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Abstract

Background: Epigenetic mechanisms regulate gene expression patterns affecting cell function and
differentiation. In this report, we examine the role of histone acetylation in gene expression
regulation in mouse embryonic stem cells employing transcriptomic and epigenetic analysis.

Results: Embryonic stem cells treated with the histone deacetylase inhibitor Trichostatin A (TSA),
undergo morphological and gene expression changes indicative of differentiation. Gene profiling
utilizing Affymetrix microarrays revealed the suppression of important pluripotency factors,
including Nanog, a master regulator of stem cell identity, and the activation of differentiation-
related genes. Transcriptional and epigenetic changes induced after 6-12 hours of TSA treatment
mimic those that appear during embryoid body differentiation. We show here that the early steps
of stem cell differentiation are marked by the enhancement of bulk activatory histone modifications.
At the individual gene level, we found that transcriptional reprogramming triggered by histone
deacetylase inhibition correlates with rapid changes in activating K4 trimethylation and repressive
K27 trimethylation of histone H3. The establishment of H3K27 trimethylation is required for stable
gene suppression whereas in its absence, genes can be reactivated upon TSA removal.

Conclusion: Our data suggest that inhibition of histone deacetylases accelerates the early events
of differentiation by regulating the expression of pluripotency- and differentiation-associated genes
in an opposite manner. This analysis provides information about genes that are important for
embryonic stem cell function and the epigenetic mechanisms that regulate their expression.

Background cell-based therapies. In addition, they provide an excellent
Embryonic stem (ES) cells have attracted intense interest  experimental system to study development and differentia-
because they offer great promise for tissue regeneration in  tion using in vivo and in vitro strategies.
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ES cells can be cultivated in vitro while retaining their undif-
ferentiated character and self-renewing capacity [1,2]. Signal
transduction mechanisms implicated in self-renewal are the
LIF/Stat3 pathway for murine ES cells [3], and bone morpho-
genetic protein [4] and the Wnt pathway [5] for both mouse
and human stem cells. Intrinsic factors that maintain self-
renewal include the transactivators Oct4, Sox2 and Nanog [1].
The three transcription factors form a regulatory circuit that
has auto- and cross-regulatory activities [6] and is associated
with both active and silenced genes [6,7]. This initial 'stem-
ness core' has been recently extended by the addition of Klf4
[8] and Sall4 [9]. Moreover, novel factors that contribute to
pluripotency have been identified using an RNA interference
approach [10] or Nanog affinity co-purification strategies
[11]. These new discoveries suggest that regulation of stem-
ness may be far more complex than previously thought.

Superimposed on this genetic program, epigenetic mecha-
nisms may also determine the composition of the stem cell
transcriptome. Post-translational modifications of histones
are indicative of chromatin structure and regulate gene acti-
vation and repression during development [12,13]. For exam-
ple, lysine acetylation of various residues on histone H3 and
H4 and lysine methylations of H3K4, H3K36 and H3K79 are
involved in transcriptional activation whereas methylation of
H3Kg, H3K27 and H4K20 are linked to transcriptional
silencing [14]. The chromatin of ES cells has a characteristic
structure of increased accessibility compared to differenti-
ated cells, due to fewer and loosely bound histones and archi-
tectural proteins [15]. Trimethylation of K4 and K27,
mediated by Trithorax and Polycomb groups, respectively,
have important functions in the determination of stem cell
state and differentiation commitment [16,17]. Lineage-spe-
cific genes, which are silenced in the undifferentiated state by
polycomb complexes [18,19], are 'bivalently' marked with
both modifications [16,17,20-22]. This mark is considered a
means of keeping developmental genes poised for rapid acti-
vation during stem cell differentiation [20,21], although it is
neither a unique feature of ES cells [16,17,23] nor a prerequi-
site for rapid transcriptional response [17]. These findings
suggest that epigenetic mechanisms have important roles in
stem cell identity [24,25], but may also guide differentiation
and fate decisions [26,27].

In this light, molecular tools that disrupt global epigenetic
mechanisms have the potential to reveal the broader spec-
trum of genetic circuits operating in stem cells. Among them,
the pharmacological agent Trichostatin A (TSA) is particu-
larly potent, inhibiting the enzymatic activity of deacetylases
and thus promoting histone acetylation. TSA, by its universal
action, provides an entry-point for an overall assessment of
the importance of histone modifications on stem cell biology.

To evaluate the importance of histone acetylation on ES cell
differentiation, we treated cells with the histone deacetylase
inhibitor TSA and examined gene expression changes using
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Affymetrix gene chips and epigenetic changes using chroma-
tin immunoprecipitation (ChIP) assays. TSA treatment leads
to down-regulation of Nanog along with a large group of
genes that are characteristic of the undifferentiated state and
up-regulation of mesodernal and neuro-ectodermal marker
genes. We show here that TSA accelerates the early stages of
stem cell differentiation by the global increase of activatory
histone modifications and gene-specific changes in the bal-
ance between K4 and K27 trimethylations. Both gene expres-
sion and epigenetic changes resemble those that appear
during embryoid body differentiation.

Results

Inhibition of histone deacetylase activity induces
phenotypic changes and Nanog suppression in
undifferentiated ES cells

To examine the role of histone acetylation on the differentia-
tion state of mouse ES cells, we employed the histone deacety-
lase inhibitor TSA. We first tested the effect of different TSA
concentrations on the mouse CGR8 ES cell line cultivated in
the presence of LIF. When 10-50 nM concentrations were
used, we observed morphological changes that depended on
the concentration and duration of the treatment (not shown).
Figure 1a shows a phase contrast morphology and alkaline
phosphatase staining (ALP) of mES cells subjected to 50 nM
TSA for 12 h. Control cells form round and compact colonies,
which stain > 90% positive for ALP. After treatment with 50
nM TSA for 12 h, 70% of the colonies are disrupted and the
cells become flattened and negative for ALP; the other 30%
show a loose morphology containing a mixed population of
ALP-positive and -negative cells.

To identify possible molecular changes underlying the TSA-
induced phenotypic transformation, we analyzed the expres-
sion of Nanog, one of the master regulators of ES cell identity.
Nanog is down-regulated by TSA in a dose-dependent man-
ner, with a concentration of 50 nM having maximal effect
(Figure S1A in Additional data file 1). Figure 1b shows that
Nanog mRNA levels decline very rapidly starting within the
first 2 h of treatment with 50 nM TSA and are minimal by 4 h.
Nanog protein levels drop with slower kinetics (Figure 1b).
Similar to Nanog, Oct4 and Sox2 mRNA (Figure S2 in Addi-
tional data file 1) and protein levels (Figure S1B in Additional
data file 1) were reduced during TSA treatment.

