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Plasmodium promoter prediction<p>A method is presented to computationally identify core promoters in the Plasmodium falciparum genome using only DNA physico-chemical properties.</p>

Abstract

Little is known about the structure and distinguishing features of core promoters in Plasmodium
falciparum. In this work, we describe the first method to computationally identify core promoters
in this AT-rich genome. This prediction algorithm uses solely DNA physicochemical properties as
descriptors. Our results add to a growing body of evidence that a physicochemical code for
eukaryotic genomes plays a crucial role in core promoter recognition.

Background
Eukaryotic promoters are defined as regions containing the
elements necessary to control the transcriptional regulation
of genes. Typically, a promoter is organized into three
regions. The core promoter (CP) spans the region approxi-
mately 35 bp upstream of the transcription start site (TSS)
and is the binding region for the transcription initiation com-
plex; the proximal promoter, which may contain several tran-
scription factor binding sites, can range for hundreds of base
pairs upstream of the TSS; finally, the distal promoter, which
may contain additional regulatory elements, such as enhanc-
ers and/or silencers, can be located thousands of base pairs
from the TSS. The best studied features of the canonical CP
are proximal cis-acting sequence elements, which have been
very well characterized in many organisms. These may
include a TATA box, an Initiator element (Inr), a TFIIB recog-
nition element (BRE), and a downstream promoter element
(DPE). These sequence elements are, however, by no means
ubiquitous, and in fact, it was recently estimated that only a
maximum of 20% of mammalian promoters contain a TATA
box [1,2].

Much evidence has now emerged showing that epigenetic fac-
tors also contribute to transcriptional control of eukaryotic
genes [3]. The term epigenetic has been redefined in a mod-
ern context as "the structural adaptation of chromosomal
regions so as to register, signal or perpetuate altered activity
states" [4]. Until recently, it has been difficult to computa-
tionally derive these structural adaptations from the DNA
sequence; however, the recent work of Segal et al. [5] points
to the existence of a periodic di-nucleotide 'code' that corre-
lates strongly with nucleosome binding affinity. Interestingly,
by using this 'code', it has been shown that nucleosome occu-
pancy at TSS positions in human CPs is very low. Coming at
this issue from another angle, it was recently shown that
experimentally calculated DNA bendability and a penta-/
tetramer based compositional property of DNA exhibit char-
acteristic profiles in the region of TSSs in several higher
eukaryotes [6]. These distinctive changes in the conforma-
tional profile of DNA around experimentally mapped TSSs
reflect local structural traits, which can be considered typical
features of CPs. These findings have been corroborated by
several other works [7-9], illustrating that profiles of physic-

Published: 18 December 2008

Genome Biology 2008, 9:R178 (doi:10.1186/gb-2008-9-12-r178)

Received: 26 August 2008
Revised: 3 November 2008
Accepted: 18 December 2008

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2008/9/12/R178
Genome Biology 2008, 9:R178

http://genomebiology.com/2008/9/12/R178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19094208
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


http://genomebiology.com/2008/9/12/R178 Genome Biology 2008,     Volume 9, Issue 12, Article R178       Brick et al. R178.2
ochemical properties indeed reveal a TSS specific signal in
several eukaryotic genomes.

Despite these recent works into non-motif-based descriptors
of CPs, computational methods of promoter identification
principally rely on conserved cis-acting sequence motifs (in
many cases, CpG islands) as descriptors. The extent of this
preference is evident from a recent review of promoter pre-
diction programs (PPPs) [10] where all of the eight programs
examined use some direct motif/CpG based feature. While in
some cases this approach has proven to be very effective
[11,12], it is only applicable when the CPs in question are asso-
ciated with clearly defined sequence elements. In several
studies, however, DNA physicochemical properties were
incorporated into predictor mechanisms. In the case of
McPromoter by Ohler et al. [13], the incorporation of a single
such parameter into their prediction framework reduced false
positive predictions of Drosophila melanogaster CPs. More
recently, it was shown that by identifying peaks in profiles of
DNA structural properties along eukaryotic genomic
sequences, CPs could be predicted more accurately than with
other PPPs [9]. Furthermore, a PPP was recently developed
that used six different physical DNA properties to distinguish
between CPs and other DNA sequences, and was shown to
outperform 'traditional' PPPs across diverse datasets from
eukaryotic genomes [7].

Our interest in prediction methods based on physicochemical
properties stems from our studies of promoter regions in P.
falciparum, the most virulent agent of human malaria, caus-
ing millions of deaths globally every year [14]. This parasite is
characterized by a complex life cycle that involves two hosts
(an invertebrate - mosquito - and a vertebrate - in the case of
P. falciparum, human) and several morphologically different
stages. Such complexity implies dynamic transcriptional con-
trol of gene regulation; however, very little is known about the
transcriptional mechanisms of this parasite (see reviews in
[15,16]). While recent studies have begun to shed some light
on these processes through the identification of specific tran-
scription factors and their binding sites [17], the general pau-
city of information coupled with the exceptionally AT-rich
genome [18] mean that computational techniques developed
for other genomes are of limited use. In fact, the only PPP that
has been specifically applied to the P. falciparum genome [9]
showed poor performance, prompting the authors to suggest
that a bespoke solution was required for this organism.

In the present work, we used DNA physicochemical proper-
ties to construct profiles of P. falciparum CPs around experi-
mentally determined TSSs in the FULL-Malaria database
[19]. We observed characteristic maxima/minima in these
profiles at the TSS, confirming previous results with similar
parameters in other eukaryotes [6,9]. Furthermore, signals
around TSSs allowed us to propose that the actual CP occu-
pies a small region from -35 to +1 nucleotides, as in other
eukaryotic genomes. Since these signals are extremely weak

and obscured by noise when examined on an individual
sequence basis, we have developed a predictor based on an
ensemble of support vector machines (SVMs; the Malarial
Promoter Predictor (MAPP)) that can identify P. falciparum
CP regions on the basis of their distinct physicochemical
properties.

This is the first time that a computational method has suc-
cessfully been used to identify TSSs in this genome. We dem-
onstrated that MAPP not only distinguishes a large
percentage of TSS positions from non-TSS sequences, but can
do so with high spatial accuracy, agreeing with experimental
results and representing a useful tool for experimentalists
and genome annotators. MAPP predictions on a genomic
scale give an insight into CP organization in P. falciparum,
illustrating that physicochemical properties of the DNA are
essential for promoter recognition and suggesting that TSSs
occur in broad 'transcriptional start areas' rather than at pre-
cise start sites. Furthermore, particular promoter arrange-
ments are revealed (bi-directional promoters, antisense RNA
transcription, and so on) that might open novel avenues for
the investigation of transcription mechanisms in this organ-
ism.

