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Protein divergence in human evolution<p>Quantification of the divergence of proteins by functional category shows that morphological changes in metazoa have been driven by variation in regulatory genes.</p>

Abstract

Background: Protein-coding regions in a genome evolve by sequence divergence and gene gain
and loss, altering the gene content of the organism. However, it is not well understood how this
has given rise to the enormous diversity of metazoa present today.

Results: To obtain a global view of human genomic evolution, we quantify the divergence of
proteins by functional category at different evolutionary distances from human.

Conclusion: This analysis highlights some general systems-level characteristics of human
evolution: regulatory processes, such as signal transducers, transcription factors and receptors,
have a high degree of plasticity, while core processes, such as metabolism, transport and protein
synthesis, are largely conserved. Additionally, this study reveals a dynamic picture of selective
forces at short, medium and long evolutionary timescales. Certain functional categories, such as
'development' and 'organogenesis', exhibit temporal patterns of sequence divergence in eukaryotes
relative to human. This framework for a grammar of human evolution supports previously
postulated theories of robustness and evolvability.

Background
Though it is known that coding regions evolve primarily by
sequence divergence of individual genes and gene gain and
loss, altering the gene content of the organism, it is not well
understood how these processes have resulted in the tremen-
dous diversity of metazoa present today. Have metazoans
evolved through a process of incremental changes occurring
evenly across genes from different functional categories, or is
there a pattern by which some classes of gene function accu-
mulate mutations quickly, while others remain conserved
throughout evolution across different branches of the species
tree?

The differential rate of evolution of proteins has been of long-
standing interest. As early as 1971, Dickerson [1] studied the
relationship between the number of amino acid differences
and divergence time for cytochrome c, hemoglobins, and
fibrinopeptide. In 1978, Dayhoff et al. [2] studied the rates of
amino acid substitutions per amino acid site in various pro-
teins, finding that histones are among the most conserved
proteins while hormones and immunoglobulins evolve the
fastest.

The recent availability of full genome sequences has allowed
large scale comparisons of gene sequences between organ-
isms, that is, chicken and human [3], human and mouse [4]
or human, fugu, Drosophila and Caenorhabditis elegans [5].
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Purifying selection on mutations has been related to a
number of aspects of protein structure and function, such as
the number of interaction partners, expression levels, dispen-
sability, and the character and interface of protein-protein
complexes amongst others (reviewed in [6]). Recent studies
have focused on sequence divergence between humans and
other primates, and on the sequence diversity within human
populations in the form of single nucleotide polymorphisms
[7-13]. Another approach to quantifying evolutionary diver-
gence at the genome level is to measure gene gains and losses
between species by identifying orthologs between pairs of
organisms [14]. Other studies have analyzed specific func-
tional gene sets in particular groups of organisms. For exam-
ple, Babu et al. [15] reported high variability in prokaryotic
transcription factor repertoires in contrast to the conserva-
tion of their target genes in prokaryotes. Coulson and
Ouzounis [16] reported that eukaryotic transcriptional regu-
lator families are primarily taxon-specific. Peregrin-Alvarez
et al. [17] found that metabolic enzymes are present across a
wider phylogenetic spectrum than other genes.

Some studies have analyzed the expansion of protein families
in relation to the number of genes in the genome [18,19] or to
organismic complexity, measured as the number of cell types
[20]. These studies report that protein families involved in
regulatory processes and extracellular functions show an
increase in the number of genes correlated with genome size
and organismic complexity.

All of the studies mentioned above address the evolution of
the protein repertoire in various sets of organisms. Here, we
investigate the evolutionary divergence of all functional
groups of human proteins at different levels. We measure
divergence of human proteins relative to 15 eukaryotes span-
ning from mammals to fungi using a new method we call
FRED (for 'Functional categories and their relative evolution-
ary divergence'), which is outlined in Figure 1.

In contrast to previous studies of conservation [7-9,13,14,21],
our work spans 15 genomes ranging from mammals to fungi,
which allows us to gain a broad perspective on the history of
mutations and selection leading to the human lineage. By

comparing the sequence evolution of different functional
groups in human we see which parts of the genome are more
plastic to change, and which parts are conserved. With our
approach, we gain a dynamic picture of the extent of conser-
vation, since some functions are strictly conserved only
within vertebrates, for instance, while others are maintained
across all eukaryotes. This dynamic picture of differential
rates of divergence across functional categories reveals a
'grammar' of metazoan evolution up to the human lineage.

