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Transcriptome analyses have identified

hundreds of genes that are periodically

expressed during the mitotic cell cycle

in each of four distantly related eukary-

otes (budding yeast [1-3], fission yeast

[4-6], human [7] and Arabidopsis

thaliana [8]). In a paper published in

Genome Biology, Lu and co-workers [9]

challenge the results of earlier compa-

rative studies [4,10-15] by claiming that

cell-cycle-regulated transcription is

much more conserved at the level of

individual genes than previously thought.

However, we question the validity of

their analysis as it relies on circular

reasoning, allows evidence from homo-

logous genes to overrule experimental

evidence from a gene itself, assesses

conservation on the basis of homology

rather than orthology, and equates cell-

cycle function with cell-cycle regulation.

WWhhyy  iiss  tthhee  aarrgguummeenntt  cciirrccuullaarr??
Previous global studies of cell-cycle-

regulated expression analyzed the

microarray data from each organism

individually and then used orthology

relationships derived from sequence

homology to compare the regulation of

conserved genes. By contrast, Lu and

co-workers also use sequence homology

to transfer the evidence for periodic

expression between sequence homologs

within and between organisms [9,16]. If

a conserved gene appears periodic in,

say, the two yeasts and the plant, then

the algorithm may transfer this

evidence to the human ortholog of the

gene and conclude that it too is

periodically expressed. A simplified

interpretation of the method is thus

that it averages the evidence for and

against periodic expression across

homologous genes. However, homology

transfer is only valid if the transferred

property is indeed highly conserved,

and it logically follows that one cannot

use a method that transfers a property

to assess how conserved the property is.

The main conclusion of Lu et al. [9],

namely that cell-cycle regulation is

more conserved than suggested by

earlier studies, is thus based on circular

reasoning as it is a built-in assumption

of their method.

Nonetheless, Lu et al. say that only “5%

to 7% of cycling genes in each of four

species have cycling homologs in all

other species” and thus agree with pre-

vious studies that the vast majority of

the cycling genes in an organism do not

have cycling homologs in other eukary-

otes. When taking into account the

limited sensitivity of microarray experi-

ments, we estimate on the basis of our

genome-wide comparison that 2% to 8%

of the genes in an organism (5 to 22

orthologous groups) belong to the core

set of conserved cycling genes (see

Supplementary Information of our earlier

paper [14]). Whether this is much or

little is clearly in the eye of the beholder.

OOnn  wwhhiicchh  ggeenneess  ddoo  wwee  ddiissaaggrreeee??
Although the argument for conserved

cell-cycle regulation is circular, many of

the genes that Lu and co-workers

identify as cycling could still be correct.

Their method could be useful for up-

grading borderline cases, for example,

where bad microarray probes give a

weak signal for a gene in one of the



organisms. We therefore investigated

the disagreements between the lists of

periodically expressed genes that arise

from the analysis by Lu et al. and from

our analysis [13,14,17]. Some of the

genes on which we disagree are indeed

close to the threshold. There are, how-

ever, also many cases where the assess-

ment of periodic expression by Lu et al.

seems completely off. Figure 1 of this

Correspondence displays the expression

profiles of six such genes. The upper

two rows show the data for two

budding-yeast kinase genes, CDC5 and

DBF2, and their fission-yeast orthologs,

plo1 and sid2, all of which have known

functions in the cell cycle and have been

demonstrated by small-scale experi-

ments to be periodically expressed [13].

Despite consistent periodicity across all

five and ten microarray experiments

performed on budding and fission

yeast, respectively, the analysis by Lu et

al. [9] shows neither of these genes to

be conserved cycling genes.

The opposite scenario is illustrated by

the genes mcm3 and mcm5, both of

which are mentioned specifically by Lu

et al. [9] and are even included on the

list of fission-yeast genes whose

periodicity is supposedly conserved

across all four organisms (a class

designated by Lu et al. as CCC4).