Results and discussion
P. falciparum core promoter regions have typical 
physicochemical properties
In order to analyze the composition and conservation of the P.
falciparum CPs, we extracted sequences spanning 100 nucle-
otides upstream and 49 nucleotides downstream of each of
the 3,546 experimentally mapped TSSs in the FULL-Malaria
database [19,20]. This dataset contains at least one TSS for
27% of P. falciparum genes. We then aligned these sequences
at the TSS and generated a position weight matrix. From this
position weight matrix, we calculated nucleotide frequencies
and information content at each position around the TSSs
(Figure 1). We observed that thymine-adenine is the sequence
highly favored at the TSS (Figure 1a), while immediately
upstream, for approximately 30 nucleotides, thymine is the
preferred nucleotide. Interestingly, the preference for T-A at
the TSS reflects the pyrimidine-purine feature (PyPu) present
at the TSS in other eukaryotes [21,22], albeit in an AT-rich
form (the consensus for the PyPu feature is generally C(G/A),
as opposed to the strong TA preference seen here). The PyPu
feature at the TSS is generally conserved across different pro-
moter classes [23] and has been shown to be necessary for
TFIID binding in promoters lacking well defined cis-elements
[24]. While this feature clearly emerges, the corresponding
peak in information content (0.2 bits; Figure 1b) indicates
that CPs in P. falciparum are characterized by weak sequence
conservation. We thus hypothesized that rather than
sequence elements, other factors related to the conformation
of the DNA molecule may play a role in transcription initia-
tion. This hypothesis is supported by recent evidence in other
genomes [6-9].
Genome Biology 2008, 9:R178
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We used 59 experimentally determined physicochemical
properties of DNA (Additional data file 1) in this analysis,
along with two different measures of GC content and with the
composition based LD parameter of Bultrini et al. [6]. Since
these properties are based on di-, tri- and tetra-nucleotide
sequences, they may reflect similar physical characteristics so
that correlations among them must be considered. To do this,
we performed a redundancy reduction step (see Materials
and methods for details) that resulted in the removal of 28
highly correlated properties. Together with the tetra-nucle-
otide property (LD), this process yielded a set of 33 non-
redundant physicochemical properties that was used in fur-
ther work.

We generated a profile for the 33 selected properties along the
150 nucleotide sequences around each of the 3,546 experi-
mentally mapped TSSs. We used a window size of 2, 3 or 4
nucleotides for di-, tri- or tetra-nucleotide properties, respec-
tively, along with a shift of 1 nucleotide. The normalized aver-
age and standard deviation of the profiles are shown in Figure
2 for each of the non-redundant properties. Averaged profiles
show characteristic features in a restricted area around the
aligned TSSs, and in many cases a corresponding low stand-

ard deviation is also observed. Even though, in nearly all cases
the strongest 'signal' is seen precisely at the TSS, an addi-
tional signal with a low standard deviation is seen approxi-
mately 35 nucleotides upstream of TSSs in profiles generated
using properties 14, 15, 19, 28, 32, 38, 39, 40, 43 or 60.

The agreement between signals from compositional and
physicochemical properties paints a picture of the CP in P.
falciparum, suggesting that, as is the case for canonical
eukaryotic CPs, important features are contained in the short
region between -35 nucleotides and +1 nucleotide.

Support vector machine training with core promoter 
physicochemical profiles
SVMs comprise a class of supervised machine learning algo-
rithms that can, in principle, separate any two classes of
objects. SVMs have been applied extensively to bioinformatic
problems from analyses of microarray data to protein fold
recognition (for comprehensive reviews, see [25,26]).
Recently, SVMs were successfully applied to detect sequence
based biological signals in the human genome, including
characteristic motifs at the TSSs [27].

We decided to construct a predictor combining SVMs trained
to recognize CPs in the P. falciparum genome on the basis of
signals observed in the 33 physicochemical profiles. First of
all, we carefully selected sequences (positive and negative
data) for training and testing the SVMs. We used sequences
from -100 to +49 nucleotides around each experimentally
determined TSS as positive data [19,20]. Negative data were
generated by selecting 150 nucleotide sequences from both
intergenic (IG) and exonic (EX) genomic DNA (from version
2.1 of the genome). Since IG sequences may contain distal or
undocumented TSSs, we used the length distribution of 5'
untranslated regions derived from P. falciparum full-length
cDNAs (flcDNAs) to establish criteria for IG selection. Having
observed that only 3.2% of the transcripts begin at a distance
greater than 2,000 nucleotides from the closest gene, we
decided to select IG sequences that were at least 2,000 nucle-
otides away from any annotated gene. Excessive false positive
predictions is one of the greatest problems for CP predictors,
and thus, we used a CP:IG:EX ratio of 1:2:2 during the train-
ing (Table 1). The remaining sequences were divided into two
independent test sets, the smaller test set (Test 1) was used to
find the optimal combination of SVMs for the final predictor
(see below), while the larger test set (Test 2) was used to
assess the final predictor.

Sequences were converted into physicochemical profiles and
a SVM was trained for each of these properties. Some posi-
tions in physicochemical profiles (features) may not contrib-
ute to prediction ability and, hence, may reduce performance
and increase the computational burden. For these reasons we
used a wrapper-type feature selection algorithm (for details
see Materials and methods) to establish positions in physico-
chemical profiles that best discriminate CPs from negative

Sequence conservation at the P. falciparum TSSFigure 1
Sequence conservation at the P. falciparum TSS. (a) Nucleotide 
frequencies in the region from -100 to +50 nucleotides around 3,546 P. 
falciparum TSSs. (b) The frequency of each position in the 150 nucleotides 
around aligned TSS was calculated to generate a position specific scoring 
matrix. The information content of each position in the matrix was 
calculated by Σi (pi* log2(pi/bi)), where pi = frequency of nucleotide i at that 
position and bi = background frequency of i. Background frequencies were 
calculated from P. falciparum intergenic DNA (bA = 0.42, bT = 0.45, bG = 
0.07, bC = 0.06).

(a)

(b)
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DNA physicochemical property profiles around P. falciparum TSSsFigure 2
DNA physicochemical property profiles around P. falciparum TSSs. All 150 nucleotide CP sequences were aligned at TSS positions. For each of 
33 non-redundant DNA properties (identified by a progressive number; Additional data file 1), the average profile over the 3,546 sequences was 
calculated. The average profile is shown for each profile as a black line, and the standard deviation as a red line.



http://genomebiology.com/2008/9/12/R178 Genome Biology 2008,     Volume 9, Issue 12, Article R178       Brick et al. R178.5
sequences. The relevance of each position around the TSSs
was evaluated, then different combinations of the most rele-
vant ones were used to train a SVM with fivefold cross-valida-
tion. For each set of selected positions, the SVM performance

was evaluated and the combination that gave optimal fivefold
cross-validation accuracy during the training process was
chosen (see Materials and methods; Additional data file 2).
Even though this selection strategy considers positions inde-
pendently, the process only results in the removal of features
that have a net detrimental effect on SVM performance.