Results
Functional protein divergence in the glucagon and 
insulin signaling pathways
First, we focus on a specific system to investigate whether
there are different levels of protein conservation for types of
protein function. Glucose metabolism is a key process in
human cells for the storage and release of energy. The
enzymes that catalyze the reactions leading to the synthesis
and degradation of glucose are regulated by complex signal-
ing pathways triggered by glucagon and insulin hormones
[22]. This system is a good case study, as there are a variety of
proteins of different molecular functions involved in the proc-
ess: enzymes, receptors, signal transducers and transcription
factors.

Figure 2a depicts key genes involved in glucose homeostasis
regulated by insulin and glucagon hormones and the func-
tional relationships between them. We measure sequence
divergence using the ranked 'conservation score' (CS; please
refer to Materials and methods for a definition of this score;
Figure 2b). This case study illustrates that the proteins
involved in regulation of the glucose metabolism, such as glu-
cagon (GCG) and insulin (INS), their receptors (INSR and
GCGR) and some transcriptional regulators involved in the
process (SREBF1, PPARGC1A and FOXO1A), have very low
conservation compared to enzymes directly involved in the
catalysis of reactions of glucose metabolism. For example,
FOXO1A is a transcription factor that regulates the expres-
sion levels of several enzymes in gluconeogenesis (G6PC,
FBP1 and PCK1). This protein is highly divergent in eukaryo-
tes, especially in invertebrates. Recently, this gene has been

Flow chart of the FRED method for analyzing the protein divergence landscape of functional categoriesFigure 1 (see following page)
Flow chart of the FRED method for analyzing the protein divergence landscape of functional categories. (a) We start from a matrix of all human genes 
with the conservation score (CS) in each of the 15 genomes analyzed. (b) First, all genes with a CS over 0 are ranked in each organism, and the highly 
ranked genes are shown in red and lowly ranked in blue following a gradient of colors. White cells mean that no ortholog/homolog is detected. Next, the 
genes are classified according to GO terms. (c) For each set of genes within a GO category, we calculate the median CS, and also select 10,000 sets of the 
same number of genes as in the GO category considered at random from the complete set of genes with GO annotation. (d) For each random set, we 
calculate the median CS. (e) From the 10,000 random sets we obtain the expected median CS and the standard error, which allow us to calculate the Z-
score for the GO category under consideration. (f) This Z-score is then plotted in a matrix on a color-coded scale. Gray means no significant difference in 
the level of conservation compared to the background. A similar procedure is followed for the calculation of Z-scores for number of orthologs and 
homologs by counting the proportion of genes with homologs or orthologs in each set. Mmus, Mus musculus; Rnor, Rattus norvegicus; Cfam, Canis familiaris; 
Bta, Bos taurus; Mdom, Monodelphis domestica; Ggal, Gallus gallus; Xtro, Xenopus tropicalis; Drer, Danio rerio; Trub, Takifugu rubripes; Tnig, Tetraodon 
nigroviridis; Cint, Ciona intestinalis; Agam, Anopheles gambiae; Dmel, Drosophila melanogaster; Cele, Caenorhabditis elegans; Scer, Saccharomyces cerevisiae. All 
the results of these analyses for all GO categories are provided online in a searchable database at [28].
Genome Biology 2008, 9:R33
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Figure 1 (see legend on previous page)
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shown to be differentially expressed between primates [23].

The mammalian insulin signaling pathway has been studied
in depth. Insulin signaling influences other processes in addi-
tion to glucose metabolism, such as protein synthesis, growth
and cell division. This pathway, from the receptor to the tar-
get serine/threonine kinases, is known to be conserved in
fruitfly [24] and nematode [25-27]. However, as seen in our
analysis, the degree of conservation of the proteins involved
in the insulin pathway is low relative to the conservation of
other human proteins. In contrast, most of the enzymes
involved in the process are highly conserved across eukarya.

Thus, the human proteins involved in this well-known biolog-
ical system show the following trend of conservation across
metazoa: genes whose function is the direct catalysis of enzy-
matic reactions are conserved, while genes involved in the
regulation of these core catalytic proteins (receptors, signal
transducers and transcription factors) are divergent. We
wondered whether this pattern of conservation is specific to
the insulin and glucagon signaling system, or whether it is a
general pattern found in the whole human proteome.