In order to test if the rapid Nanog suppression is due to tran-
scriptional silencing, we examined the effect of TSA on the
activity of different Nanog promoter fragments cloned in
front of the luciferase reporter gene (Figure 1c). Two Nanog
promoter fragments extending 966 or 220 bp upstream from
the transcriptional start site are both suppressed by TSA (Fig-
ure 1¢, -966, -220). The proximal promoter has higher activ-
ity, possibly because it is deprived of negative regulatory
elements that reside within upstream regions. Interestingly,
when the Nanog enhancer, located 5 kb upstream of the
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Figure |
Cell morphology and Nanog expression after TSA treatment. (a) ES cells were treated with 50 nM TSA for 12 h and then released from TSA for an

additional 12 h. Cell morphology and ALP staining of the three states (ES control, ES+TSA and ES re are shown. (b) Nanog mRNA and protein levels after
2,4, 6 and 12 h of TSA treatment (50 nM). (c) Luc activity of Nanog promoter/enhancer domains. ES cells were transfected with the indicated fusions of
Nanog promoter/enhancer fragments to the luciferase reporter gene. Transfected cells were treated with TSA for 0, 4 and 8 h.
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transcription start site and containing a Nanog auto-regula-
tory site [28], is fused to the -966 promoter (Figure 1c, enh/-
966), it produces a stronger element that is more robustly
repressed by TSA than either of the two promoter fragments
(Figure 1c). These findings suggest that loss of Nanog expres-
sion after TSA treatment is due to transcriptional repression.
Moreover, it appears that the effect is mediated by both the
proximal promoter, which harbors a composite Oct-4/Sox2
binding site known to regulate Nanog expression [29,30], and
the distal enhancer where Nanog binding sites reside [28].

Microarray analysis of the global TSA effects

The observed morphological effects of TSA and Nanog repres-
sion might be indicative of a global and rapid assault on the
self-renewal capacity of ES cells, with possibly a simultaneous
launch of differentiation. To test this idea, we performed
Affymetrix microarray analysis using RNA samples isolated
after TSA treatment of ES cells for 6 h to gauge early events
and 12 h to test putative secondary effects. The data show
extensive changes in the ES transcriptome (Additional data
file 2), suggesting that a large fraction of the genome was
transcriptionally reprogrammed. Of the differentially
expressed genes in TSA-treated compared to control ES cells,
792 genes were down-regulated and 1,376 up-regulated at the
2-fold change cut-off value (Additional data file 2). The gene
chip data were validated by real time RT-PCR for 20 selected
genes (Figure S3 in Additional data file 1).

A selection of up- and down-regulated genes is presented in
Table 1. The category of down-regulated genes contains those
encoding important regulators of pluripotency, including
Nanog, Sall4, Klf4, Sox2 and Oct4, and other genes typical of
the undifferentiated state, such as Rex1/Zfp42, FoxD3, Gdf3,
Nrobi, Eras, Rif1, Tbx3 and Esrrb [2]. It also contains genes
encoding a group of chromatin and transcription regulators,
such as the histone acetyltransferase PCAF, the H3Kg9 methyl
transferase Suv3g, the H3K9 demethylases Jmjdia and
Jmjdac, the H3K27 demethylase Utx, the Polycomb factors
Bmi1, Cbxs, Suz12 and Eed (Table 1) and the transforming
growth factor-fB/activin signaling pathway members Inhbb,
Gdf3 and Lefty2. Among the early and strongly TSA-
supressed genes are Sallz, Gli2 and Klf2, which have not been
previously associated with regulation of pluripotency and
may be novel candidates.

In the category of up-regulated transcripts, we detected:
genes of the neural lineage, such as Hoxa1, Hoxb13, Nnat,
and Mbp; genes of the hematopoietic lineage, for example,
Mifi; vascular and neuronal differentiation related genes like
Pdgfrp, a group of genes encoding histones, including the dif-
ferentiation-specific histone Hifo; and genes encoding the
connective tissue growth factor Ctgf and the endothelial-spe-
cific receptor Edg3. In addition, TSA activates the immediate-
early response genes Egri, Fos and JunB, which have been
associated with cell proliferation, differentiation, transforma-
tion and apoptosis.
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To narrow down the genes under study, we focused on the
most significant changes and chose to analyze genes with
expression changes equal to or greater than four-fold. Using
this gene list we performed a hierarchical clustering in order
to uncover genes that respond similarly to TSA treatment,
pointing to a possible functional interconnection (Figure 2a;
Figure S4 in Additional data file 1). This analysis showed the
existence of two major clusters of down-regulated (cluster 1)
and up-regulated (cluster 2) genes and unveiled a further
division of each cluster into two subclusters (Additional data
file 3). Subclusters 1b (117 transcripts) and 2a (111 transcripts)
show major changes at 6 h whereas subclusters 1a (60 tran-
scripts) and 2b (112 transcripts) do so at 12 h. To functionally
categorize the gene clusters and subclusters, we used the
Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID) [31] to obtain Gene Ontology annotations for
the category of 'biological process' (Table 2). Down-regulated
transcripts (subclusters 1a and 1b) contain genes that fall in
the categories of metabolism (Cbr3, Tdh, Enpp3, Cacnaia,
Cul1), development/morphogenesis (Nanog, Nrobi, Salli,
Gli2, Lefty1, Lefty2) and growth (Gdf3, Gjai1, Socs2, Inhbb).
In addition, genes from subcluster 1b fall in the category of
transcription (Tcfap4, Gtf2I, Ubtf, Suv3gohi). Up-regulated
genes from the early-induced subcluster 2a participate in
neural system development (Sema4f, Hoxai, Stxbpi),
whereas subcluster 2b (induced after 12 h) contains genes
that take part in angiogenesis and hemopoiesis. Additionally,
subcluster 2a members participate in cell organization/bio-
genesis (CenpJ, Tubb2a, Sept4) and intracellular signaling
(Edg3, Rndi, Mknk2), while subcluster 2b members have
been implicated in metabolism (Hsdl2, Tgmz2, Pygl), chro-
mosome organization, that is, nucleosome and chromatin
assembly/disassembly, (H1h2bf, Hih2bc, Hi2bp, H2hz2be,
Hifx) and antigen processing (H2-T3, H2-K1, CD74).