Besides reducing the computational cost and improving SVM
performance, the results of this feature selection are interest-
ing per se as they show the localized importance of each phys-
icochemical feature around the TSS. In Figure 3a, the optimal
set of features for training each SVM are shown (selected fea-
tures are green, unselected are red). From these, a complex
picture of the local physicochemical properties at the P. falci-
parum CP emerges. Some notable patterns of biological sig-

Table 1

Number of sequences used for SVM training and testing

CP IG EX

Training 1,100 2,200 2,200

Test 1 610 302 302

Test 2 1,834 910 910

CP, number of core promoter sequences; IG, number of intergenic 
sequences; EX, number of exonic sequences.

Frequencies of features used by SVMs for trainingFigure 3
Frequencies of features used by SVMs for training. (a) The features used for training each SVM. Green boxes indicate features used to train an SVM 
with that physicochemical property. Red boxes indicate features that were not used. (b) The relative frequency with which each feature is used in SVM 
training highlights the most important positions for accurate SVM training.
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                                    Property Name   No. 
                         Watson-Crick Interaction Energy    61 

                                DNA twist angle from NMR    60 

                           Entropy change of DNA melting    58 

                                         DNA flexibility    53 

                   DNA melting energy from UV absorbance    52 

                                          B-Z transition    48 

                    DNA twist from chemical constitution    44 

                     DNA tilt from chemical constitution    43 

               DNA roll angle from chemical constitution    42 

      Twist of DNA determined from conformational energy    40 

       Tilt of DNA determined from conformational energy    39 

 Roll angle of DNA determined from conformational energy    38 

 Entropy change of DNA melting from calorimetric studies    37 

Enthalpy change of DNA melting from calorimetric studies    36 

                       DNA twist from gel migration data    33 

                        DNA tilt from gel migration data    32 

                  DNA roll angle from gel migration data    31 

                 DNA twist from B-form crystal structure    30 

                  DNA tilt from B-form crystal structure    29 

            DNA roll angle from B-form crystal structure    28 

                                          B-a transition    27 

                               Stabilizing energy of DNA    26 

                                       Protein-DNA twist    25 

                                      Duplex free energy    21 

                                             a-philicity    19 

                                             B-DNA twist    17 

                           Protein induced deformability    16 

                                           Base stacking    15 

                                    Curvature propensity    14 

                               DNA rigidity (SDAB model)    10 

                                             DNAse scale     9 

                                DNA rigidity (consensus)     8 

                                                      LD     4   

-100  -50 TSS +49

100% 

80% 

60% 

40% 

20%
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nificance could be identified. For example, we observed that
in the region between -31 nucleotides and the TSS, DNA rigid-
ity is an important consideration (properties 8 and 10; 49/62
features are used). The entropy (properties 37 and 52) and
enthalpy (property 36) upon 'melting' of this region are also
distinctive, particularly in the 5' region, close to the -31 nucle-
otides position. These results in combination with profiles in
Figure 2 suggest that while rigid, this region may be easily
zipped open when required for transcription. The results for
the protein-induced deformability (property 16) are also par-
ticularly interesting. Selected positions are from -64 to +30
nucleotides, suggesting that this entire region may be partic-
ularly amenable to binding of general transcription factors
(such as TFIID) that deform the DNA when they bind.

Despite the complexity of these results, when we analyzed the
frequency with which each feature is used in overall SVM
training (Figure 3b) a clearer pattern emerged. The most fre-
quently used features are found precisely at the TSS (0 to +1;
used to train 81% and 60% of SVMs, respectively) and in the
region from -35 to -20 nucleotides upstream of the TSS.

Consolidation of SVMs into the MAPP
In order to assess which of the SVMs gave the best perform-
ance, we utilized the first test dataset (Test 1). In addition to
specificity and sensitivity, we also calculated the harmonic
mean (F) as this measure equally weights type I (false posi-
tives) and type II errors (false negatives) (see Materials and
methods). The performance for each of the 33 SVMs is
reported in Table 2. The most robust single classifier (F =
0.52) is that trained with property 60, the twist of DNA, as
determined by NMR [28]. This classifier has the highest sen-
sitivity of all SVMs (0.37), yet the specificity is somewhat low
(0.97). Other SVMs, such as that trained with property 14 - AT
and GC type curvature propensity [29] - correctly predict
fewer promoters (sensitivity = 0.09), but have a specificity of
1.00, meaning that IG and EX sequences are never predicted
as CP. Nine trained SVMs were unable to distinguish CP from
negative sequences and, thus, have no predictive value (sen-
sitivity = 0, specificity = 1). These nine SVMs were discarded
and not used in subsequent steps. MAPP combines the out-
puts of the remaining 24 trained SVMs to give a prediction.
We trained a final SVM to combine these outputs in order to
derive a single MAPP score (between 0 and 1) for each
sequence.

For each combination of the top n SVMs as ranked by F-score
({n|n ∈ Z, 1 ≤ n ≤ 24}; Table 2) we calculated the area under a
receiver operating characteristic (ROC) curve (AUC). This is a
useful single figure representation of overall performance for
which random choice will yield an AUC of 0.5, while a perfect
predictor will yield an AUC of 1.0. By combining individual
predictions, the AUC is increased from 0.835 to 0.883, with
the maximum AUC achieved using 17 SVMs. The AUC satu-
rates after n = 17, yielding similar AUCs for all combinations
up to the maximum of n = 24. The cumulative effect confirms

that the physicochemical properties selected to train SVMs
provide independent and complementary information on the
CP in P. falciparum. To generate the final MAPP score (Msc),
we chose n = 21, a point in the middle of the optimal range.

MAPP assessment
The performance of the final predictor, MAPP, was assessed
on the second test set (Test 2). First of all, we studied the dis-
tributions of Msc for CP and negative sequences (IG and EX;
Figure 4a). The distributions of CP and negative sequences
only partially overlap, with most of this overlap due to IG
sequences. For Msc higher than 0.05, few false positives are
expected and predictions with Msc >0.94 have 100% accuracy.

Table 2

Cross-validated SVM performances

Property Sensitivity Specificity F-score

4 0.10 0.99 0.17

8 0.21 0.99 0.35

9 0.18 0.99 0.30

10 0.28 0.98 0.43

14 0.09 1.00 0.17

15 0.25 0.97 0.39

16 0.28 0.95 0.42

17 0.00 1.00 0.00

19 0.00 1.00 0.00

21 0.20 0.97 0.32

25 0.00 1.00 0.00

26 0.34 0.96 0.49

27 0.18 0.98 0.30

28 0.32 0.96 0.48

29 0.27 0.98 0.41

30 0.30 0.96 0.45

31 0.30 0.96 0.45

32 0.00 1.00 0.00

33 0.00 1.00 0.00

36 0.24 0.97 0.37

37 0.24 0.96 0.38

38 0.29 0.96 0.43

39 0.25 0.95 0.38

40 0.12 0.99 0.21

42 0.12 0.98 0.21

43 0.00 1.00 0.00

44 0.19 0.97 0.32

48 0.33 0.95 0.48

52 0.09 0.99 0.16

53 0.00 1.00 0.00

58 0.00 1.00 0.00

60 0.37 0.97 0.52

61 0.00 1.00 0.00

The performance of each of the SVMs after cross-validated training 
using each individual physicochemical property of DNA.
Genome Biology 2008, 9:R178
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It is more prudent to state the error rate at this threshold as
<1 false positive per 910 nucleotides IG DNA, and <1 false
positive per 910 nucleotides IG DNA.