Protein divergence of the human proteome during 
mammalian evolution
To generalize our study of evolutionary rates across func-
tional categories, we analyzed the evolutionary landscape of
human genes and their orthologs in over 300 functional cate-
gories across 15 eukaryotes using our FRED method. We
quantified the conservation of genes using four measures.
Two of the measures are the CS of the orthologs (Figure 3, and
Figures S2a,b and S3a,b in Additional data file 1) and the CS
of the closest homolog (Figure 3, and Figures S2d,e and S3d,e
in Additional data file 1) of human proteins in other eukaryo-
tic organisms. These two measures of amino acid sequence
conservation are highly correlated across all genomes com-
pared to human (for example, the correlation coefficient =
0.97 for mouse and 0.93 for Drosophila; Table S1 in Addi-
tional data file 1). In addition to these measures of sequence
divergence, we quantified the presence of orthologs to the
human proteins in the other genomes as well as the presence
of homologs. The degree of orthology reflects the presence of
human genes in other genomes (Figures S1, S2c and S3c in
Additional data file 1), while homology reflects the presence
of the human gene family in other genomes (Figures S1, S2f
and S3f in Additional data file 1) (Please refer to the Supple-

mentary methods in Additional data file 1 for details of the
calculation of these measures.). The relative conservation of
Gene Ontology (GO) categories, the statistics and the CS for
each of the 14,062 human genes analyzed are provided online
in a searchable database [28].

While we also consider the rate of loss of genes and families,
we focus on sequence divergence in describing our results.
Though there is a wide range of protein sequence conserva-
tion in all categories, the shape of the distribution differs
between categories (Figure 4). Some categories contain many
highly conserved proteins across all eukaryotes and only few
proteins that are not conserved, while others are dominated
by proteins that diverge quickly. Yet another type of category
contains proteins that are conserved in one phylogenetic
group relative to human and divergent in another phyloge-
netic group.

The set of proteins in a particular functional category will vary
when comparing human to different genomes due to gene
gain and loss. Therefore, the average CS of the proteins in a
functional category depends on both the sequence divergence
of ancient conserved orthologs, as well as genes that have
evolved anew in the lineage considered (and are still con-
served in human). Since this is true of all functional catego-
ries, the median conservation score of a category is a robust
measure of variation in proteins between the functional cate-
gories of a particular pair of genomes. In order to make sure
that our conclusions hold even when we consider only univer-
sally conserved orthologs, we have used the KOGs classifica-
tion [29] as a further control data set (Figure S4 in Additional
data file 1). We will now survey the varying patterns of conser-
vation of the different functional categories, and will attempt
to identify underlying principles.

Metabolism, transport and cell structure proteins are 
conserved
The most conserved functional categories, shown in red in
Figure 3, belong to the three super-groups of 'metabolism'
(catalytic activity, macromolecule metabolism, biosynthesis,
protein metabolism, primary metabolism, mRNA splicing,
mRNA processing), 'transport' (transporter activity, carrier
activity, ion transport activity, protein transport, intracellular
transport, transport, protein localization) and 'cell structure'
(structural constituent of ribosome, structural molecule
activity, nucleosome assembly, organelle organization and

Degree of conservation of the glucagon and insulin signaling pathwaysFigure 2 (see following page)
Degree of conservation of the glucagon and insulin signaling pathways. (a) Regulatory interactions between proteins involved in glucagon (GCG) and 
insulin (INS) signaling, and enzymes involved in glucose and glycogen metabolism. Proteins depicted in red show high conservation, those depicted blue 
have low levels of conservation and the ones in green intermediate conservation. The CREB protein is represented in yellow because it is highly conserved 
in vertebrates and not in invertebrates. There is a clear correlation between the functions of the molecules shown in the key and the degree of 
conservation indicated by the color code: enzymes and kinases tend to be red and conserved, while signal transducers, receptors and transcription factors 
tend to be blue and divergent. (b) Matrix of normalized ranking of the genes depicted in (a). The rows in the matrix are ordered by the sum of the CS rank 
in the 15 organisms.
Genome Biology 2008, 9:R33
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Figure 2 (see legend on previous page)
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biogenesis, chromatin assembly or disassembly, DNA pack-
aging) (Figure 3). Note that the nucleosome assembly cate-
gory is actually more conserved than indicated by CS
orthologs in Figure 3 (see CS homologs in Figure 3); this dis-
tortion is due to a known limitation of the current Ensembl-
Compara ortholog assignment (Albert Vilella, personal com-
munication). Many of the proteins that belong to conserved
categories involved in binding are also part of the metabolism
super-group: nucleotide binding, ATP binding, RNA binding,
protein binding. The three broad groups of metabolism,
transport and cell structure are all core cellular processes.

Modulators of core processes are highly divergent
In contrast, proteins with the lowest conservation, shown in
blue in Figure 3, are mainly involved in 'regulatory' functions
and processes or involved in 'responses to the environment'.
For example, amongst the least conserved molecular func-
tions are receptors (receptor activity, transmembrane recep-
tor activity, olfactory receptor activity, rhodopsin like
receptor activity), signal transducers and transcription fac-
tors not involved in development (TF-DBD). All these
divergent molecular functions are mainly involved in
modulating the conserved core processes. Note that this trend
holds across many different structural families and different
types of regulators, so that it cannot be explained in terms of
particular molecular characteristics, such as fewer con-
straints on the fold or on the surface of receptors compared to
the constraints on enzyme.