These genes exhibit only low-

amplitude oscillations in one of ten

timecourses, and this is unlikely to be

due to active regulation [13]. In fact,

mcm5 is among the 30% least cycling

genes in fission yeast according to our

analysis [13,14,17]. The combined

algorithm by Lu and co-workers thus

produces both false negatives and false

positives by letting evidence

transferred by sequence homology

overrule experimental data on the

gene itself.

AArree  tthhee  ““ccoonnsseerrvveedd  ccyycclliinngg  ggeenneess””
oorrtthhoollooggoouuss??
Fission yeast mcm3 and mcm5 belong

to a group of six genes, each encoding a

distinct subunit of the hexameric MCM

complex, which is involved in initiation

of DNA replication. The MCM genes are

all conserved as 1:1:1:1 orthologs across

the four organisms studied [14,18,19].

However, although Lu et al. have all six

MCM genes from budding yeast as

“conserved cycling genes” (CCC4), only

mcm5 is present on all four CCC4 lists.

The underlying problem is that their

algorithm [9,16], unlike earlier global

analyses [4,11,13,14], does not distin-

guish between orthologs and homologs.

A gene cluster may thus contain paralo-

gous genes that arose from gene dupli-

cation before the last common ancestor

of present-day eukaryotes. This is well

illustrated in Figure 1d of [9], in which

the four orthologous CDC6 genes form

a cluster that also contains ORC1 from

human and budding yeast (but not from

fission yeast and A. thaliana). Although

both CDC6 and ORC1 are presumed to

share ancestry with archeal cdc6

[19,20], they perform distinct,

conserved functions in eukaryotes [21].

We consider it questionable to make

inferences about, for example, the

expression of human ORC1 based on

expression data from budding yeast

CDC6.

The orthology problem affects many

proteins, including probably the most

studied of all cell-cycle proteins, the

cyclins (Figure 1c in Lu et al. [9]).

Whereas we agree that the periodic ex-

pression of B-type cyclins is conserved

[14], the list of human conserved cyc-

ling genes from Lu et al. also includes

those encoding A-, E- and F-type

cyclins, although these do not exist in

yeasts [18,19]. Tubulins are also listed

as conserved cycling genes for each of

the four organisms, but the cycling

tubulins listed for A. thaliana are beta-

tubulins, whereas none of the human

beta-tubulins cycles. It logically

follows that none of the tubulins has

periodically expressed orthologs in all

four organisms. Systematic, manual

checking of all genes on the CCC4 lists

reveals that the orthology problem

affects almost half of them. The use of

the term “conserved cycling gene” is,

in our view, therefore misleading, as it

does not imply that cyclic expression is

conserved between functionally

equivalent, orthologous genes.

DDooeess  ffuunnccttiioonn  iimmppllyy  rreegguullaattiioonn??  
Given the problems described above,

how then can it be that the numerous

comparisons with other data presented

by Lu and co-workers all point in the

direction that their lists are better than

existing ones? The answer lies in the

subtle but important distinction bet-

ween ‘cell-cycle function’ and ‘cell-cycle

regulation’. Figure 1 of this Correspon-

dence exemplifies the difference: where-

as all six genes are involved in the cell

cycle, only four of them (Plo1, CDC5,

Sid2, and DBF2) are transcriptionally

regulated during the cell cycle. Many of

the tests performed by Lu et al. to

support the validity of their proposed

cycling genes do not assess cycling

expression per se. Datasets from condi-

tions such as stationary-phase budding

yeast, nonproliferating human tissues,

developmentally arrested A. thaliana

and nitrogen-starved fission yeast are

measures of downregulation in non-

proliferating cells, which do not neces-

sarily correlate with cyclic expression.

The problem is that any gene involved

in the cell cycle should be down-

regulated under these conditions -

whether it is expressed in a phase-

specific manner or not. The authors

also analyze the enrichment for essen-

tial genes and genes annotated with

relevant Gene Ontology terms; how-

ever, no statistical analysis can change

the fact that these are inherently related

to the phenotype or function of a gene

rather than to its regulation. The vast

majority of the comparisons by Lu et al.

only show that their set of conserved

cycling genes is enriched for genes with

cell-cycle function, but not that they are

subject to transcriptional cell-cycle

regulation. Indeed, we have previously

observed that methods with good per-

formance on a benchmark set based on

functional evidence often perform

poorly on more reliable benchmark sets

based on regulatory evidence [22].

