (Smit AFA, Hubley R and Green P, unpublished
data) in conjunction with the latest repeatmasker libraries
from RepBase Update [67]. Bases with sequencing quality
score of less than 20 were also masked. The actual assembly
of each species' trace sequences into contiguous sequences
(contigs) was then performed using the Phrap version
0.990329 assembly program from the Phred-Phrap package.
Contigs with more than 80% low quality bases (defined as
<20 assembly quality score) were removed from the assem-
bly. This whole genome shotgun project has been deposited at
DDBJ/EMBL/GenBank under the project accessions
ABPJ00000000 (MQO), ABPK00000000 (LF),
ABPLoooooooo (MA), ABPMoooooooo (MZ), and
ABPN00000000 (RE). The versions described in this paper
are the first versions: ABPJ01000000, ABPK01000000,
ABPL01000000, ABPM01000000, and ABPN01000000.

Similarity search and alignment

Orthologous genomic contig pairs were first identified using
reciprocal BLASTN similarity searches with a strict E-value
cutoff of 10100, performed across the sequence contigs of all
possible species pairs. To reduce spurious ortholog assign-
ments, putative ortholog contig pairs were only retained if
their regions of high sequence similarity formed good end-to-
end overlaps (defined as within 100 bases of the 5' end or 30
bases from the 3' end of a sequence) or overlap more than
80% of the shorter contig. Although some of the filtered
regions could represent biologically relevant loci where
recombination or translocations might have occurred, we
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decided to remove them from this analysis. Contig pair
assignments were then passed to an algorithm that created
clusters of contigs whereby each contig within the cluster
must be related to all other contigs in the cluster through one
or more putatively orthologous relations.

Each cluster of contigs was then individually aligned using
Phrap, resulting in a continuous alignment tiling path where
each alignment position may consist of a base from any one or
up to all five cichlid species (Figure 1). Segregating sites were
then identified from alignment positions with high quality
bases (>20 score) from two or more species. A PQS was
defined, corresponding to the first digit of the lowest Phrap
quality score among the nucleotides of the different species
present at the polymorphic site (for example, a polymorphic
site between four species with base quality scores of 34, 45,
46, and 50 would be assigned a PQS of 3). To compare the
extent of nucleotide diversity among the five cichlid species,
we calculated Watterson's theta (0,,[68]). This measure takes
into account the number of variable positions and the sample
size analyzed. Our data violate the assumption of an infinite,
interbreeding population, but we chose this metric to in order
to make direct comparisons to similar measures from study of
other genomes (for example, zebrafish).

Protein-coding sequence identification

Cichlid protein coding sequences were inferred based on sim-
ilarity searches to known protein databases of fishes and
humans. BLASTX searches with E-value cutoff of 101° were
performed for the each cichlid genomic assembly as well as
the overall consensus sequence of the cluster alignments,
against a protein database made up of all GenBank Actinop-
terygii (ray-finned fishes) sequences (downloaded 2 June
2007; 163,471 entries) and all human RefSeq proteins (down-
loaded 25 June 2007; 34,180 sequences). The alignment with
the highest scoring hit for each genomic locus was then used
as areference to determine the coding strand and phase of the
protein-coding cichlid locus.

Evolutionary sequence divergence among JGl species
All cluster alignment segments with contributing bases from
two or more species were split into pairwise alignments (each
two, three, four, or five species alignment position can be split
into one, three, six, or ten pair-wise alignments respectively).
Pair-wise alignments within each of the ten possible species
pair combinations (MC-LF, MC-MA, MC-MZ, MC-RE, LF-
MA, LF-MZ, LF-RE, MA-MZ, MA-RE, and MZ-RE) were then
concatenated and the number of substitutions counted.
Jukes-Cantor correction for multiple substitutions was
applied to these direct distance measurements [69]. Pair-wise
alignments consisting of only genic sequences were obtained
from multi-species cluster alignment segments in a manner
similar to that described above. The DNAStatistics package of
Bioperl [70] was then used to calculate the K, /K values of
pair-wise alignments.
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Genotyping and validation of SNPs

We genotyped 96 SNPs in 364 diverse Lake Malawi cichlid
samples. These SNPs included 13 positive controls, 59 loci
from the automated procedure described in this report, and
an additional 24 loci chosen manually by BLAST of individual
traces to the Tetraodon genome (see main text for further
description). The GenomeLab SNPstream Genotyping Sys-
tem Software Suite v2.3 (Beckman Coulter, Inc.) was used for
experimental setup, data uploading, image analysis, genotype
calling and QC review, at Emory University's Center for Med-
ical Genomics. In brief, marker panel data (multiplexed SNP
panel designed by SNPstream's Primer Design Engine web-
site [71]) were first uploaded to the SNPstream database
using the PlateExplorer application software. Also uploaded
was the Process Group Data containing all test sample infor-
mation generated through a Laboratory Information Man-
agement System (Nautilus 2002; Thermo Fisher Scientific,
Waltham, MA, USA). An on-board CCD camera of the
SNPstream Imager took two snapshot images of each well of
the 384-well tag array, one under a blue excitation laser and
the other under a green excitation laser. Image application
software was used to analyze the captured images to detect
spots, overlay an alignment grid, and determine spot inten-
sity. The fluorescent pixel intensity data for each SNP under
the two channels, representing the relative abundance of the
two alleles, were uploaded to the database. The GetGenos
application software was used to calculate and generate a
Log(B+G) versus B/(B+G) plot, where B and G were the pixel
intensities under the blue and green channels, respectively,
for each sample and each SNP. Next, automated genotype
calling was accomplished using the QCReview application
software based on a number of criteria (for instance, signal
baseline, clustering pattern of the three genotypes, and
Hardy-Weinberg score). A genotype summary was generated
using the Report application software.

Genetic differentiation within and among lineages
Locus-specific Fqr [72] was calculated using FSTAT version
2.9.3.2 [73] for three evolutionary scales: within LF and MZ;
between LF and MZ; and between mbuna and non-mbuna.
We determined that a SNP locus was a statistical outlier using
the empirical distribution of Fgr values. Fgr outliers exceed
the sum of the upper quartile value and 1.5 times the inter-
quartile range.

Genomic assignment

We used a Bayesian method (STRUCTURE v.2.2 [46]) to
determine how well our SNP genotypes assigned individuals
to evolutionary lineages. We chose to define the number of K
genetic clusters in accord with previous research showing
about three major evolutionary groups of Lake Malawi cich-
lids [3-5,47]. Note that we do not intend this to mean that
three is the best supported estimate of K in these data; our
rationale is rather to demonstrate how individual genomes
are composites (or not) of the major evolutionary lineages
found in the lake. Thus, we used the admixture model to esti-
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mate g, the proportion of each genome derived from each of
K genetic clusters. For comparison, we also ran analyses with
K set to two, four, or five (not shown). Each run of the pro-
gram included 50,000 cycles of burn-in and run length of
50,000 steps. Multiple runs were conducted to ensure relia-
bility and consistency of results.
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