A more detailed analysis reveals that a clear and highly signif-

icant (p < 10-100, Wilcoxon rank sum test) difference is seen

between the mean of the CP Msc (  = 0.19 ± 0.30) and the

mean of the negative sequence Msc (  = 0.02 ± 0.09).

Interestingly, the three input groups (CP, IG and EX) exhibit

statistically different score distributions (p < 10-100, 3× Wil-

coxon rank sum test), despite not having been trained as

such. This further separation of the exonic profiles is very

likely due to the diverse nucleotide composition of coding and

non-coding DNA in P. falciparum [18].

Quantitatively, these results are best expressed as specificity
and sensitivity. We calculated these values for MAPP predic-
tions at 30 Msc thresholds (Figure 4b). At each threshold (t), a
sequence with Msc ≥ t is considered a TSS prediction. For
example, if we consider the most permissive criterion of Msc ≥
10-3 (any sequence with a positive Msc is considered a TSS), we
achieve a sensitivity of 0.94 (red circles) and a specificity of
0.60 (blue squares). By increasing the Msc threshold, the spe-
cificity increases and exceeds 0.99 at Msc ≥ 0.6. Notwithstand-
ing that the CP:EX:IG ratio used in these assessments does
not reflect the true ratio in the genome (where CP sequences
would be far less frequent), the high specificity does indicate
that MAPP may be well suited for genomic scale applications.

Positional effect on MAPP score
In order to assess the positional precision of MAPP, we gen-
erated a prediction for every nucleotide position in the region
from -400 to +200 nucleotides around each TSS in the Test 2
dataset. At each position in the 601 nucleotide window, we
calculated the average Msc. We then counted the number of
nucleotides adjacent to the TSS for which the Msc remained
more than one standard deviation above the mean (Addi-
tional data file 3). We found this region spans 101 nucleotides
almost symmetrically around the TSS. This can be considered
the positional accuracy of MAPP prediction. These results, as
well as being important to evaluate genome scale predictions
of MAPP, are also interesting from a biological point of view.
The broad distribution of high Msc in the region immediately
around TSSs may be due, in part, to the presence of multiple
start sites, suggesting the presence of 'transcriptional start
areas' from which several transcripts arise. This is in line with
the available experimental data for P. falciparum; in the three
cases of finely characterized promoters [30-32] and for
almost half of the genes with mapped TSSs [19], multiple start
sites are observed. Furthermore, recent evidence from high
throughput studies in mammalian genomes suggests that an
'area' with several TSSs dispersed over tens of nucleotides,
rather than a single specific start nucleotide, is the predomi-
nant type of promoter architecture [23].

To assess the positional preferences of predictions relative to
gene start codons, we generated predictions for 3,000 nucle-
otides upstream and 1,200 nucleotides downstream of all P.
falciparum gene start sites. At each position we averaged the
MAPP scores (blue circles in Figure 5). The MAPP score peaks
in the 1,000 nucleotide region upstream of start codons. This
illustrates a striking preference for strong predictions
upstream of ATG start codons. Furthermore, the MAPP dis-
tribution from -3,000 nucleotides to ATG is highly correlated
with the TSS distribution derived from experimental flcDNA
mappings (red squares in Figure 5; Pearson correlation coef-
ficient = 0.96). Immediately 3' to the gene start site, there is a

M sc

M sc

MAPP score distributionsFigure 4
MAPP score distributions. (a) The distribution of MAPP scores (Msc) 
for core promoter (CP) and negative (NEG) sequences are given for the 
test dataset Test1. Upper and lower limits of the box represent the upper 
and lower quartiles of the distribution, respectively. Whiskers extending 
from the boxes represent the extent of the rest of the data distribution, 
while outliers are represented by magenta points. On the right-hand side 
of the dotted line is the breakdown of the NEG distribution into separate 
distributions for intergenic (IG) and exonic (EX) sequences. (b) The 
specificity (blue squares) and sensitivity (red circles) at different Msc 
thresholds.

(a)

(b)
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dramatic dip in the MAPP score, confirming that MAPP
makes very few TSS predictions in exonic regions.

When predictions are performed on large genomic sequences,
MAPP cannot assign predictions to one strand or another. In
fact, we observe very similar predictions on both DNA strands
but shifted by approximately 40-50 nucleotides from each
other (the correlation coefficient between the plus and minus
strand profiles for chromosome 14 rises from 0.33 to 0.56 if
we shift one of the profiles by 50 nucleotides). As previously
shown, those positions in the SVM input vectors that are most
discriminative for classifying training sequences are between
-35 nucleotides and +1 nucleotide. When this region of an
input vector overlaps with a strong promoter signal (that is, -
35 nucleotides to +1 nucleotide around a true TSS), a high Msc

is output at the TSS (position 0 nucleotides; for a detailed
schema, see Additional data file 4). However, if the overlap is
in the reverse orientation (that is, from +1 to -35 on the oppo-
site strand), a strong, similar Msc will result for a nucleotide at
the other extreme of this window (position -34 nucleotides).
Other, weaker signals (from -50 to +25 nucleotides) account
for the variability of the shift size observed between the two
profiles. In subsequent analyses, unless otherwise stated, we
consider only the MAPP predictions on the same strand as the
gene of interest.

Evaluation with EGASP criteria
The Encode Genome Annotation Assessment Project
(EGASP) established a set of standard criteria by which the

performance of a PPP can be assessed (see Materials and
methods for details) [33]. This assessment was important to
give a true reflection of MAPP performance on a genomic
scale, where the CP:EX:IG ratio is very different to that used
in the SVM training/test processes.

For each gene with an upstream TSS in the Test 2 dataset, we
constructed a MAPP profile from the position of the most
upstream TSS to the downstream gene stop codon. MAPP
predictions were then clustered at different Msc thresholds (t;
for details, see Materials and methods). This simplified each
profile into a series of single point predictions (each cluster
center is a prediction). In previous studies on other genomes,
a maximum allowed distance of ± 500 or ± 1,000 nucleotides
between true and predicted TSSs has been commonly used
[33]. Given the relative compactness of the P. falciparum
genome, we decided to consider only maximum distances (w)
of ± 50 nucleotides and of ± 100 nucleotides. Each analysis
was thus extended upstream of the 5' TSS by w nucleotides to
allow for predictions that fall in this region. In addition to the
positive predictive value (PPV) and sensitivity, we also calcu-
lated the harmonic mean (F). F equally weights the PPV and
sensitivity, ranging from 1 (best performance) to 0 (worst per-
formance), and hence is a useful measure to assess overall
predictor performance.