Lu and co-workers [9] also compared

their list of cycling genes from budding

yeast with the targets of nine cell-cycle

transcription factors [23,24]. This is, in

our view, a much better gold standard

as it is based on experimental evidence
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FFiigguurree  11
Expression profiles of six yeast genes across multiple cell-cycle microarray time courses. Expression profiles for ((aa)) budding yeast CDC5 and DBF2, and
((bb)) their fission yeast orthologs plo1 and sid2. These four genes are all periodically expressed according to our analysis [13,14] but not according to that
of Lu and co-workers [9]. ((cc)) Conversely, fission yeast mcm3 and mcm5 are both periodically expressed according to the analysis of Lu et al. [9] but not
according to us [13,14,17]. The information in the panels refers to the experiments from which the data come and the method of cell-cycle arrest; for
example ‘Cho et al. [1] CDC28’ indicates a time-course experiment in which the cells were arrested using a CDC28 mutant. The values on the y-axis on
each profile indicate the log2 ratio between the expression at a given time point compared with the average expression across the profile. The rank
scores show that plo1 and sid2 are both among the top 100 cycling genes according to our analysis, whereas mcm3 and mcm5 are among the 3,000 least
cycling genes. All plots were obtained from the Cyclebase.org database where further details on the normalization procedure and the scoring scheme can
also be found [17,38].

plo1 sid2

mcm3 mcm5

Rank 46 of 4,990 Rank 83 of 4,990

Rank 2,192 of 4,990 Rank 3546 of 4,990

CDC5 Rank 117 of 6,237 DBF2 Rank 72 of 6,237
(a)

(b)

(c)

Cho et al., CDC28 [1]

Spellman et al., CDC15 [2]

Spellman et al., alpha [2]

Pramilla et al., alpha-30 [3]

Pramilla et al., alpha-38 [3]

Budding yeast
Oliva et al., cdc25 [6]

Oliva et al., elutriation-A [6]

Oliva et al., elutriation-B [6] 

Peng et al., cdc25 [5]

Peng et al., elutriation [5]

Rustici et al., cdc25-1 [4]

Rustici et al., cdc25-2 [4]

Rustici et al., cdc25-3 [4]

Rustici et al., elutriation-1 [4]

Rustici et al., elutriation-2 [4]

Fission yeast



that is directly linked to cell-cycle

regulation and not to cell-cycle func-

tion. However, this benchmark showed

that the list proposed by Lu et al. [9]

and the original list proposed by Spell-

man et al. [2] are equally enriched for

targets of cell-cycle transcription fac-

tors. Similar benchmarks based on regu-

latory evidence from the three other

organisms even suggest that transfer of

evidence between homologous genes

leads to a decrease in performance [17].

In summary, homology-based transfer

of expression data and other experi-

mental evidence is a powerful strategy

for function prediction [25], as protein

function is often conserved over long

evolutionary distances [20]. However,

several studies have shown that the

regulation of genes and proteins

changes much more rapidly during

evolution than their function [4,10-

14,26-32]. We have previously shown

that, despite the lack of conserved

regulation at the single-gene level, the

organisms regulate the same protein

complexes, but do so via different

subunits [14,15]. By transferring cell-

cycle expression data between distantly

related genes, Lu et al. were thus able to

identify genes with cell-cycle function

that cannot be identified as such on the

basis of the expression of the genes

themselves (for example, fission yeast

mcm3 and mcm5; Figure 1). Selecting

the correct evolutionary timescale for

the property in question - be that

function or regulation - is the key to

success for any homology-based method.