An overview of the various gene function categories is shown
as pie charts for clusters 1 and 2 in Figure 2b. Comparison of
the pie chart representations between up- and down-regu-
lated genes reveals some interesting differences. For exam-
ple, regulators of cell cycle, cell growth and transcription are
represented in the cluster of down-regulated genes, suggest-
ing a strong effect of TSA treatment on the self-renewal
machinery. On the other hand, signaling and adhesion mole-
cules become evident in the pie chart of induced genes, indi-
cating the appearance of new response mechanisms to
environmental cues. A full list of genes from each subcluster
and the corresponding biological process annotations are
included in Additional data files 3-7.

Histone deacetylase inhibition effects resemble gene
expression changes appearing during embryoid body
differentiation

To examine how gene expression modulation caused by TSA
corresponds to changes taking place during the matural' in
vitro differentiation process, we placed ES cells in hanging
drops to form embryoid bodies (EBs) and allowed them to dif-
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Table |

Functional annotation (biological process) and mRNA fold change of selected TSA (6 and 12 h) down- and up-regulated genes

Gene symbol  Fold change 0 to 6 Fold change O to 12 F-test_p-value Function (biological process)
hrs TSA hrs TSA
Inhbb -11.91 -11.93 2.33E-08 Growth
Salll -10.95 -16.09 1.06E-05 System development
Nanog -9.87 -15.24 2.27E-05 Stem cell division
Gdf3 -8.11 -12.56 9.83E-07 Growth
Lefty2 -57 -16.58 6.87E-06 Development
Gli2 -5.61 -8.38 4.34E-08 Regulation of transcription, DNA-dependent
Kif2 -4.73 -10.39 4.48E-08 Positive regulation of transcription
Zfp42/Rex -4.62 -5.00 I.01E-05 Regulation of transcription, DNA-dependent
Foxd3 -4.59 -4.66 3.74E-05 Regulation of transcription, DNA-dependent
Tbx3 -4.46 -6.10 9.29E-05 Development, cell aging, negative regulation of transcription
Eras -4.22 -5.94 3.11E-06 Small GTPase mediated signal transduction
Nrob| -4.11 -13.39 1.70E-06 Negative regulation of transcription
Rifl -4.03 -3.82 1.54E-04 Response to stress, chromosome maintenance
Leftyl -3.66 -9.11 1.13E-06 Development, cell growth
Suv3%hl -3.50 -4.87 2.38E-06 Chromatin assembly or disassembly, chromatin modification
Sall4 -3.47 -3.34 2.47E-03 Stem cell pluripotency
Utx -3.61 -2.81 1.68E-04 Chromatin modification
Pcaf -3.29 -5.15 3.79E-05 Regulation of transcription, DNA-dependent
Bmil -3.39 -1.80 2.39E-06 Chromatin modification, somatic stem cell division, development
Kif4 -3.02 -4.09 1.59E-06 Regulation of transcription, DNA-dependent
Fgf4 -2.95 -3.47 2.23E-06 Stem cell maintenance, regulation of cell cycle
Zic3 -2.87 -3.28 2.38E-05 Regulation of transcription
Esrrb -2.64 -4.26 2.96E-04 Regulation of transcription, DNA-dependent
Sox2 -243 -1.63 2.03E-04 Cell fate specification, regulation of transcription, DNA-dependent
Jmjdla -2.20 -2.94 8.14E-08 Chromatin modification
Suzl2 -2.10 -1.87 1.58E-03 Chromatin modification
Jmjd2c -2.20 -2.27 2.28E-04 Chromatin modification
Tell -1.85 -3.13 1.09E-04 Regulation of transcription
Eed -1.80 -2.05 2.37E-05 Imprinting
Cbx5 -1.42 -2.21 1.76E-03 Chromatin assembly or disassembly
Pou5fl1 -1.09 -1.74 6.04E-04 Stem cell maintenance
Egrl 28.37 40.75 1.53E-06 Regulation of transcription, DNA-dependent
HIfo 13.39 22.33 4.45E-06 Nucleosome assembly
Histlhlc 12.34 17.88 1.01E-03 Nucleosome assembly, chromosome organization and biogenesis
Pdgfrb 9.78 10.77 3.98E-06 Protein tyrosine kinase signaling pathway
Fos 8.02 11.35 9.00E-07 Regulation of cell cycle, regulation of transcription, neurogenesis
Ndrg4 7.87 8.15 9.85E-06 Cell differentiation, development
Hist3h2a 5.98 .17 7.97E-04 Nucleosome, chromosome
Cregl 4.65 5.32 2.84E-06 Regulation of transcription, DNA-dependent
Telll 4.47 5.13 7.84E-06 Protein modification
Nnat 4.05 8.37 1.04E-03 Development
Hoxal 4.05 5.34 8.61E-06 Anterior/posterior pattern formation, hindbrain development
Edg3 3.88 4.82 1.53E-04 G-protein signaling, positive regulation of cell proliferation
Cacnalb 3.83 7.21 8.76E-04 Neurotransmitter secretion, regulation of heart contraction

Genome Biology 2008, 9:R65

R65.5



http://genomebiology.com/2008/9/4/R65 Genome Biology 2008,  Volume 9, Issue 4, Article R65 Karantzali et al.

Table | (Continued)

Functional annotation (biological process) and mRNA fold change of selected TSA (6 and 12 h) down- and up-regulated genes

Idb2 3.49 7.12 3.42E-04 Development, heart development, lymph gland development
Hoxb 13 3.33 4.45 6.74E-06 Pattern specification, organogenesis, regulation of growth
Cacnalh 3.15 5.50 1.45E-05 Calcium ion transport

Cbx4 3.14 4.85 5.13E-05 Chromatin assembly or disassembly, chromatin modification

Sirt7 2.69 2.68 1.05E-04 Chromatin silencing, regulation of transcription, DNA-dependent
MiIfl 2.29 12.44 6.88E-05 Cell differentiation

Ctgf 2.12 9.88 6.80E-04 Ossification, angiogenesis, regulation of cell growth, cell adhesion
Cbx2 1.81 2.00 6.16E-05 Chromatin assembly or disassembly, chromatin modification

Wifl 1.41 6.33 2.38E-06 Negative regulation of Wnt receptor signaling pathway

ferentiate without LIF. We then analyzed the mRNA levels of  receptor Pdgfrp, and the hematopoietic lineage switch gene
six genes from Table 1 that are strongly affected, negativelyor =~ MIf1 and the homeotic Hoxa1 gene. Figure 3a shows that TSA
positively, by TSA. These genes were those encoding Nanog, causes a very rapid repression of Nanog, Nrob1 and Salli, a
the spalt homologue Salli, the orphan nuclear receptor  rapid but more gradual induction of Pdgfrp and Hoxa1, and a
Nrobi, the vascular and neuronal differentiation related late increase of Mlf1 mRNA levels.
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Figure 2

