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The sequential nature of the reactions in metabolic pathways

means that they can be modeled in the form of a graph

(network) of enzymes and chemical transformations, and

network theory can be used to represent and understand

metabolism [1,2]. The connected collection of metabolic

pathways, describing the set of all enzymatic interc-

onversions of one small molecule into another, is defined as

the metabolic network of an organism (Figure 1a).

The most commonly used network representations are

‘metabolite-centric’. They consider metabolites as the nodes

of the graph and two metabolites are linked if one can be

converted into the other by an enzymatic reaction (Figure 1b,

left). An alternative network representation is ‘enzyme-centric’.

It considers the enzymes as nodes and links enzymes that

catalyze successive reactions (Figure 1b, right). Although

several studies have provided insights into the structure and

evolution of a metabolic network, very few have addressed

the influence of environment on metabolic network struc-

ture in species from diverse environmental conditions. The

availability of many completely sequenced genomes means

that metabolic-network analysis can now be extended from a

few model organisms to species from different branches of

the tree of life and living in very different environments. This

should enable the elucidation of general principles

underlying metabolic networks.

Two recent studies, published in the Proceedings of the

National Academy of Sciences by Eytan Ruppin and colleagues

(Kreimer et al. [3] and Borenstein et al. [4]), provide

important insights into links between the environment of an

organism and the structure of its metabolic network. Using

data from a large number of bacterial metabolic networks,

Kreimer et al. address the question of how the topologies of

the metabolic networks from different species reflect both

genome size and the diversity of environmental conditions

the species would encounter. Borenstein et al. set out to

identify the ‘seed set’ - that set of small molecules that are

absolutely needed from the external environment - of each

species and how this seed set differs across species from

different environments.

AA  nneettwwoorrkk  vviieeww  ooff  mmeettaabboolliissmm
Several studies have addressed a wide-range of questions

using network representation of small-molecule metabolism

[5-7]. For instance, at the structural level, the metabolic

network of an organism has been shown to have a scale-free

topology with few nodes (for example, pyruvate or coenzyme

A) reacting with many other substrates [8,9]. A distinguis-

hing feature of such scale-free networks is the existence of a

few highly connected metabolites, which participate in a very

large number of metabolic reactions. By definition, when a

large number of links integrate several substrates into a

single highly connected component, fully separated modules

will not exist. This has led to the notion of hierarchical

modular structures within the fully connected metabolic

network, where a ‘module’ is defined as a group of nodes

that are more connected to each other than to other nodes in

the network [10].

Kreimer et al. [3] have carried out a comprehensive, large-

scale characterization of metabolic-network modularity

(defined as in [11]) using 325 prokaryotic species with



sequenced genomes and metabolic networks in the KEGG

pathway database [12]. They found that network size was an

important topological determinant of modularity, with

larger genomes exhibiting higher modularity scores (that is,

a higher proportion of edges in the network forming part of

modules than would be expected by chance). In addition,

several environmental factors were shown to contribute to

the variation in metabolic-network modularity across species.

In particular, the authors found that endosymbionts and

mammal-specific pathogens have lower modularity scores

than bacterial species that occupy a wider range of niches.

Moreover, among the pathogens, those that alternate

between two distinct niches, such as insect and mammal,

were found to have relatively high metabolic-network

modularity. This supports the notion previously put forward

by Parter et al. [13] that variability in the natural habitat of

an organism promotes modularity in its metabolic network.

Kreimer et al. [4] also reconstructed likely ancestral states,

and found that modularity tends to decrease from ancestors

to descendants; they attribute this to niche specialization

and incorporation of peripheral metabolic reactions.

In line with the above effects of environmental diversity on

network structure, Pal et al. [14] observed that bacterial

metabolic networks grow by retaining horizontally acquired

genes (genes acquired from other species) involved in the

transport and catalysis of external nutrients, and that evolu-

tionary changes in networks are primarily driven by adap-

tation to changing environments. Accordingly, horizontally

transferred genes were found to be integrated at the

periphery of the network, whereas the central parts remain

evolutionarily stable. Indeed, genes encoding physiologically

coupled reactions were often found to be transferred

together, frequently in operons. This suggests that bacterial

metabolic networks evolve by direct uptake of peripheral

reactions in response to changing environments [14].

In this regard, a recent genome-wide study in yeast found

that central and highly connected enzymes evolve more

slowly than less connected ones and that duplicates of highly

connected enzymes tend to have a higher likelihood of

retention [15]. Enzymes carrying high metabolic fluxes

under natural biological conditions were also found to

experience greater evolutionary constraints. Interestingly,

however, it was shown that highly connected enzymes are no

more likely to be essential to survival than the less connected

ones [15].

The functional and evolutionary modularity of the Homo

sapiens metabolic network has also been investigated from a

topological point of view and was shown to be organized

with a highly modular, ‘core and periphery’ topology [16]. In

such a structure, the core modules are tightly linked together

and perform basic metabolic functions, whereas the

peripheral modules only interact with few other modules

and accomplish relatively independent and specialized

functions. Interestingly, as in bacteria and yeast, peripheral

modules were found to evolve more cohesively and faster

than core modules [16].