The other biological processes that are evolving rapidly are
those involved in responses to the environment: defense
response, immune response, response to stimulus, response
to external stimulus, response to stress, response to
wounding, inflammatory response. These processes are all
involved in the response to an external challenge to the organ-
ism. Since challenges such as parasites vary from one eukary-
ote to another, natural selection favors rapid evolution of
proteins in these categories. Pressure for adaptation against
changing environments and pathogens imposes strong selec-
tion for advantageous mutations to sweep the population
rapidly.

Host-parasite interactions have been suggested as the most
likely reason for the fast evolution of human immunity genes
[21]. In addition, these categories have a low number of genes
with orthologs or homologs in other organisms (Figure S1 in

Additional data file 1). This is not surprising since the anti-
body-based immune system does not exist in bony fish or
other lower eukaryotes [30], and there may be parallel or
alternative adaptive immune systems in these organisms,
such as the leucine-rich repeat receptor system in lampreys
[31].

Developmental genes are conserved only in mammals
Some categories are conserved amongst mammals while
diverging rapidly in other organisms relative to human,
including development, morphogenesis, organogenesis, and
many categories associated with transcriptional regulation
(Figures 3 and 4). Although the GO category 'transcription
factor activity' shows this pattern of conservation, our divi-
sion of transcription factors into 'Developmental TFs' and
'TF-DBD', which are transcription factors involved in other
processes (see Materials and methods for details), reveals a
fundamental difference between the two groups: transcrip-
tion factors involved in development are highly conserved in
mammals, while those not involved in development have only
average conservation in mammals and are significantly diver-
gent in bony fish relative to human. Both groups of
transcription factors ('Developmental TFs' and 'TF-DBD') are
highly divergent in invertebrates relative to human (Figure
3). Thus, for the transcription factors not involved in develop-
ment, the trend is consistent with that of other regulatory cat-
egories such as receptors and signal transducers.

An example of a particular developmental transcription fac-
tor that is highly conserved in mammals but switches to being
very divergent in invertebrates is the Neurogenic differentia-
tion factor 1 (NeuroD1), which is required for dendrite mor-
phogenesis and maintenance in the cerebellar cortex [32].
Note that there is a distribution of sequence conservation
within each functional category. Thus, within the 'develop-
ment' category, there are proteins, including some transcrip-
tion factors, that form part of the core of the developmental
network, conserved from invertebrates to human, while at the
same time, other parts of the network have undergone pro-
found change or innovation [33]. This trend is also noticeable
when we focus on short evolutionary distance from humans.
Though NeuroD1 follows the same pattern as the 'Develop-
mental TF' category as a whole, there are exceptions: some
transcription factors involved in core developmental proc-
esses, such as Pax-6, are remarkably conserved across all
eukaryotes (Figure S2 in Additional data file 1).

Divergence of orthologs and homologs of representative functional categoriesFigure 3 (see following page)
Divergence of orthologs and homologs of representative functional categories. (a) Molecular function and (b) biological process. Colors towards red 
signify high relative conservation of the group of genes in a particular genome. Colors towards blue signify low relative conservation. Gray means no 
statistically significant difference in conservation level compared to the background of the rest of the genome. White cells denote that there is no gene 
with the GO term and with ortholog/homolog in the other organism. The colored lines on the left of the names of the functional classes correspond to 
the colors of the categories represented in Figure 5.
Genome Biology 2008, 9:R33
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Figure 3 (see legend on previous page)
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Controls for orthology, conservation measure, 
functional classifications and expression
This whole genome divergence pattern is not an artifact of the
set of orthologs and homologs or the functional classification
scheme we use: almost identical results are obtained using
the orthologous groups within seven eukaryotes and also the
functional classification provided by the KOGs [29] (Figure
S4 and Table S1 in Additional data file 1). Furthermore, when
we restrict the orthologous groups considered to those that
are present across all seven eukaryotes, very similar results
are obtained (Figure S4c,d in Additional data file 1). This
means that orthologs present, for example, in mammals only
are not distorting the general trend of a conserved core and
divergent regulatory functions. In addition, this test also
accounts for possible genome annotation biases due to
conservation.