Gene expression changes after TSA treatment and functional annotation of affected genes. (a) Hierarchical cluster analysis of the TSA-induced
transcriptome. The numbers |, 2, and 3 at the top represent three biological replicates of the experiment. Brackets on the left mark the two major
clusters of down-regulates (cluster |) and up-regulated (cluster 2) genes. Brackets on the right mark the subclusters of the four different expression
profiles observed, that is, down-regulation after 12 h of TSA treatment (subcluster |a) or after 6 h (subcluster 1b), and up-regulation after 6 h (subcluster
2a) or 12 h (subcluster 2b). (b) Pie charts representing the functional annotation of up- or down-regulated genes. Transcripts differentially expressed by >
4-fold after 6 or 12 h of TSA treatment were used for all the above experiments.
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Table 2

Genome Biology 2008,
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Major functional categories of the four subclusters from the hierarchical clustering (Figure 2b) and the respective genes

Subcluster Genes Function
la Leftyl, Lefty2, NrOb I, Mcf2, Notch4, Metabolism
Foxh 1, Ubtf, Gtf2i, Tdh, Upp |, Fkbp9, Development: embryonic, tube
Enpp3, Socs2, Cacnala, Pycard, Enah, Morphogenesis
Lefl, Esrrb, Rnfl25, Ddc, Bcatl, Dpp4, Pattern specification
Ptpmtl, Ctbp2, Pml, Ptbp2, Hnrpa2b| Cell differentiation
Growth
Ib Nanog, Tbx3, Salll, Gdf3, KIf3, Kif4, Metabolism
Zic3, Zic5, FoxD3, Gli2, Gjal, Otx2, Transcription
Zbtb7a, Nsd|, Aridla, NFIb, Pitx2, Rarg, Suv39H1, Cull, Ppap2b, Development: embryonic, organ, tube
Pdgfc, Tns3,
Inhbb, Fnl, Tcfap4, Nr5a2, MITé, Irf2bp2, Pcaf, Zfp42, Zmynd| I, Morphogenesis: embryonic, organ, tube
Ncorl,
MIIT10, Tgif, Trpsl, Emp|, Pkd2, Spry2, Cell proliferation
Gjb3, Fgf4, Vegfc, Hsd17B1 I, Cbr3, Growth
Fbxol5, Dusp27, Frrsl, Cdké, Epb4.9, Irak3, Spry4, Manba, Folr|
2a Sema4f, Mbp, Cnp, Stxbp I, Hoxal, Fos, Farp2, Sept4, Krtl-18, HIf0, Cell organization and biogenesis
Tubb2a,
Dnajcl 2, Cenpj, Spirel, Pappa2, Sh2b2, TaxIbp3, Rndl, Arhgap29, System development: nervous system development; neurogenesis;
Edg3, Mknk2, Errfl, Rap40b, Pdgfrb cell development
Intracellular signaling
2b Id2, Id4, Wifl, Hoxb 3, Prkar|b, Prkar2b, Metabolism

Zfp36, Cd74, Thyl, Serpinel, Dhcr7, Pdlim7, Cigf, MIfl, Lgals |, Kif3a,
Irf8, Hsdl2, HIh2bf, HIh2bp, HIh2bc, H2h3cl, Junb, Cbx4, Hspala,
Hspalb, Hspa2, Acaalb, HIfx, Psmb9, H2-T3, H2-K 1, Hist| h2bn

Development: organ development/morphogenesis; vasculature
development; angiogenesis; hemopoiesis/blood vessel development

Cell differentiation
Chromosome organization

Immune response

During embryoid body differentiation, suppression or induc-
tion of individual genes takes place in distinct time frames. To
compare the TSA effect with EB differentiation, days 4 and 8
were chosen as the most indicative even though gene expres-
sion changes were observed earlier (EBs days 2 and 3).
Nanog, Nrob1 and Sall1 were also found to be repressed dur-
ing EB formation whereas Pdgfrf, Mlf1 and Hoxa1 genes were
activated. (Figure 3b). Therefore, the expression of these
genes in embryoid bodies is regulated in the same direction as
after TSA treatment, albeit at much slower paces (Figure 3b).
This was true for the majority of genes checked so far.

The effect of TSA is partially reversible

We next asked if the differentiation imposed by TSA is revers-
ible. To answer this question, ES cells were treated with TSA
for 12 h and then cultured for an additional 6 and 12 h without
TSA (ES re). We observed that the morphological changes
induced by TSA were gradually reversed with the emergence
of compact colonies (approximately 70% of the control),
which are indicative of the undifferentiated state (Figure 1a,
ES re). These colonies stain weakly for ALP in their center
(Figure 1a). RT-PCR analysis demonstrated that the
expression of Nanog, MIfi, Hoxa1 and Pdgfrp was fully

reversed to pre-treatment, undifferentiated ES cell levels
(Figure 3a). In contrast, the mRNA levels of Nrob1 and Sall1
did not recover fully. In agreement with the reduction of
Nanog mRNA, FACS analysis showed that the population of
cells expressing Nanog above control antibody levels was
reduced by TSA and then recovered upon release from TSA
treatment (Figure S5 in Additional data file 1). Further analy-
sis of three well characterized pluripotency factors, Oct4,
Sox2 and Zfp42/Rex1, revealed that the mRNA levels of Oct4
and Sox2 but not of Zfp42/Rex1 were restored after TSA
removal (Figure S2 in Additional data file 1). In conclusion,
although the morphological changes that are caused by TSA
treatment are largely reversed, expression of individual genes
can undergo either fully or partially reversible alterations.
The partial return to the ES cell phenotype suggests that his-
tone deacetylase inhibition alone does not appear to fully
commit ES cells to differentiation.

In order to examine the competence of the 'ES re' cells to con-
tribute to the three germ layers, we placed them in hanging
drops and observed that they formed EBs of normal
morphology. We then checked for expression of markers of
the three germ layers, endoderm (Sox17), mesoderm (Brach-
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Expression patterns of selected genes in TSA-treated ES cells and EBs.
mRNA levels of Nanog, Salll, NrOb1, Pdgfrbl, MIfl and Hoxal in: (a) ES
cells treated with 50 nM TSA for 6 and 12 h. After 12 h of treatment, TSA
was removed and cells were cultivated for an additional period of 6 and 12
h. (b) EBs 0, 4 and 8 days old. Control mRNA levels (0 h TSA/0 days EBs)
were set to | and normalized with glyceraldehyde phosphate
dehydrogenase. mRNA levels were analyzed with real-time PCR.

yury) and ectoderm (Mash1). As shown in Figure 4, Sox 17
and Mash1 followed the same expression patterns as in wild-
type cells whereas Brachyury was up-regulated one day later
than in wild-type cells. These results show that 'ES re' cells are
still capable of acquiring either one of the three cell fates.
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Figure 4

mRNA levels of Sox |7, Brac and Mash | during EB formation of control and
released ES cells (ES re). Control and released ES cells grown at clonal
density were placed in hanging drops to form EBs. mRNA levels of the
indicated genes were measured using real time RT-PCR analysis and were
normalized to Hprt.