Yong Lu, Shaun Mahony, Panayiotis V

Benos, Roni Rosenfeld, Itamar Simon,

Linda L Breeden and Ziv Bar-Joseph

respond:

Despite claims to the contrary from

Jensen et al., previous analyses of cell-

cycle expression data resulted in

opposing views regarding the conser-

vation of expression between different

species. While some investigators have

concluded that this conservation is sur-

prisingly low [4,14], others have deter-

mined that it is rather large. For

example, Oliva et al. [6] found that

more than 30% of top cycling genes in

budding and fission yeast are cycling

and conserved in both species, and Ota

et al. [10] identified more than 15% of

cycling human genes as cycling and

conserved in plants and yeast. The

major reason for this discrepancy seems

to be the use of strict thresholding for

determining whether a gene is cycling

or not. Such an analysis on a species-

by-species basis may lead to incon-

sistencies in cell-cycle assignments.

Figure 2 of this Correspondence exem-

plifies this difficulty. While only expres-

sion of the human Mcm6 gene was

determined to be cycling by Jensen et

al. [14], as Figure 2 shows, its curated

homologs in budding and fission yeast

(which were annotated as non-cycling

by Jensen et al.) actually display strong

cyclic expression patterns. This is a

general problem with cell-cycle analysis.

As Figure 3 shows, while some ortho-

logs of cycling budding-yeast genes may

fall just below the fission-yeast thres-

hold, they are still (at least weakly)

cycling, significantly more than expected

by chance, indicating that expression is

conserved at a stronger rate than the

rate determined by thresholding. To

address these issues, we have developed

a new method for combining expression

data from multiple species [9]. Using

our method we concluded that cell-

cycle expression is conserved at much

higher rates than those claimed by

Jensen et al. [14].

The central claim Jensen et al. raise in

this Correspondence is that our method

is circular. We believe that they confuse

assumptions with circularity. Any

computational method relies on specific

assumptions and, if these assumptions

are wrong, the conclusions of that

method may be wrong as well. For

example, sequence alignment relies

heavily on assumptions regarding the

parameters used for match, mismatch

and gaps. As Dewey et al. [33] nicely

show, these parameters can have a big

impact on the results of aligning non-

coding regions. Nonetheless, research-

ers have been using these methods for a

long time with specific parameter

choices and have arrived at very specific

biological conclusions. Like our method,

these findings are dependent, at least in

part, on the choice of parameters for

matches that are directly related to the

conclusions drawn. Yet they have

proved both useful and accurate when

validating with independent data.

This is exactly the case for our method.

It does not rely on circular logic; rather,

it uses very specific and widely accepted

assumptions. We assume that if two

genes have very similar sequence, it

increases the likelihood that they per-

form a similar function. This is the

assumption researchers make when

using BLAST. When applied to our

problem this translates to increased

likelihood that genes with a similar

sequence share similar cyclic status

(either cycling or non-cycling). Note

that this assumption is not binding and

is only secondary to the actual observed

expression values, as we show in Figure

4. Still, as with any other method, we

need to decouple our results from our

assumptions to demonstrate that our

findings are indeed correct. We high-

light below the supporting evidence in

which we were very careful to control

for sequence similarity.

One of the major difficulties in identi-

fying genes whose cell-cycle-regulated

transcription is conserved across evolu-

tion is that cell-cycle microarray data

are noisy and often contradictory.

Jensen et al. [14] identified the top 300

periodic transcripts from each of four

human datasets and found only 63

transcripts in common to all four. With

only a 20% overlap between the most

periodic 300 transcripts in four data-

sets from the same organism, there is

little doubt that a comparison across

four highly diverged species is proble-

matic. The approach of Jensen et al.

[14] was to use thresholds that are

“more conservative than those origi-

nally proposed” and to analyze a

smaller, more reliable subset of cyclic

transcripts. Our goal was not to ex-

clude, but to capture as many cyclic

transcripts as possible, with the view

that interesting candidates could be

subjected to further verification.
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FFiigguurree  22
Expression values for MCM6 in humans, budding yeast, and fission yeast. Values are log ratios between synchronized and unsynchronized cells. ((aa,,bb))
Expression profiles of budding yeast MCM6 under different cell-cycle arrest methods [2,3]. ((cc,,dd)) Expression of fission yeast mcm6 under different arrest
methods [4,5]. ((ee))  Expression of MCM6 in human HeLa cells [7]. Cell-cycle stages are shown underneath each panel. Jensen et al. [14] claim that although
human MCM6 is cycling at the transcriptional level, its homologs in budding yeast and fission yeast do not cycle. As (a-d) show, the expression of yeast
MCM6 seems more cyclic than that of human MCM6, highlighting the limitations of species-by-species thresholding.
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Our approach was motivated by the