We compared our results of protein divergence (using CS)
with two measures of divergence at the DNA level: the GERP
(Genome evolutionary rate profiling) method developed by
Cooper and colleagues [34] where divergence rate of every
base position is compared against an expected rate; and the
rate of non-synonymous substitution (dN) between human
and mouse and human and rat genomes (see Materials and
methods for details). Using the GERP score we measured
divergence in mammals (chimpanzee, macaque, rat, mouse,
dog, cow, opossum) at each coding base for around 15,000
human genes. An evolutionarily conserved base position has
a low GERP score while a divergent position has a high score.
We measured the average GERP score for all coding nucle-
otides for each gene and assessed whether these values differ
significantly between functional groups using Z-score analy-
sis (Figure S5 in Additional data file 1). Similarly, we assessed
the dN values per gene. The FRED results using the GERP
score and dN correlates remarkably well with that of the CS in

Histogram distribution of CSs of orthologs for selected GO categories in M. musculus, D. rerio and D. melanogasterFigure 4
Histogram distribution of CSs of orthologs for selected GO categories in M. musculus, D. rerio and D. melanogaster. (a) The CS distributions for proteins in 
three molecular function categories. 'Catalytic activity' is significantly conserved in all three organisms, while 'Transcription factors DBD' and 'Receptor 
activity' are significantly divergent in zebrafish and Drosophila. (b) The CS distributions for proteins in three biological process categories. 'Biosynthesis' is a 
highly conserved category in all three organisms, while 'Development' is significantly conserved in mouse but significantly divergent in Drosophila. 'Response 
to stimulus' is significantly divergent across all three organisms.
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mammals, showing consistency between DNA and protein-
level measures.

Another factor that could potentially confound our analysis is
the correlation between phylogenetic extent and expression
breadth across tissues [35]. Restricting our FRED analysis to
housekeeping genes (defined as genes expressed in more than
75 tissues in GeneAtlas v2 expression array [36]) or to genes
with tissue-specific expression (those expressed in less than
20 tissues) yields essentially the same results as considering
all proteins (data not shown).

From these control analyses, it is clear that our general con-
clusion is independent of factors such as expression, the
definition of orthologs, the measure of conservation and the
functional classification scheme used.

Discussion
Here, we establish the entire divergence landscape of human
protein-coding genes across eukaryotes and discuss evolu-
tionary selection in the human lineage in the light of long-
term evolution. The main results from our analysis are, first,
that two main groups of proteins are diverging at different
speeds: regulatory proteins diverge quickly across species,
while proteins involved in core processes are conserved (Fig-
ure 5). This shows that at the level of protein-coding genes,
morphological changes in metazoan evolution relative to
humans have been primarily driven by variation in regulatory
genes rather than enzymatic and structural genes. While this
is consistent with many previous small-scale studies, our con-
clusions are more comprehensive and clear due to the amount
of data we consider in this analysis. Second, certain functional
categories exhibit dynamic patterns of sequence divergence
across their evolutionary history leading to human. Genes
involved in 'development' and 'organogenesis' are signifi-
cantly conserved within mammals, while significantly diver-
gent in human relative to invertebrates.

The picture of long-term evolution is broadly consistent with
the signatures of selection on functional categories in the
human lineage, implying that the same underlying grammar
guides the dynamics of metazoan evolution relative to human
over short as well as long evolutionary timescales. Recent
studies [7-10,13,21] have identified several categories of
genes with higher divergence rates between hominids, or with
signs of positive selection using different measures for detect-
ing selection. For example, Bustamante and colleagues [7]
identified genes involved in transport and cell structure as
being under negative selection in the human lineage, which
we find to have strong protein sequence conservation. Genes
involved in regulatory processes have been reported to show
signatures of positive selection [7,12], especially genes related
to regulation of transcription. In addition, genes involved in
immune and defense response also show strong signatures of
positive selection in the human [7,12,21]. Both sets of catego-

ries have high sequence divergence in our comparison of
human proteins to other eukaryotes. Bustamante et al. [7]
report strong negative selection on ectoderm development,
and we find development to be conserved in mammals.

Our analysis highlights some general systems-level character-
istics of metazoan evolution relative to human: regulatory
processes, such as signal transducers, transcription factors
and receptors, have a high degree of plasticity, while core
processes, such as metabolism, transport and protein synthe-
sis, are largely conserved. This dual architecture of a con-
served core and variable regulatory peripheral processes may
confer robustness [37] and evolvability [38] on the system. So
far there has been little concrete biological data on genes that
are responsible for phenotypic plasticity and the evolution of
species. Our analysis provides evidence for which genes and
functional categories are most variable in organismic evolu-
tion, and what we observe fits the framework of the theories
cited above.