Histone modification changes correlate with gene
expression reprogramming

To gain insight into the molecular mechanisms whereby TSA
triggers stem cell differentiation, we analyzed the dynamics of
histone H3 modifications after TSA treatment and compared
them to changes taking place during EB formation. In both
cases, we observed an increase in the global amounts of two
activatory modifications, H3 acetylation and K4 trimethyla-
tion and a decrease in repressive K27 trimethylation (Figure
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Analysis of bulk histone modifications in TSA-treated ES cells and EBs.
Global levels of histone H3 acetylation (acH3), and lysine 4 (3mK4) and
lysine 27 (3mK27) trimethylation, employing immunoblotting with specific
antibodies. Equal loading was controlled with Coomassie blue staining.

5). These results show that TSA treatment instigates a global
enhancement of activation-linked epigenetic marks that also
appears during the natural ES cell differentiation process.

However, analysis of individual genes using ChIP assays
uncovered a complex, gene-specific pattern of histone modi-
fications (Figure 5). In this experiment, we first examined the
histone modifications on the promoters of three genes that
were up-regulated by TSA, namely Pdgfrp, Mlfi and Hoxai
(Figure 3a). During activation of Pdgfrpand Mlf1 by TSA, we
detected an increase in H3 acetylation and H3K4 trimethyla-
tion and a decrease in H3K27 trimethylation (Figure 6a).
Analysis during EB formation (Figure 6b) gave similar
results. In contrast, we found that the neural lineage gene
Hoxa1r had significant concurrent activatory (K4) and
suppressive (K27) methylations in the undifferentiated state
(in agreement with the bivalent structure model [20]). Upon
activation by TSA, we observed a reduction in K27 trimethyl-
ation levels and maintenance of K4 trimethylation and H3
acetylation levels. Thus, activation of Hoxa1 expression after
TSA treatment relies on loss of suppressive modifications.
Hoxai expression during EB differentiation is correlated with
a transient increase in H3 acetylation, matching the Hoxaz1
maximal activation (Figure 3a), and a transient decrease in
K27 trimethylation (Figure 6b). In contrast to this finding,
another study [32] has reported that TSA-induced activation
of Hoxaz1 is not correlated with a drop in K27 trimethylation.
However, in that case, ChIP analysis was performed on a
retinoic acid-regulated enhancer at the 3' end of the gene as
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opposed to our analysis, which is based on the 5' promoter
region, proximal to the transcriptional start site.

ChIP analysis was also performed for genes down-regulated
by TSA treatment. Along with Nanog mRNA repression, we
detected a gradual decrease of H3 acetylation and an abrupt
drop in H3K4 trimethylation of its promoter without an
increase in the repressive H3K27 trimethylation (Figure 6a).
During EB differentiation, Nanog inactivation similarly cor-
relates with a decrease in both H3 acetylation and H3K4 tri-
methylation, but in this case gene suppression is also
accompanied by an increase in H3K27 trimethylation (Figure
6b). Unlike Nanog, repression of Nrob1 was accompanied by
arobust increase in H3K27 trimethylation, and no significant
decrease of either acetylation or H3K4 trimethylation (Figure
6a). In EBs, H3K27 trimethylation was also increased but
both activatory modifications were reduced. Finally, the Sall1
promoter represented an intermediate situation of repres-
sion, connected to a strong decrease in acetylation, a decrease
in H3K4 trimethylation and a rise in H3K27 trimethylation
(Figure 6a). Similar changes accompany Salli deactivation
during EB differentiation.

Trimethylation of K27 is catalyzed by Enhancer of Zeste 2
(Ezh2), a methyl-transferase component of the PRC2 com-
plex. Employing ChIP assays, we confirmed the recruitment
of Ezh2 on Nanog, Salli and Nrobi promoters (Figure 7a), in
agreement with the appearance of K27 trimethylation during
suppression either by TSA or in EBs (Figure 6a,b). Gene acti-
vation or repression of all six genes in both TSA-treated ES
cells and EBs correlates with a respective increase or decrease
in promoter-bound RNA polymerase II (Figure 6a,b). These
results indicate that the observed chromatin modifications
correlate  well with the expected recruitment of
transcriptional regulators and enzymes to the corresponding
gene promoters.

Correlating ChIP data with changes in mRNA levels, it
appears that H3K27 trimethylation might predispose individ-
ual genes for stable repression. For example, Salli and Nrob1,
which show an increase in H3K27 trimethylation following
addition of TSA (Figure 6a), do not regain full expression
after release from TSA (Figure 3a). Nanog, on the other hand,
which is not marked by H3K27 trimethylation when
repressed, regains full expression following TSA release. To
further strengthen this idea, we prepared chromatin samples
from cells treated with TSA for 12 h and then released for 6
and 12 h. ChIP analysis shows that H3K27 trimethylation
induced by TSA is maintained on the Nrob: promoter and,
partially, on the Sall1 promoter even after TSA removal (Fig-
ure 7b), in agreement with the irreversible repression of the
two genes (Figure 3a). Collectively, by analyzing six different
genes during TSA treatment and EB formation, we have
encountered similar but gene-specific combinations of
promoter chromatin modifications that correlate with
expression state.
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Histone modification changes and RNA polymerase (Pol) Il levels on gene promoters during TSA treatment and EB formation. Histone modifications (H3
acetylation (acH3), and lysine 4 (3mK4) and lysine 27 (3mK27) trimethylation) and Pol Il levels on the promoters of (a) activated genes (PdgfrS, MIfl,
Hoxal) and (b) repressed genes (Nanog, NrOb/, Salll) during TSA treatment (left) or EB differentiation (right). Modification levels were estimated using

ChlP assays. Results are expressed as percent of the input chromatin.

Discussion

ES cells can differentiate along various pathways and this
process is linked to their unusually open chromatin structure
[24]. In this report, we have undertaken a transcriptomic
approach in order to analyze how histone deacetylase inhibi-
tion affects the self-renewal activity or differentiation of
mouse ES cells. In parallel, we have examined histone modi-
fication changes that correlate with transcriptional
reprogramming.