As expected, the MAPP performance was better at each t cut-
off when we used the ± 100 nucleotide window size (second
column in Table 3,). Irrespective of which window size was
used, a reduction in the clustering threshold reduced the PPV
and increased the sensitivity. In general, it also reduced the F-
score, illustrating that the PPV cost outweighed the sensitivity
benefit at lower thresholds. We determined that the optimum
MAPP clustering threshold as judged by F-score was Msc = 1.0
when using a ± 50 nucleotide error window (F = 0.40, PPV =
0.72, sensitivity = 0.28) and Msc ≥ 0.9 when using a ± 100
nucleotide window (F = 0.51, PPV = 0.54, sensitivity = 0.49).

MAPP score distributions and comparison with experimental TSS distributionsFigure 5
MAPP score distributions and comparison with experimental 
TSS distributions. A MAPP profile was generated for the region from 
3,500 nucleotides upstream to 1,200 nucleotides downstream of every 
gene start codon in the P. falciparum genome (v2.1.4). These MAPP profiles 
were aligned at the 0 position (ATG codon) and the MAPP score averaged 
at each position. We smoothed the average MAPP score using a sliding 
window of 200 nucleotides and a shift of 100 nucleotides (blue circles). 
The TSSs distribution was generated from the frequency of FULL-Malaria 
TSSs at each distance from the closest ATG codon (red squares). Multiple 
TSSs that mapped to the same nucleotide were considered as a single 
mapping.

0.02

0.04

0.06

0.08

0.10

F
U

LL
-m

al
ar

ia
 T

S
S

 fr
eq

ue
nc

y

Position (nt)

-3000 -2400 -1800 -1200 -600 ATG +600  +1200 

0.02

0.04

0.06

0.08

m
ea

n 
M

A
P

P
 s

co
re

Table 3

MAPP performance by EGASP criteria

t Sn50 PPV50 F50 Sn100 PPV100 F100

1.0 0.28 0.72 0.40 0.36 0.80 0.49

≥ 0.9 0.34 0.41 0.37 0.49 0.54 0.51

≥ 0.8 0.35 0.35 0.35 0.52 0.46 0.49

≥ 0.7 0.37 0.32 0.34 0.55 0.43 0.48

≥ 0.6 0.37 0.29 0.32 0.56 0.41 0.47

≥ 0.5 0.37 0.27 0.31 0.57 0.38 0.46

≥ 0.4 0.36 0.24 0.29 0.57 0.36 0.44

≥ 0.3 0.35 0.22 0.27 0.59 0.34 0.43

The performance of the MAPP was assessed using the criteria designed 
for the EGASP promoter prediction workshop. Each analysis was run 
with a TP window acceptance size (w) of ± 50 nucleotides or ± 100 
nucleotides. t, MAPP score clustering threshold; PPVw, positive 
predictive value; Snw, sensitivity; Fw, harmonic mean.
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In addition, if clusters are derived from only MAPP predic-
tions with a Msc = 1, the PPV at each window size is >0.7
(PPV50 = 0.72; PPV100 = 0.80). As a result of these high PPVs,
we can have a very high confidence in such MAPP predictions
on genomic scale as they guarantee a very low number of false
positive predictions. It should also be noted that we probably
underestimated MAPP performance in this evaluation. Spe-
cifically, our evaluation over-counts false positive predictions
as the FULL-Malaria database does not provide a complete
representation of TSSs for a gene. This is evidenced by the fact
that 73% of P. falciparum genes do not have a 5' mapped TSS.
Furthermore, several studies have identified TSSs that are
absent from this dataset [30,31].

From the Msc distributions in Figure 4a., we would have
expected very few TSSs to have a MAPP score ≥ 0.6 (specifi-
city = 0.17). Apparently, this is in contrast to the MAPP spe-
cificity established with EGASP criteria (specificity = 0.37).
This can be explained by the imprecision of flcDNA mappings
or by the presence of more TSSs than we know of. flcDNAs are
generated by a system that also has an implicit error. It has
been shown that 7.2% of TSSs derived from flcDNA in the
Database of Transcriptional Start Sites (DBTSS) were more
than 100 nucleotides distant from equivalent mappings in the
Eukaryotic Promoter Database (EPD) [34].

We also compared the performance of MAPP with the only
other PPP that can be justifiably applied to the P. falciparum
genome (EP3) [9]. EP3 is, however, known to perform rela-
tively badly in this organism compared to others. We con-
firmed that EP3 was not effective at identifying promoters at
either window size (± 50 and ± 100 nucleotides) as in both
cases it yielded PPV, sensitivity and F-scores below 0.02.

Validation with independent experimental data
We performed some independent analysis of the quality of
our predictions with data not derived from the FULL-Malaria
database. In this way, we could also assess the empirical use-
fulness of our predictions on a gene-by-gene basis. We iden-
tified independently mapped TSSs in the literature and
selected the upstream regions of three representative cases
for this validation (the others are illustrated in Additional
data file 5). For each nucleotide in the selected regions, a
MAPP score was calculated and predictions are shown as a
plot along the genomic sequences (MAPP profile).

PF11_0009 (rifin)
The upstream region of the rifin gene PF11_0009 was
recently characterized experimentally [31]. In this work, TSSs
were mapped using 5' RLM-RACE and it was shown that tran-
scription initiates from three positions in a 47 nucleotide win-
dow (-198, -216 and -245 nucleotides; black arrows in Figure
6a). The MAPP profile peaks in the regions around all three
mapped TSSs, with maximum Msc (Msc = 1) at the locations of
TSSs. Furthermore, this region around the known TSSs is the
only predicted putative CP upstream of this gene as there are

no further peaks in the MAPP profile (with Msc >0.2) for
>10,000 nucleotides. In this case, MAPP gives a very clear
indication of where transcription of this gene begins.

PF13_0011 (pfg27/25)
The region incorporating the gametocyte specific gene pfg27/
25 was chosen for analysis as the 5' region of this gene has
been characterized in detail experimentally [32,35]. TSSs
were identified by primer extension at -389, -394, -405 and -
413 nucleotides from the ATG (black arrows in Figure 6b).
Furthermore, multiple TSSs from the FULL-Malaria database
are found at positions ranging from -48 to -414 nucleotides (-
48, -53, -148, -151, -267, -394, -403, -411, -413, and -414
nucleotides; blue arrows in Figure 6b). The majority of tran-
scripts (11 of 20) start in the region from -394 to -414 nucle-
otides, and seven of these map precisely to -413 nucleotides.
The MAPP profile has a broad peak in the region from -376 to
-501 nucleotides, which incorporates the principal site of
agreement between the two experiments quoted above (-413
nucleotides). In fact, the multiple peaks in the -394 to -423
nucleotide region with Msc = 1 are in agreement with the mul-
tiple observed TSSs between these loci.

Transcripts starting from the region beyond the most
upstream TSS (-414 nucleotides) were also infrequently
observed in primer extension experiments (P Alano, personal
communication). In these cases, primer extension and identi-
fication of large transcripts was hindered by the long unstable
stretches of poly(dA) and poly(dT) in this region. The contin-
uation of high scoring MAPP predictions between -424 and -
493 nucleotides may be explained by this phenomenon.