We have focused purely on molecular variation of protein
coding genes. There are many other dimensions to human
evolution that are not captured by this analysis, or at least not
directly. These include evolution of epigenetic regulation,
alternative splicing, non-coding genes such as microRNAs
[39,40], promoters [41,42] and other non-coding regions
[43,44]. However, divergence rates of the human protein-
coding genes are linked with evolution of all of these other
processes, and proteins themselves are the major players in
the development, structure and physiological adaptability of
animals.

In the future, analyses such as ours will be aided by greater
density of sequence information. The 'thousand dollar
genome' or, more generally, cheaper sequencing and geno-
typing technologies will provide us with greater coverage of
polymorphisms both in human and other organisms. At the
same time, population-wide measurements of expression at
the RNA [45-47] and protein levels will allow us to
understand how changes in DNA affect cellular processes. In
terms of whole organisms, quantitative phenotypic traits are
beginning to be related to sequence features [48]. Ultimately,
we hope to understand what variations at cellular, organismic
and species level are determined by genomic diversity.

Materials and methods
Functional classification
Protein-coding human genes with functional annotation
(14,062 genes) were extracted from Ensembl [49] for both the
'molecular function' and 'biological process' GO classification
[50]. Note that GO terms are organized into structures called
directed acyclic graphs, such that a specialized term can be
associated with several less specialized terms. For instance, a
gene annotated with the term 'transcription factor activity'
will also automatically be annotated as 'DNA binding' and
Genome Biology 2008, 9:R33
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'nucleic acid binding', which are parent terms of the former
terms in the GO database. We analyzed all the GO molecular
function categories and all biological process categories that
have more than 100 human genes annotated with their term
(135 and 242, respectively). We carried out our analysis with
and without annotation that is inferred electronically (this
represents 54% of annotations for biological process and 69%
for molecular function), and the conclusions are consistent
using both versions of GO annotation (data not shown). In
addition, although we used all the Ensembl genes with GO
annotations (14,062 genes) for our study, we repeated the
analysis using only genes included in the RefSeq database
[51], finding essentially the same results (data not shown).

In addition to these categories, we introduced a category of
our own of predicted sequence-specific DNA-binding
transcription factors. This category is defined from the data-
base DBD, which contains repertoires of predicted transcrip-
tion factors for completely sequenced genomes based on
domain assignments from the SUPERFAMILY and PFAM
hidden Markov model libraries [52]. Furthermore, we
divided this category into: developmental transcription fac-
tors (that is, also annotated with the GO biological process
term 'development'); and all others (TF-DBD).

In the alternative functional classification scheme consid-
ered, the KOGs database [29], there are orthologous groups of
proteins from seven eukaryotic genomes: three animals (the
nematode C. elegans, the fruit fly Drosophila melanogaster
and Homo sapiens), one plant, Arabidopsis thaliana, two
fungi (Saccharomyces cerevisiae and Schizosaccharomyces
pombe), and the intracellular microsporidian parasite
Encephalitozoon cuniculi [29]. The orthologous groups of
proteins are classified into one of 25 functional categories
wherever possible, so there are fewer larger categories in this
scheme compared to the GO scheme.

Genomes and phylogenetic groups
Proteins from the human genome (NCBI36 - Ensembl v.42)
were used for the analysis. In addition, the following versions
of other completed eukaryotic genomes are part of our analy-
sis. Mammals: two rodents, mouse (Mus musculus -
NCBIM36) and rat (Rattus norvegicus - RGSC3.4), dog
(Canis familiaris - CanFam2.0), cow (Bos taurus - Btau2.0),
opossum (Monodelphis domestica - MonDom4.0). Other ver-
tebrates: chicken (Gallus gallus - WASHUC2) and Frog
(Xenopus tropicalis - JGI4.1), and three bony fish, zebrafish
(Danio rerio - Zv6), fugu (Takifugu rubripes - FUGU4) and
tetraodon (Tetraodon nigroviridis - TETRAODON7). Inver-
tebrates: mosquito (Anopheles gambiae - AgamP3), fruitfly
(D. melanogaster - BDGP4.3), sea urchin (Ciona intestinalis

Peripheral and core functional categoriesFigure 5
Peripheral and core functional categories. A set of core molecular functions and biological processes that are highly conserved are represented in red in 
the centre of the figure. Other sets of functions and processes that are highly divergent across all eukaryotes (blue) or highly divergent in some organisms 
and highly conserved in others (yellow) are represented on the periphery as regulators of the core processes. The colors correspond to the colored lines 
on the left in Figure 3.