Gene expression profiling following histone deacetylase inhi-
bition in ES cells revealed two major gene clusters: genes
highly expressed in undifferentiated cells that are suppressed
by TSA and genes not expressed in ES cells that are activated
by TSA. Expression levels of these genes change in an oppo-
site way. This may reflect a cross-regulation between genes of
the two clusters, or the existence of common regulators that
modulate the simultaneous repression or induction of selec-
tive targets. The second possibility seems valid in the light of
the discovery that binding of Nanog/Oct4/Sox2 complexes to
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Ezh2 and H3K27 trimethylation levels on the promoters of Nanog, Salll
and NrOb|. (a) ChIP assays using an anti-Ezh2 antibody on the promoters
of Nanog, Salll and NrOb| during TSA treatment (6 and |12 h) and EB
formation (4 and 8 days). (b) ChlP assays using an anti-3mK27 antibody
were performed for the promoters of TSA down-regulated genes Nanog,
Salll and NrOb| after 6 and 12 h of TSA treatment and further cultivation
without TSA for an additional 6 and 12 h.

promoter regions maintains different gene targets in either
active or inactive states [6].

Nanog, among other genes encoding pluripotency factors, is
an early and strongly (approximately 15-fold) TSA-sup-
pressed gene. Studying the activity of different Nanog pro-
moter/enhancer regions, we found that this effect is
transcriptional and depends on the proximal promoter (-220
kb) and the distal enhancer (-5 kb). Oct4 and Sox2 are known
regulators of the Nanog proximal promoter. Since the genes
for Oct4 and Sox2 are only weakly repressed, it is unlikely that
they are the main mediators of the TSA effect on the Nanog
promoter. A fine, site-specific, mutational analysis could clar-
ify the regulatory elements targeted by TSA, as well as the
cognate DNA binding factors.

Our microarray analysis indicates that histone deacetylase
inhibition induces the exit from the undifferentiated state as
revealed by the suppression of most known pluripotency fac-
tors (Tables 1 and 2). Therefore, we propose that many other
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genes in this category, that is, those suppressed by TSA, might
also be involved in the regulation of self-renewal. Despite the
swift loss of many pluripotency factors, induction of differen-
tiation was not directed to a particular lineage. Instead, we
detected up-regulation of various genes associated with neu-
ral and mesodermal, but not endodermal, differentiation,
indicating that TSA leads cells to an intermediate stage
between the undifferentiated and the finally differentiated
states.

Histone deacetylase inhibition induces gene expression
changes and chromatin modifications that also take place
during the 'matural’ differentiation process, albeit in a com-
pressed time frame. For example, changes appearing within
12 hours of TSA treatment manifest during an eight-day
period of EB differentiation. On a global scale, the TSA effects
include increases in the activating modifications histone H3
acetylation and K4 trimethylation and a concomitant loss of
the repressive K277 trimethylation. As previous studies have
shown that undifferentiated ES cells bear increased activa-
tion marks when compared to their differentiated descend-
ants [15], our results suggest that before full commitment to a
differentiated phenotype, there might be a window of chro-
matin 'over-permissiveness' characterized by an increase in
activation marks (Figure 5). TSA might facilitate this tran-
sient phase, thus accelerating cell differentiation, possibly by
reorganizing the chromatin structure [33].

TSA can have different effects depending on the dose and
duration of the treatment and the target cell differentiation
state. Brief treatment with 300 nM TSA provoked changes in
the allelic chromatin conformation of the imprinted U2afi1-
rs1locus in mouse ES cells but not fibroblasts [34]. In another
report [35], the addition of TSA during EB formation resulted
in inhibition of differentiation, reflected in persistent ALP
staining. It seems, therefore, that when ES cells are
disaggregated and put in a specific differentiation milieu, they
can not differentiate in the presence of TSA. In line with our
results, TSA was shown to promote myocardial differentia-
tion when added to seven-day-old EBs [36] and neuronal dif-
ferentiation when added to embryonic neural stem cells [37].

Histone deacetylase inhibition is generally considered an
inducer of gene activation by increasing H3 acetylation levels.
However, examination of the histone modification changes
that occur on the promoters of six genes targeted by TSA has
revealed complex, gene-specific regulation patterns. Even
though TSA inhibits both type I and II, histone deacetylases
(HDACs:) it can induce a decrease in histone H3 acetylation
on the promoters of some (Figure 6), but not all, suppressed
genes, as suggested in a previous report [38]. Transcriptional
repression induced by TSA might be an indirect effect
connected to reduction of PCAF acetyltransferase levels or an
increase in Sirty deacetylase mRNA levels (Table 1; Addi-
tional data file 2). In this scenario, we would have expected
suppressed genes to follow slower kinetics compared to acti-
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vated ones. Instead, genes that are strongly suppressed by
TSA, such as Nanog, Nrobi and Salli, follow very rapid kinet-
ics (Figure S6 in Additional data file 1), arguing for a direct
rather than an indirect effect. Moreover, even low doses of
TSA can repress Nanog (Figure S1A in Additional data file 1).

The pleiotropy of the TSA effects is obvious when considering
the regulation of Nanog by HDAC1. HDAC1 levels on the
Nanog promoter increased after TSA treatment (Figure S7 in
Additional data file 1), and even though HDAC1 activity is
inhibited by TSA, Nanog chromatin is still deacetylated (Fig-
ure 6a). In addition, by comparing our data to a microarray
analysis of HDAC1 knock out ES cells [39], we found no sig-
nificant overlap between the two experiments, pointing to the
multiplicity of the mammalian deacetylases [38] and their
potential non-histone target proteins. We can not exclude the
possibility that the acetylation state of non-histone proteins
may account for the observed actions of TSA. To explore this
possibility, it would be important to examine the acetylation
of factors important for the ES differentiation state.

Our study shows that besides acetylation, histone deacetylase
inhibition in ES cells dramatically affects methylation of
lysines 4 and 27 of histone H3. We have documented for the
first time a rapid decrease in K4 and K27 trimethylation lev-
els. Until recently, it was difficult to explain such phenomena
because methylation was considered a stable mark. Based on
the recent discovery of novel enzymes that remove trimethyl-
K4 (3mK4) [40,41] and trimethyl-K27 (3mK27) [42,43], we
postulate that TSA may modify the recruitment and/or activ-
ity of H3 methylation/demethylation complexes. At the
moment, it is not clear how this recruitment on specific pro-
moters might be regulated, leaving unclear how genes are
selected for repression or activation. Genome-wide analyses
have identified target genes for K4 and K27 trimethylations in
ES cells [16,17,22]. However, apart from the case of Hox
genes, the DNA target sites that recruit the mammalian
Trithorax and Polycomb complexes remain largely unknown.