The series of strong sharp prediction peaks further upstream
are in a region with high AT content and a highly repetitive
structure. The MAPP profile in this region is certainly inter-
esting; however, practical difficulties mean that we have very
little experimental data for this region and no mapped TSSs
are known. While interesting, however, none of the peaks
have Msc >0.8.

PF14_0323 (pfcam)
Previously, 47 TSSs were mapped by 5' RLM-RACE in the first
172 nucleotides upstream of the calmodulin gene
(PF14_0323; black arrow in Figure 6c) [30]. Only 40 out of 93
transcripts were found to be correctly spliced, of which 36
originated from TSSs between the -90 and -172 nucleotides
positions. On the contrary, un-spliced transcripts were shown
to predominantly originate from the first 90 nucleotides
upstream of the ATG codon and were shown to represent a
very small fraction of the total mRNA pool.

We found that the strongest MAPP predictions overlap with
the TSSs from which correctly spliced transcripts originate
and that no MAPP peaks are found in the region immediately
upstream of the gene start site. The MAPP profile between -
150 and -200 nucleotides contains several high confidence
Genome Biology 2008, 9:R178
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predictions with Msc ≥ 0.97 (151, 155, and 199 nucleotides).
The MAPP profile suggests that a broad promoter is present
in the region where transcription can start from several
points.

Interestingly, the TSSs determined by Polson and Blackman
[30] do not correspond with those present in the FULL-

Malaria database (-260 and -334 nucleotides; blue arrows in
Figure 6c). The MAPP profile adjacent to the TSS at -334
nucleotides indicates that a CP may be present in this region
(peaks between -320 and 370 nucleotides), illustrating that
MAPP predictions can help to consolidate and explain con-
flicting experimental data. These data suggest that several
transcription start areas may be present upstream of this

TSS predictions are consistent with independent experimental dataFigure 6
TSS predictions are consistent with independent experimental data. MAPP predictions for the same strand as the studied gene are plotted 
above the genome annotation. (a) PF11_0009; (b) PF13_0011; (c) PF14_0323. The MAPP profile ranges from 0 to 1 (maximum). Red rectangles represent 
genes and arched lines represent introns. The genome is represented by the black line upon which each gene is centered. Blue arrows above the genome 
line represent TSSs from the FULL-Malaria database, while black arrows below the genome line are those that have been identified in other studies. 
Numbers above these arrows are the number of multiple TSS that could not easily be distinguished at the scale with individual arrows. In all cases, only 
one DNA strand is shown and directionality can be inferred from the direction of TSS arrows. The scale is given between the genome and the MAPP 
profile and is zeroed at the translation start site of the gene. In (c), the combined regions represented by the parentheses contain 47 individual TSSs. Those 
TSSs between the start codon and -80 nucleotides predominantly give rise to unspliced transcripts, while those in the region further upstream (to -172 
nucleotides) give rise to correctly spliced mRNA.
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gene. Upstream of the illustrated region, there are no further
MAPP predictions with Msc >0.85 for greater than 2,000
nucleotides (in the upstream region of the adjacent gene).

MAPP as an annotation tool
We generated MAPP predictions for every nucleotide position
in the P. falciparum genome (v2.1.4) to demonstrate some
applications of MAPP on a genomic scale. In this section we
discuss, on the one hand, several examples where MAPP gives
us an insight into the underlying biology, and, on the other
hand, some cases where the underlying biology can explain
some unusual MAPP predictions. In all cases, we illustrate the
forward strand prediction in green and the reverse strand
prediction in black.

Application 1: bidirectional core promoters
A bidirectional promoter is defined as the region (shorter
than 1,000 bp) between two neighboring genes that are tran-
scribed in opposite directions. Although these promoters
have been described in human and other species, little is
known as yet about their role and structure. Some correla-
tions have, however, been found between bidirectional pro-
moter regulated genes and human diseases [36] and there is
also evidence that genes under such control may be co-regu-
lated [37]. We identified 220 bidirectional promoter regions
in the genome of P. falciparum, with a further 249 pairs of
genes separated by less than 1,500 bp. Here we present two
examples with diverse TSS arrangements as predicted by
MAPP. While we usually consider just the MAPP profile on
the strand containing the gene of interest, here we must ana-
lyze profiles on both strands to deduce the promoter struc-
ture.

The MAL8P1.15 and PF08_0011 genes are located on oppo-
site DNA strands and share 692 bp 5' to their gene start sites
(Figure 7a(i)). Peaks in the MAPP profiles are found just
upstream of each of the gene start codons (MAL8P1.15 from -
96 to -156 nucleotides; PF08_0011 from -83 to -162 nucle-
otides], suggesting that two distinct CPs are present in this
region. As a result of MAPP prediction symmetry, we cannot
establish which putative promoter is associated with which
gene; however, expressed sequence tag (EST) assembly data
from PlasmoDB [38] confirm that these genes are divergently
transcribed. Furthermore, their transcripts arise from the
regions predicted by MAPP, which suggests that the promoter
for each gene is that closest to it (data not shown).

A different arrangement is found for the MAL8P1.101 and
MAL8P1.102 genes (Figure 7a(ii)). Here, the MAPP profile
has a single major peak in the center of the region
(MAL8P1.101 from -558 to -585 nucleotides; MAL8P1.102
from -435 to -466 nucleotides) with a minor peak just
upstream in the case of the forward strand. As in the previous
example, EST data show that these genes are divergently
transcribed, and agree with the MAPP profile. While predic-
tions on complementary strands contribute to the promoter

signal, clearly the structure of this region is such that a single
CP is shared by the two genes.

These two diverse arrangements correspond with two differ-
ent biological phenomena. In the first case MAL8P1.15 and
PF08_0011 have similar temporal expression patterns as
determined from microarray experiments [39,40], while in
the second case the two genes are not co-transcribed. One
may speculate that this is due to the presence of a single initi-
ation site in the latter example, which may exclude the possi-
bility of contemporary transcription of these two genes by
separate DNA polymerase complexes. This simple example
illustrates how MAPP can be used to distinguish between dif-
ferent architectures of P. falciparum bi-directional promot-
ers. We envisage that such information may be exploited to
devise novel avenues for future research on gene transcrip-
tional control in this organism.

Application 2: unusual MAPP predictions illustrate biological 
phenomena
When screening at a genomic scale we see many unusual
MAPP predictions, which is to be expected given our dearth of
knowledge of regulatory regions in P. falciparum. We wished
to assess if some of these unusual predictions were indicative
of transcription-related phenomena.

The first example concerns the var gene introns. The multi-
gene var family contains approximately 60 members and is of
particular interest because var genes are regulated by a com-
plex mechanism of allelic exclusion (only one of these genes is
expressed at a time, while the rest are repressed) [41,42]
involving interaction between upstream and intronic ele-
ments [43]. The MAPP profile in all var introns is very dis-
tinctive and is conserved among all members of the family
(examples for six var genes are shown in Figure 7b(i)). Within
the var intron, three different zones can be distinguished by
the MAPP profile (Figure 7b(ii)). An unusually large region of
high Msc is evident in the central part of the var intron occu-
pying a region of approximately 400-600 nucleotides. The
surrounding region is characterized by very low values for
Msc. This agrees with experimental evidence that has shown
that the var intron indeed contains a promoter in the central
region [42,44], and that transcripts of different lengths arise
from multiple TSSs [42].