Olfactory receptor activity

Catalytic activity

Structural constituent of ribosome

structural molecule activity

Transporter activity

RNA binding

Protein binding

Biosynthesis

Transport

Metabolism

DNA packaging

RNA splicing

Highly conserved core

functions and processes

Defense response

Response to stress

Response to wounding

Response to stimulus

Immune response

Regulation of transcription

Development

Morphogenesis

Organogenesis

Transcription factor activity

DNA binding

Developmental - TFs

Nucleic acid binding

Signal transducer activity

Transcription factors DBD

Enzyme inhibitor activity

Receptor activity

Receptor binding

Nucleosome assembly

Regulation of metabolism
Genome Biology 2008, 9:R33



http://genomebiology.com/2008/9/2/R33 Genome Biology 2008,     Volume 9, Issue 2, Article R33       Lopez-Bigas et al. R33.11
- JGI2), worm (Caenorhabditis elegans - WS160) and yeast
(S. cerevisiae - SGD1.01).

Homology and orthology
Pairwise similarity for all human genes against each other
and the other genomes was obtained from Ensembl-Compara
(v42.0) [49]. These relationships were computed using WUB-
LASTP (v2.0) [53] for each gene considering the longest pep-
tide isoform only. Homologs are defined as those sequences
with a match with an E-value ≤10-10 in other genomes, while
orthologs in Ensembl-Compara are assigned based on maxi-
mum likelihood phylogenetic gene trees.

The presence of an ortholog for a human protein in another
genome provides more precise information about the conser-
vation of the protein than the presence of a homolog. How-
ever, orthology detection is error-prone for distant
evolutionary relationships and for protein families with many
duplications and losses. Therefore, we decided to use both,
orthologs and homologs, in our study.

Functional categories and their relative evolutionary 
divergence: FRED
We have developed a scheme for quantifying the relative pro-
tein sequence divergence of different functional categories
between a pair of genomes, which we used to compare human
to 15 other genomes. We call this framework FRED, for
functional categories and their relative evolutionary diver-
gence, which is outlined in Figure 1 and described below.

Conservation measures
The primary measure of evolutionary rate that we use is
amino acid sequence evolution through the CS [54]. We use
the median CS for all the orthologs of human to another
genome in a particular functional category. This means that
the set of proteins considered for a particular functional cate-
gory can differ when comparing human to one genome or
another due to gain and loss of genes throughout evolution.
However, we normalize the rate of sequence divergence for
each functional category by the average divergence for the
pair of genomes considered. This means that gene gain and
loss in a particular category is implicitly compared to the rates
in other functional categories when we study sequence diver-
gence. Furthermore, we also consider the set of universally
conserved orthologs across eukaryotes from the KOGs data-
base [29] and test our conclusions on this set. In addition, we
have analyzed the extent of the existence of orthologs and
homologs to the human genes in the 15 other genomes, and
discuss the extent of correlation between the different meas-
ures of evolutionary rate.

Conservation score
The CS is an estimate of the divergence that has occurred
between a pair of proteins during evolution, and is independ-
ent of the length of the proteins [54]. The value of CS was cal-
culated for each human gene by dividing the WUBLASTP

score of the ortholog (or the closest homolog) in the other
organism by the WUBLASTP score of the protein against
itself, as reported elsewhere [54]: CS ortholog or homolog =
WUBLASTP score ortholog or homolog/WUBLASTP score
self.

The CS accounts for the proportion of the query protein
matched by WUBLASTP and the quality of the match, but is
independent of the query protein length. The CS ranges from
0, when no ortholog or homolog is detected, to 1, when the
closest homolog is identical to the human protein. Note, that
for all our analyses using CS, we use only values higher than
0, meaning that we take into account only genes with detect-
able and significant orthologs or homologs. This score is
indicative of how conserved a protein has remained through
evolution, and hence the degree to which mutations within
the sequence have been tolerated. We do not consider the
molecular details of the differences in mutation rates, such as
variations in the proportion of residues that are required for
adequate protein function. Instead, we consider the net result
of accepted mutations across functional categories.

In Figure 2b, we display in color the relative CS of each gene
in a particular organism. To do this we ranked all human
genes with homologs in the other genome according to their
CS. The gene with the highest CS is shown in red and the one
with the lowest CS in blue, with all others in intermediate
colors according to their rank by CS. Thus, colors towards red
mean high relative CS of the protein, green is medium relative
CS and blue low relative CS.

Note that for the orthologs from the KOGs classification
scheme, the CS value was calculated for each human gene by
dividing the BLASTP score of the closest KOG partner in the
other organism by the BLASTP score of the protein against
itself.