plot in Figure 2, which shows that

fission-yeast orthologs of cycling

budding-yeast genes fall just below the

fission-yeast threshold for periodicity

far more than expected from chance (p-

value < 0.01 using Wilcoxon rank-sum

test, p-value < 0.03 using Kolmogorov-

Smirnov double-sided test). We have

attempted to capture these borderline

genes by lowering the threshold for

borderline genes if their homologs in

other species are cyclic and raising

them if they are not cyclic. This strategy

will certainly lead to more false

assignments, but it has also allowed us

to identify hundreds of promising

candidates for further investigation.

Still, almost all the genes that are

elevated to a cyclic status by our

method have a rather high cyclic

expression score to begin with. Figure 3

shows the difference between the initial

score (based on expression alone) and

the posterior score from our method.

As can be seen in the plot, the ranks for

most genes do not change much.

Jensen et al. also question the comple-

mentary datasets we used to validate

the CCC sets identified by our algo-

rithm. They claim that the comple-

mentary datasets we used only point to

cell-cycle function rather than cell-cycle

regulation. However, the ‘functional

rather than regulatory identification’

claim does not provide an explanation

as to how our algorithm was able to

identify these ‘functional’ cell-cycle

genes. In our analysis we used controls

for both types of data (expression and

sequence). Specifically, for the essen-

tiality analysis we show that only 16% of

cycling yeast genes are essential. If one

uses sequence data, so that only genes

with conserved homologs in other

species are retained, this percentage

increases to 27%. If what we find is

indeed functional rather than regulatory

signal, cyclic expression in other species

would not have been a factor and the only

advantage we would have would come

from using sequence data. However,

when we use both sequence conservation

and conserved cyclic expression, as

determined by our method the

percentage rises to 46%, a more than

70% increase over sequence alone.

Similar results were obtained for the

human conserved set. We have repeated

this type of positive control for the

other types of complementary analysis

and have shown that expression

conservation leads to much stronger

cell-cycle characteristics.

We have also carried out direct regu-

latory analysis. Table 1 in our original

paper [9] presents the result of motif

search methods for genes in CCC2, the

set of cycling genes conserved between

the two yeasts. We show that these

genes have a remarkably well conserved

motif for G1 and some of the S-phase

transcription factors. In sharp contrast,

non-cycling homologs of genes in CCC2

do not have these motifs conserved. The

fact that motif conservation agrees with

our expression conservation findings is

a strong support for the CCC2 set

assignment.

The other major issue raised here by

Jensen et al. relates to the problem of

identifying conserved periodic genes

whose products carry out the same

function in all four of these highly

divergent species. Jensen et al. [14]

used a combination of sequence simi-

larity and manual curation to identify

orthologous groups. In most cases, it

cannot be determined whether these

groups are really functionally equiva-

lent or whether all such groups have

been identified. Nevertheless, on the

basis of these assignments, only a quar-

ter of all the cycling genes they studied

had orthologs in all four species and

these form the basis for their com-

parison. Of the 60 cycling genes in

Arabidopsis with orthologs in all four

species, one-third of their orthologs

also cycle in pairwise comparisons with

each of the other three species, but only

five cycle in all four species. All five of

these orthology groups represent well

studied genes and nothing new was

identified.