A second example concerns genomic regions that are located
downstream with respect to genes on either strand (that is,
between convergently transcribed genes). These regions are
not expected to contain a classical promoter; however, in
many cases, strong MAPP predictions are observed. We
hypothesized that such predictions may be explained by anti-
sense transcription, a phenomenon shown to be relatively fre-
quent in P. falciparum [45-47]. As antisense transcripts are
transcribed by the RNA polymerase II complex in P. falci-
parum [47], it is logical to expect TSSs for antisense tran-
scripts to be identified by MAPP even if antisense TSSs were
Genome Biology 2008, 9:R178
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not part of the training set. Figure 7c shows the MAPP profiles
in the 3' regions of the three genes shown by Patankar et al.
[45] to produce antisense transcripts (PF14_0323 (cam),
PF14_0102 (rap-1) and PF10_0345 (msp-3)). In the case of
cam (Figure 7c(i)) and rap-1 (Figure 7c(ii)) genes, the 3'
region is shared with a gene on the opposite strand and strong
MAPP signals are seen. For the msp-3 (Figure 7c(iii)) gene,
there are 2,000 nucleotides between the stop and the start
codons of the two adjacent genes on the same strand. Here, a
MAPP peak is found approximately 150 nucleotides after the
stop codon.

In addition, we examined the occurrence frequency of 3' pre-
dictions in the whole genome. We found that 40% of genes
had a MAPP prediction with a Msc ≥ 0.98 in the 1,000 nucle-
otides 3' to the annotated stop codon. Intriguingly, the distri-
bution of these MAPP peaks is not random as analysis of the
mean MAPP profile showed a peak between 400 and 600
nucleotides from the stop codon, similar to that observed in 5'
predictions. Ultimately, the presence of strong MAPP predic-
tions in the 3' regions suggests that such signals may indeed
identify the location of TSSs for antisense transcripts.

MAPP as an annotation toolFigure 7
MAPP as an annotation tool. All figures are screenshots taken from Artemis [56]. Gene names and the Msc scale have been added manually and all 
annotated exons have been colored red. MAPP profiles in green represent forward strand predictions while those in black represent reverse strand 
predictions. (a) MAPP profiles for both DNA strands in two bidirectional promoter regions: (i) between the divergently transcribed MAL8P1.15 and 
PF08_0011 genes; (ii) between the divergently transcribed MAL8P1.101 and MAL8P1.102 genes. (b) (i) MAPP profiles of 6 var gene introns; (ii) detailed 
MAPP profile of the 891 nucleotides intron of var gene PFA0765c. (c) MAPP profiles of the 3' regions of three genes identified as having anti-sense 
transcripts in [45]. These MAPP predictions are on the antisense strand for each gene: (i) PF14_0323: cam; (ii) PF14_0102: rap-1; (iii) PF10_0345: msp-3.
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Conclusion
The identification of CPs in eukaryotic genomes is one of the
major challenges for computational biologists due to the com-
plex nature of promoters and high variability in their organi-
zation and sequences. This is particularly true for the highly
AT rich P. falciparum genome. Several studies have been car-
ried out aimed at identifying sequence elements involved in
promoter activity or to specify minimal promoter elements,
but to date even the most basic details of the structure of P.
falciparum promoters have remained elusive. In this paper,
we have shown that by using physicochemical and composi-
tional properties of the DNA molecule, it is possible to train a
predictor (MAPP) that identifies potential transcription start
sites in the genome of P. falciparum. We showed that MAPP
predictions strongly agree with available experimental data
for well studied promoters and reveal diverse arrangements
and architectures for promoter regions. Our results add to a
growing body of evidence that a physicochemical code for
eukaryotic genomes plays a crucial role in CP recognition.

Materials and methods
Datasets
We mapped 5' RACE ends for P. falciparum full length
cDNAs [19] were mapped to the genome (v2.1) by the EST
mapping algorithm Exonerate [48] using a score cutoff of
500. We mapped 9,269 out of 12,083 5'fragments to genomic
locations. All 5' fragments that mapped to within 50 nucle-
otides of the 5' clone end were considered valid mappings.
TSSs were defined as the most 5' base from each clone that
mapped to the genome. Sequences that matched partially
with the genomic sequences, those for which the 5' nucleotide
mapped within an exon or intron, and those with duplicate
TSS positions were disregarded. The region from -100 nucle-
otides to +49 nucleotides around each TSS was extracted,
yielding a dataset of 3,553 non-redundant sequences.
Sequences containing wild card characters were disregarded
to leave 3,546 sequences.

Our negative dataset consisted of exonic sequences and inter-
genic sequences. Sequences were downloaded from Plas-
moDB v5.4 [38]. The exonic dataset was generated from all P.
falciparum exons of length longer than 150 nucleotides. For
the intergenic sequence dataset, we examined the distribu-
tion of 5' untranslated region lengths (calculated from TSSs
mapped previously with exonerate) and used a value above
the 95th percentile (2,000 nucleotides) as a minimum dis-
tance in which TSSs are unlikely to be present. We then
extracted all intergenic regions from the genome that were
more than 2,000 nucleotides distant from any coding region
in either direction on either strand. For both the exonic and
intergenic datasets, all possible contiguous 150 nucleotide
sequences were generated from each sequence. This gave
13,196 non-redundant exonic sequences and 3,407 non-
redundant intergenic sequences. We randomly selected 3,407
exons from the exonic dataset and the rest were disregarded.

Selection of physicochemical DNA properties
Values for physicochemical DNA properties were obtained

from the International Centre for Genetic Engineering and

Biotechnology [49,50] and from the Berkeley Drosophila

Genome Project [51]. In order to eliminate redundancies, we

calculated correlations between properties. To allow compar-

ison of di- and tri-nucleotide properties, we considered the

mean value of each property for all possible hexamers. Using

these 6-mer values, we then calculated correlation coeffi-

cients (r) between all properties to generate a distance matrix

(Additional data file 6). For each row (property) of this

matrix, the average absolute r ( ) was calculated. The

matrix rows were then ordered by ascending . Starting

from the first row (that with the lowest ), we removed all

those properties for which the correlation coefficient with this

property was greater than 0.9. We then iterated for each row,

until no further correlations greater than 0.9 were found. This

resulted in the removal of 28 highly correlated properties. LD

parameter tetra-nucleotide values were obtained from E Bul-

trini (personal communication).