Simulations for Z-score calculations
As described above and summarized in Figure 1, we grouped
the genes by GO molecular function and biological process
category, and then calculated both the mean and median CS
for orthologs and homologs, as well as the number of genes
with homologs or orthologs in a particular genome. To test
whether there was a significant deviation from random
expectation for these measures we used the Z-score:

where μx is the mean, and  is the standard error. The 

for number of genes with homologs and orthologs was calcu-

lated as:

Z Xx x x= −( )/μ σ

σ x σ x

σ ρ ρ
x N

= −( )1
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where ρ is the proportion of genes in the category in question

that have homologs or orthologs, and N is the total number of

genes in the category. To calculate  for the mean and

median CS in each of the GO categories (X), we randomly

selected 10,000 datasets of human proteins of identical sam-

ple sizes as the category in question and repeated the calcula-

tion for each random set. Z-scores for both mean and median

CS values for functional categories yield essentially the same

results, as the correlation coefficients between the two meas-

ures are greater than 0.9 for all functional categories and

genomes.

We display matrices of Z-score values in which each cell is
represented by a color-coded scale. Red signifies conserva-
tion (either greater number of homologs or orthologs than the
background, or greater average conservation score than the
background) and blue signifies divergence. Gray means no
significant difference in the level of conservation compared to
the background.

When adjusting the conventional α value (0.05, the p-value
threshold) using the Bonferroni correction for multiple test-
ing we obtain a corrected α of 1.3 × 10-4, taking into account
that we are doing 377 tests (135 molecular function and 242
GO biological process categories). Therefore, we consider as
significant absolute Z-scores larger than 3.652 (|Z| > 3.652),
which corresponds to an analytical p-value of 1.3 × 10-4. This
is a stringent threshold as Bonferroni is a conservative correc-
tion, especially for the data structure considered here.

Note that our measure of degree of conservation of a func-
tional class (Z-score) is always relative to the conservation of
all the genes in that genome in comparison to human. For
instance, transcription factors are diverging rapidly in fly rel-
ative to human but have average conservation in mouse; this
means that the orthologous fly-human transcription factors
have diverged rapidly compared to fly-human orthologs in
other functional categories, not compared to the mouse-
human orthologs. The speed of divergence of a category will
depend on the divergence of both ancient conserved genes
and genes that have arisen within the particular lineage con-
sidered. Clearly, there will be more human orthologs that
have arisen recently in organisms closely related to human.
The expectation is that a recently duplicated gene will have a
relatively high rate of sequence divergence in order to sub- or
neo-functionalize. The contribution of such genes to various
functional categories will be uneven, since it is known that
some categories expand more quickly than others [18]. At the
same time, the constraint on proteins in most functional cat-
egories will be more similar in organisms closer to human,
and may change in organisms more distantly related to
human (even if there are orthologs within the category). To
control for these issues, we re-calculated the Z-scores for
KOGs functional categories on proteins that are universally

conserved across all seven eukaryotes in the KOGs database
(see main text).

Divergence profile of orthologous regions across 
mammals: GERP
To understand the evolutionary history of coding regions at
base level positions, we considered the divergence profile of
orthologous regions across mammals. We used the GERP
method developed by Cooper and colleagues [34] where
divergence rate of every base position is compared against an
expected rate. An evolutionarily conserved base position has
a low GERP score while a divergent position has a high score.

First, ortholog information for human genes in seven other
mammalian genomes, namely chimpanzee, macaque, rat,
mouse, dog, cow, opossum, was collected from Ensembl-
Compara v37 and 42. We considered only orthologs that were
>100 amino acids long aligned over at least 70% of the human
protein. DNA level multiple alignment was performed using
DIALIGN [55]. The neutral phylogenetic tree of the mamma-
lian genomes was constructed by eliminating nodes that were
not present in our study from the tree provided by Cooper et
al. [34]. The average neutral rate of substitution for the mam-
malian genomes included in the analysis was taken as 1.93
substitutions per base. Semphy [56] was used by GERP to cal-
culate the observed rate of divergence on a base-by-base
basis. The score for evolutionary divergence was calculated as
GERP score = Observed rate - Expected rate. Around 15,000
genes that had orthologs in 4 or more mammalian genomes
were subject to GERP analysis.

We measured the average GERP score for all coding nucle-
otides for each functional category and we assessed using
FRED analysis if these values differ significantly between
functional groups (Figure S5 in Additional data file 1).

Non-synonymous substitution rates: dN
dN data for the genes were taken from Ensembl-Compara v45
[49]. We computed the correlation between dN and CS for
orthologs of human genes in mouse (16,040 genes) and rat
(14,726 genes) (Figure S6 in Additional data file 1). We
assessed using FRED analysis if the dN values for human-
mouse and human-rat differ significantly between functional
groups (Figure S5 in Additional data file 1).

Abbreviations
CS, conservation score; FRED, Functional categories and
their relative evolutionary divergence; GERP, Genome evolu-
tionary rate profiling; GO, Gene Ontology.
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