We purposely avoided restricting our

analysis only to genes with clear
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FFiigguurree  33
Score distributions for fission-yeast genes that are ranked below the cycling score threshold. The red
curve is the distribution of 350 fission-yeast orthologs of cycling budding-yeast genes. The black curve is
the distribution of all the other 3,641 fission-yeast genes. Density is the distribution density for each of
the different scores. As can be seen, the red curve is highly skewed to the right (higher score). In fact,
the difference between the two curves is significant, with a p-value of 0.01 (Wilcoxon rank-sum test).
Thus, while orthologs of cycling budding-yeast genes may fall just below the fission-yeast threshold, they
are still at least weakly cycling, much more so than expected by chance, indicating that expression is
conserved at a much stronger rate than the rate determined by thresholding-based methods.
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orthologs across species. Rather, we

used BLAST analysis followed by a

Markov cluster algorithm [34], which

leads to the identification of multi-

domain homologous proteins. This

difference between the definitions of

homologs impacts on the conclusions

reached by us and Jensen et al. Our

method results in large families that
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FFiigguurree  44
Comparison of expression score ranks and posterior ranks. ((aa))  The expression score rank and posterior rank for fission-yeast genes. The x-axis is the
expression score rank (the lower the rank the more cyclic the gene is determined to be by the scoring method) and the y-axis is the rank based on our
method (again, the lower the better). As can be seen, the ranks for most of the genes do not change much. The red dashed line represents the posterior
threshold used to select cycling genes, and the green dashed line is the corresponding threshold if only expression scores are used. Almost all genes that
are elevated by our method to a cyclic status have a rather high cyclic expression score (though some are not as high as the cutoff for score alone, which
is where the two methods differ). Five selected genes are highlighted by red circles. These genes would have been missed if only expression scores were
used to determined cyclicity, because their scores would be just below the cutoff. While Jensen et al. [14] do not assign cyclic status to these genes,
sam1 was also identified as cycling by Peng et al. [5], SPBC17D11.08 was included in the list by Rustici et al. [4], and rpb9 was identified by both Oliva et
al. [6] and Peng et al. [5]. The other two genes, SPBP8B7.26 and rmi1, are missing from all three studies, even though their profiles appear cyclic (not
shown). ((bb--dd)) Similar plots for (b) budding yeast [2,3], (c) human [7], and (d) Arabidopsis [39].
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show high homology overall but cannot

be parsed into one-to-one orthologous

pairs across species. In our original

paper [9], we presented analysis of the

results of this procedure for the CCC2

set of conserved cycling genes. We

found that 82% of budding yeast genes

in CCC2 are indeed curated homologs

of the fission yeast CCC2 genes [35], a

very high rate that indicates the

accuracy of the resulting CCC2 set.

As we compare the genes from more

divergent species, we are much less

likely to be able to ascribe functional

equivalence to any given pair. This is

especially true for signaling and

regulatory proteins that often arise

from duplicated genes, and which

cannot be forced into functionally

equivalent orthology groups until we

have a complete understanding of what

they do in every species. Jensen et al.

are correct that there is no cyclin E

ortholog in yeast. There is also no cyclin

E in Arabidopsis [36]. However, all four

species encode related cyclin genes

carrying out functions in late G1 that

are important for the transition to S

phase, and most of these cyclins are

cell-cycle-regulated at the transcrip-

tional level. These are the very types of

gene products that we are most

interested in identifying.

Towards this end we used an objective

and comprehensive strategy for identi-

fying multi-domain sequence homolo-

gies across all four genomes. In so

doing, we have identified groups of

genes that share some truly remarkable

properties. The 72 conserved cyclic

budding-yeast genes that are also

conserved in fission yeast and humans

(CCC3) are eight times more likely to be

targets of cyclin-dependent kinases

than those tested at random, and six

times more likely to be involved in

protein-protein interactions. Some of

these genes encode unexpected proteins

(for example, alkaline phosphatase and

metal transporters) and there are

others about which nothing is known.

To further study this set we carried out

new experiments [37] to identify the set

of cycling genes in primary human cells

(our previous analysis as well as that

analysis of Jensen et al. [14] is based on

expression data from transformed

(HeLa) cells). As we discuss in [37], the

set of genes cycling in primary cells is

significantly more enriched than the

HeLa set for orthologs of cycling genes

in budding and fission yeast. We hope

that our study will spur the collection of

more cell-cycle data and the develop-

ment of new strategies for identifying

conserved periodically transcribed genes.

Correspondence should be sent to Ziv Bar-Joseph:
Department of Computer Science, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA 15213, USA. Email: zivbj@cs.cmu.edu
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