We show that the establishment of H3K27 trimethylation cor-
relates well with stable transcriptional reprogramming. For
example, Nanog repression, which is reversible in TSA-
treated ES cells, is not accompanied by an increase in K27 tri-
methylation, whereas the opposite occurs in EBs, where the
gene is permanently silenced. On the other hand, Nrob1 and
Sall1, which are irreversibly repressed by TSA, show
increased K27 trimethylation that is maintained even after
removal of TSA (Figure 7b). Thus, restoration of Nanog
expression may be the reason for the partial reversal of the
cells to the undifferentiated state after TSA removal. With
regard to this, genome-wide analysis of H3K27 trimethyla-
tion maps in correlation with mRNA levels after TSA removal
would be very informative. Collectively, histone deacetylase
inhibition is able to disrupt stem cell pluripotency and facili-
tate early differentiation events, although it is not sufficient
for commitment to a differentiation fate.
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Conclusion

This work documents comprehensive gene expression
changes that are induced by histone deacetylase inhibition in
mouse ES cells. Pluripotency regulators, including Nanog, are
repressed while differentiation-associated genes related to
the neuro-ectodermal and mesodermal lineages are acti-
vated. This transcriptional reprogramming is regulated by
changes in histone H3 methylation of lysines 4 and 27. His-
tone deacetylase inhibitors may have applications in stem cell
differentiation and in therapies against tumors that express
stemness factors.

Materials and methods

Cell culture, antibodies and chemical reagents

CGRS8 ES cells were cultivated in GMEM (10% fetal bovine
serum, 1,000 units LIF (ESGRO-Chemicon Temecula, CA,
USA)). Antibodies were from Upstate (Upstate/Millipore,
Billerica, MA, USA) (AcH3, 3mK4H3, 3mK27H3, Ezh2),
Chemicon (Nanog) and Santa Cruz Santa Cruz, CA, USA (His,
RNAP II). TSA was from Sigma (Sigma, Saint Louis, MO,
USA).

Alkaline phosphatase staining

CGRS cells were fixed with 100% methanol and stained with
a solution of 1 mg/ml Fast Red TR salt TM (Sigma) and 200
ug/ml Napthol AS-MX phosphate (Sigma) in 0.1 M Tris pH
9.2.

Plasmids and transfections

Nanog promoter/enhancer fragments were cloned upstream
of the luciferase reporter gene in the pGL3-basic vector
(Promega Madison, WI, USA). A -966/+50 fragment was
obtained by PCR and was cloned in the pGL3 vector. Primers
used were: forward, 5-AGCACAAGGACTGATCGG-3',
reverse, 5-GCAGCCTTCCCACAGAAAG-3'. The enhancer
fragment was obtained by PCR and was cloned in front of the
-966 fragment in the pGL3 vector. Primers used were: for-
ward, 5'-ATATAGGTACCCCCCTCCCCCACCTGTCCC-3/,
reverse, 5-TATATGCTAGCG GCCACATAGCCTTAAGT-3'.
For -220/+50 construction, -966/+50 was digested with Hin-
dIII and the excised fragment was cloned in the pGL3 vector.
CGRS cells were transfected using Lipofectamine 2000 (Inv-
itrogen, Carlsbad, CA, USA)). The full length Nanog cDNA
plasmid was kindly provided by P Savatier.

Chromatin immunoprecipitation assays

ES cells and EBs were fixed with 1% formaldehyde for 10 min-
utes at room temperature and the reaction was quenched by
adding glycine to a final concentration of 0.125 M. ES cells
were washed once with ice-cold phosphate-buffered saline
(PBS), harvested and washed two more times. EBs were also
washed three times with ice-cold PBS. ES cells and EBs were
resuspended in lysis buffer (1% SDS, 10 mM EDTA, 50 mM
Tris-HCl pH 8.0, 1 mM phenylmethylsulphonyl fluoride
(PMSF), 1 ml/106 cells) and incubated on ice for 10 minutes.
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The suspension was sonicated 5 times for 1 minute each and
10 pl samples were analyzed by gel electrophoresis (1.5% aga-
rose). Properly sonicated samples were centrifuged at 14,000
rpm, 4°C for 15 minutes and the supernatant was stored at -
80°C. We kept 10 pl from each sample as input and 50 ul were
immunoprecipitated with 5 ug of relevant antibodies in RIPA
buffer (1% Triton X-100, 0.1% deoxycholate (DOC), 140 mM
NaCl, 1 mM PMSF) overnight at 4°C under rotation. Protein
G beads were incubated in the same conditions with 100 ug/
ml sonicated salmon sperm DNA and 1 pg/ml bovine serum
albumin in RIPA buffer. Blocked beads and immunoprecipi-
tated samples were combined next day and were incubated
under rotation for 3 h at 4°C. The immunoprecipitates were
then washed 7 times with RIPA wash buffer (1% Triton-X,
0.1% DOC, 0.1% SDS, 500 mM NaCl, 1 mM PMSF). Input
samples and beads were resuspended in 100 pl of 10 mM Tris-
HCl pH 8.0, 1 mM EDTA (TE) buffer supplemented with 0.5%
SDS and proteinase K to a final concentration of 200 pg/ml
and incubated for 3 h at 55°C and overnight at 65°C. The next
day samples were phenol-chloroform extracted and ethanol
immunoprecipitated with NaOAc and 20 mg of glycogen as a
carrier. DNAs from input and immunoprecipitate pellets
were resuspended in 50 ul and 250 pl of TE buffer, respec-
tively. The DNA content was analyzed using real-time PCR (5
ul/20 pl reaction). The primers used were: Nanog promoter
sense, 5'-CTTACTAAGTAGCCCAGTC-3'; Nanog promoter
antisense, 5'-GTTTATACACGGTTCTTT-3'; Nrob1 promoter
sense, 5-AGTTGGAACAGAGCCCTAAC-3'; Nrob1 promoter
antisense, 5-GCCTTTGGTTGAATGTG-3'; Salli promoter
sense, 5'-TGCGACATGGGTCCTGAG-3'; Sall1 promoter anti-
sense, 5'-AATTCTGGAGCGCCTTTGAGT-3'; Hoxa1 promoter
sense, 5'-GAGCGCGCGTCACCTACAC-3'; Hoxai promoter
antisense, 5'-CTGAGCCGCCTGCGAAAGTT-3'; Pdgfrb pro-
moter sense, 5'-GCAGGCAGGAGACTGACGA-3'; Pdgfrb pro-
moter antisense, 5'-AGTCCCGGCTACCCTATCTGG-3'; Mlf1
promoter sense, 5'-TGCCATAGCAGCCGAGCGAT-3'; Mlf1
promoter antisense, 5'-GCTTGACGCAGGCCGTTTC-3'.