Training/test datasets
We used 1,100 CP, 2,200 EX and 2,200 IG sequence profiles
to train each SVM. The sequences were all chosen at random.
All sequences in the region from 3,800 bp downstream to
3,500 bp upstream of PF13_0011, in the region 5,000 bp
upstream of PF14_0323 and in the region from 1,921 bp
downstream to 3,000 bp upstream of PF11_0009 were
excluded from the training set. The first test dataset (Test 1)
contained 610 CP, 302 IG and 302 EX sequences and the sec-
ond one (Test 2) contained 1,834 CP, 910 IG and 910 EX
sequences.

Statistical quantities
The statistical values used to assess performance throughout
this paper are those used frequently in information retrieval:

where TP, FP, TN and FN are the number of true positives,
false positives, true negatives and false negatives, respec-
tively.
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r
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SVM training and feature selection
The libSVM library and additional tools were downloaded
from [52,53]. For each sequence in each dataset (CP, EX and
IG), 33 physicochemical property profiles were generated
from the corresponding polynucleotide's property score at
every nucleotide position in a sequence. Thus, each sequence
of length n and property poly-nucleotide size, w, was trans-
lated into a profile vector of length (n - (w + 1)) for each prop-
erty. Profiles were then normalized to the range 0-1.

A wrapper-type feature selection algorithm was used for
training 33 SVMs with radial bias function (RBF) kernels
using each of the 33 sets of profiles. Each position (feature) in
a set of profiles was ranked individually according to a score
as described in [54] and a series of trial feature sets were gen-
erated by iteratively halving the number of top features used.
This method does not account for interdependencies between
features. This led to Qlog2 (n)N trial feature sets, where n is the
total number of features. For each trial set of features, an
exhaustive search for the optimal parameters of the RBF ker-
nel was performed using fivefold cross-validation. We chose
the feature combination that used the fewest features, yet was
within 1% of the highest obtained accuracy. The feature selec-
tion was carried out by a modified version of the fselect.py
script downloaded with the libSVM tools.

Each trained SVM outputs a score between 0 and 1. We used
the outputs of the top n best performing SVMs {n|n ∈ Z, 1 ≤ n
≤ 24} as input vectors for a final RBF kernel SVM. Fivefold
cross-validation was used to determine the optimal parame-
ters for training and the -b option was used to provide proba-
bility estimates as output. A flow diagram illustrating the key
points of the training and prediction processes is given in
Additional data file 2.

MAPP positional bias
We generated a prediction for every nucleotide position from

- 400 to + 200 nucleotides around each TSS in the Test 2

dataset. At each position in the 601 nucleotide window, we

calculated the average Msc ( ) for all sequences. We then

counted the number of nucleotides adjacent to TSSs for which

 remained above the mean +1 standard deviation.

We also generated a prediction for every nucleotide position

from -3,000 to +1,200 nucleotides around all P. falciparum

gene start sites. At each position, we calculated the average

Msc ( ) for all sequences. The TSSs distribution was gen-

erated from the 3,546 TSSs selected previously and from the

distance to the closest ATG start codon for each of the FULL-

Malaria flcDNA ends that mapped to coding regions.

MAPP evaluation by EGASP criteria
Each gene with at least one TSS in the Test 2 dataset was
examined. The region assessed ranged from 100 nucleotides
upstream of the most 5' TSS to the gene stop codon for each
gene. For each region, a MAPP score for each nucleotide was
generated (MAPP profile). MAPP predictions were then clus-
tered to allow simpler evaluation using EGASP criteria. Posi-
tive predictions were those positions that had a Msc ≥ t, where
t is the chosen threshold. Any positive predictions that were
separated by ≤ 50 nucleotides were placed in the same cluster
and the mean position of each cluster was then treated as a
single positive prediction. At low thresholds, this method
results in decreased specificity as clusters become too broad.
We thus clustered predictions at all Msc thresholds (t) from
0.3 to 1 in increments of 0.1.

We performed the EGASP assessment [33] on all MAPP clus-
tering thresholds. To evaluate true positive/false positive pre-
dictions, we used the evaluation criteria devised for the
promoter prediction section of EGASP. We used window sizes
(w) of ± 50 and ± 100 nucleotides to evaluate performance.
The region examined for each gene was from w nucleotides
upstream of the most 5' TSS to the gene stop codon. For each
test sequence, true positive, false positive and false negative
predictions were calculated. A prediction was considered a
true positive if found within ± w nucleotides of a known TSS.
Importantly, only one true positive prediction per TSS is
counted, even if multiple predictions are present. Every pre-
diction that fell outside TSS ± w nucleotide regions was con-
sidered a false positive. We calculated the PPV, sensitivity and
F (harmonic mean) for each Msc threshold by the formulae
given previously.

EP3 predictions were generated using the downloadable Java
application. We performed a whole genome prediction using
the Genome size <200 Mbp setting. Each site highlighted by
EP3 was considered a prediction.

Availability
Forward and reverse strand whole genome MAPP predictions
are available online as gBrowse tracks in version 5.4 of Plas-
moDB [38]. Flat files, genome-wide clustered predictions,
SVM models and prediction scripts are available at [55] or
upon request from the authors.

Abbreviations
AUC: area under a receiver operating characteristic curve;
CP: core promoter; EGASP: Encode Genome Annotation
Assessment Project; EST: expressed sequence tag; EX: exonic
genomic DNA; flcDNA: full-length cDNA; IG: intergenic
genomic DNA; MAPP: Malaria Promoter Predictor; Msc:
MAPP score; PPP: promoter prediction program; PPV: posi-
tive predictive value; RBF: radial bias function; SVM: support
vector machine; TSS: transcription start site.
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Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing the
experimentally determined DNA physicochemical properties
used. Additional data file 2 provides MAPP flow diagrams
illustrating the key steps in the individual SVM training/fea-
ture selection and MAPP prediction processes. Additional
data file 3 provide MAPP profiles around experimentally
mapped TSSs. Additional data file 4 presents MAPP predic-
tions on both DNA strands. Additional data file 5 is the MAPP
analysis around independently identified TSSs. Additional
data file 6 presents correlations between DNA physicochemi-
cal properties.
Additional data file 1Physicochemical properties, property numbers, and data source for eachPhysicochemical properties, property numbers, and data source for each.Click here for fileAdditional data file 2Key steps in the individual SVM training/feature selection and MAPP prediction processesKey steps in the individual SVM training/feature selection and MAPP prediction processes.Click here for fileAdditional data file 3MAPP profiles around experimentally mapped TSSsThe averaged MAPP profiles in the region from -400 to +200 nucleotides around TSSs possibly highlight a transcription start area.Click here for fileAdditional data file 4MAPP predictions on both DNA strandsExplanation of the strand symmetry and shift observed in MAPP profiles.Click here for fileAdditional data file 5MAPP analysis around independently identified TSSsThe upstream regions of genes for which TSSs have been mapped experimentally and independently of the Full-Malaria database.Click here for fileAdditional data file 6Correlations between DNA physicochemical propertiesThese two color-coded matrices represent the correlations between physicochemical properties. On top is the matrix for all properties, while below is that for the reduced set of non-redundant properties used for the predictor.Click here for file
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