RNA purification and RT-PCR

RNA was prepared using the Trizol reagent (GIBCO-BRL, Invit-
rogen Corp., Carlsbad, CA, USA). RT reactions were performed
with Moloney murine leukemia virus from Finnzymes
(Finnzymes, Espoo, Finland). SYBR Green I and Opticon moni-
tor system from MJ Research (MJ Research, Waltham, MA
USA) were used for real-time PCR reactions. Primers used for
RT-PCR reactions were: Nanog sense, 5'-CGCTGCTCCGCTC-
CATAACT-3'; Nanog antisense, 5-GCGCATGGCTTTC-
CCTAGTG-3'; Nrob1 sense, 5-CTGGTGTGCAGCGTCTGA-3';
Nrobi antisense, 5-GTGTTGGTCTCCGGATCTC-3'; Sall1
sense, 5-AGTTCTCCCAGGAGGCGAGGTG-3'; Sall1 antisense,
5'-GGTTGGCAGATGTTCGTAAAGT-3'; Hoxai sense, 5-GGT-
CAACCCAACGCAGTG-3; Hoxaz1 antisense, 5'-TGCTTCATGCG-
GCGATT-3'; Pdgfrp sense, 5-GACTACCTGCACCGGAACA-3';
Pdgfrp antisense, 5'-GGGACTCAATGTCTGCGTATT-3'; Mlfi
sense, 5-GAACCCATAATCGTCGAG-3'; Milf1 antisense, 3'-
CTTCGGGTTTGAGTTGAG-3'"; Sox17 sense, 5'-CTCTGCCCT-
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GCCGGGATGG-3'"; Sox17 antisense, 5'-AATGTCGGGGTAGTT-
GCAATA-3'; Brachyury sense, 5'-
GCGAGCTGGGTGGATGTAGA-3'; Brachyury antisense, 5'-
CAAGGCGGCACAAGACTAAGTC-3; Mash1 sense, 5-CCAC-
CATCTCCCCCAACTA-3'; Mash1 antisense, 5-CTGGGCTAA-
GAGGGTCGTAGG-3'; Hprt sense, 5'-
CTCCTCAGACCGCTTTTTG-3'; Hprt antisense, 5-TCCTCG-
GCATAATGATTAGG-3'.

Protein and histone extracts

CGRS cell extracts were prepared using a lysis buffer contain-
ing 50 mM Tris 8.0, 170 mM NaCl, 50 mM NaF, 0.5% NP-40,
1 mM PMSF. For histone extraction, cells were harvested,
washed three times with ice-cold PBS supplemented with 5
mM Na butyrate and lysed with a Triton extraction buffer
(PBS supplemented with 0.5% Triton, 2 mM PMSF, 0.02%
NaN3) at a cell density of 107 cells/ml. The lysate was centri-
fuged at 2,000 rpm for 10 minutes at 4°C, and the pellet was
washed twice with a half Triton extraction buffer volume and
then resuspended in 0.2 N HCI at a cell density of 4 x 107
cells/ml. Histones were acid extracted overnight at 4°C. The
next day samples were centrifuged at 2,000 rpm for 10 min-
utes at 4°C and the supernatant was dialyzed against
CH,COOH and H,O0. Samples were kept at -80°C with 20%
glycerol.

Microarray hybridization

Total RNA from ES cells was isolated using the RNeasy Mini
Kit from QIAGEN (QIAGEN GmbH, Hilden, Germany) and
treated with RNase-free DNase I (5 U/100 ug of nucleic acids,
Sigma). Biotinylated cRNA was prepared according to the
standard Affymetrix protocol. In brief, double-stranded
cDNA was synthesized from 10 pg total RNA using the
SuperScript Choice System from Invitrogen and the Affyme-
trix T7-(dT),, primer, which contains a T7 RNA polymerase
promoter attached to a poly-dT sequence. Following a phe-
nol/chloroform extraction and ethanol precipitation, the
c¢DNA was transcribed into biotin-labeled ¢cRNA using the
Retic Lysate IVT™ kit (Ambion Inc., Woodward Austin, TX,
USA). cRNA products were purified using the RNeasy kit
(QIAGEN) and fragmented to an average size of 30-50 bases
according to Affymetrix recommendations. Fragmented
cRNA (15 nug) was used to hybridize the Mouse Genome 430
2.0 Array for 16 h at 45°C. The arrays were washed and
stained in the Affymetrix Fluidics Station 400 and scanned
using the Hewlett-Packard GeneArray Scanner G2500A.

Microarray data analysis

The image data were analyzed with the GeneChip® Operating
Software (GCOS) using Affymetrix default analysis settings.
After a quality control test, arrays were normalized by log
scale robust multi-array analysis (RMA) [44].

A parametric ANOVA (F-test) was performed. The false dis-
covery rate of the resulting test-set was calculated using the
Benjamini Hochberg procedure [45]. An f-test p-value < 102
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corresponding to a false discovery rate of 4.066 x 10-2and a
fold change > 2 was used in order to select transcripts appear-
ing in Additional data file 2 (792 down-regulated and 1,376
up-regulated transcripts). For the hierarchical clustering, a f-
test p-value < 1073, corresponding to a false discovery rate of
7.833 x 103 and a fold change > 4 between the control and
TSA treatment at 6 h or 12 h was used to identify and restrict
the number of differentially expressed genes (fold change > 4,
458 probe sets). We then performed hierarchical clustering of
the above 458 probesets to identify genes that respond simi-
larly to the various experimental conditions. The cluster anal-
ysis was done using cluster version 2.11 [46] applying mean-
centering and normalization of genes and arrays before aver-
age linkage clustering with uncentered correlation. The
expression profiles of differentially expressed transcripts
were discriminated into four groups according to the expres-
sion profile of the hierarchical clustering.

Functional annotation of transcripts differentially expressed
> 4-fold was done using the Database for Annotation, Visual-
ization, and Integrated Discovery (DAVID) [31] to obtain
Gene Ontology annotations for the category of 'biological
process'. Transcript redundancies were removed based on
statistical analysis and PCR validation data.
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5 lists the functional annotation of gene probesets of subclus-
ter 1b based on biological process. Additional data file 6 lists
the functional annotation of gene probesets of subcluster 2a
based on biological process. Additional data file 7 lists the
functional annotation of gene probesets of subcluster 2b
based on biological process.
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