LLiinnkkiinngg  eexxtteerrnnaall  eennvviirroonnmmeenntt  ttoo  tthhee  mmeettaabboolliicc
cciirrccuuiittrryy
Microorganisms constantly monitor their surroundings for

the availability of nutrients and other chemicals, using both
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FFiigguurree  11
Metabolic networks. ((aa)) A set of related metabolic reactions can be
represented as a network. M1, M2, and so on are metabolites and E1, E2,
and so on are the enzymes that catalyze the conversion of one metabolite
into another. The arrows represent the direction of the reaction. ((bb))
Different ways of representing a metabolic network: left, with the
metabolites as nodes; right, with the enzymes as nodes. ((cc)) Representation
of seed compounds in a hypothetical metabolic network. The metabolic
boundary of the organism is represented by the gray oval. Metabolites
(the nodes in the network) are represented by colored circles. The set of
compounds that cannot be internally synthesized but must be obtained
from the environment is referred to as the seed set, and is represented
here as red circles. Seed metabolites form the interface between the
environment and the metabolic system and link the metabolic habitats of
an organism with its core metabolic processes. In this hypothetical
network, it is possible to reach any of the internal nodes (open green
nodes) from any other node except those that have to be obtained from
the environment (blue arrows).
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external and internal sensors to respond dynamically to

environmental changes [17]. Integration of the external

environment with metabolism occurs through the import of

compounds from the environment and results, for example,

in a transcriptional response or an allosteric interaction with

an enzyme [18-20]. In the second of the recent studies from

Ruppin and co-workers, Borenstein et al. [4] propose a

graph-theoretical approach to define these exogenously

acquired compounds - the seed set of an organism - and

have identified their repertoire across the tree of life (Figure 1b).

This is one of the most comprehensive studies so far that links

organisms’ metabolic circuitry with their environment.

The authors represent the metabolic network of a given

species as a directed graph with nodes representing metabo-

lites and edges corresponding to the linking reactions

converting substrates to products. Using this, they identify

the maximal set of metabolites that can be synthesized from

a particular precursor metabolite. This graph-based repre-

sentation of the metabolic network then enabled them to

discover the seed-set compounds for each of the 478 pro-

karyotic species with available metabolic networks in the

KEGG database [12]. On the whole, they found that about 8-

11% of the compounds in the metabolic network of an

organism correspond to the seed set. Their predictive ability

to correctly identify seed compounds reached a precision of

95% when benchmarked against a set of compounds

experimentally characterized as being taken up from the

environment by the rickettsia that cause the disease

ehrlichiosis in humans and animals. Recall values (defined

as the percentage of correctly identified seeds of all exoge-

nously acquired compounds) based on the same dataset

were low, suggesting that other factors might have a role in

the identification of seed compounds of an organism, such as
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Box 1. Models of metabolic pathway evolution

The most influential models of metabolic pathway evolution have been the ‘retrograde model’ proposed by Horowitz in

1945 [24] and the ‘patchwork model’ proposed by Ycas in 1974 [25] and later improved by Jensen in 1976 [26].

The retrograde model

In the retrograde model, pathways evolve bottom-up from a key metabolite, which is assumed to be initially abundant in

the ancestral condition. The model presupposes the existence of a chemical environment in which both the key

metabolite and potential intermediates are available. An organism primarily dependent on molecule Z will use up

environmental reserves of the metabolite to the point at which its growth is restricted; in such an environment, an

organism capable of synthesizing molecule Z from environmental precursors X and Y will have a selective advantage.

Any natural variant evolving an enzyme that catalyzes this synthesis will have a fitness advantage in such an environ-

ment. As a result, with the drop in environmental concentration of X or Y, the process will be repeated, with the similar

recruitment of further enzymes.

The retrograde model also proposes that the simultaneous unavailability of two intermediates (say X and Y) would favor

symbiotic association between two mutants, one capable of synthesizing X and the other of synthesizing Y from other

environmental precursors. One of the major assumptions of this model is that the evolution of metabolic pathways occurs in

an environment rich in metabolic intermediates, and it therefore cannot explain their evolution during major environmental

transitions in the history of life such as, for example, the depletion of organic molecules from the environment [24,27]. The

retrograde model also fails to explain the development of pathways that include labile metabolites, which could not have

accumulated in the environment for long enough for retrograde recruitment to take place.

The patchwork model

In light of these limitations, Ycas [25] and Jensen [26] proposed the patchwork model of metabolic pathway evolution, in

which pathway evolution depends on the initial existence of broad-specificity enzymes. In its original formulation [25],

such enzymes catalyze whole classes of reactions, forming a large network of possible pathways. The broad specificities

would mean that many metabolic chains, synthesizing key metabolites, may have existed, although short and incomplete

compared with the pathways observed today. The duplication of genes in such pathways (advantageous because

increased levels of the enzyme would generate more of the key metabolites), followed by their specialization, would

account for extant pathways. Jensen [26] subsequently pointed out that the fortuitous evolution of a novel chemistry,

together with the biological leakiness of such a system, could allow the production of a key metabolite from a novel

intermediate, even if it is several enzymatic steps away from the original product.



the incompleteness of the metabolic network or ways of

acquiring an exogenous compound that cannot be captured

by currently available metabolic maps. The resulting

compilation, which represents the overall static metabolic

interface of each organism characterizing its biochemical

habitat, enabled Borenstein et al. to trace the evolutionary

history of both metabolic networks and growth environments.

When the seed sets identified in each organism were

analyzed in detail, species living in variable environments

were found to have more versatile seed sets, in terms of

variability of size and diversity of composition. On the other

hand, obligate parasites like Buchnera aphidicola and those

microorganisms, such as archaea, that live in extreme and

narrowly defined environments, were found to have much

smaller seed set sizes. These results suggest that although

organisms surviving in predictable environments can take

up many compounds from their surroundings, this

capability is still significantly smaller than in organisms that

have to survive in a wide range of niches.

Borenstein et al. [4] carried out a phylogenetic analysis of

the seed sets across different taxa, which suggested not only

that an accurate tree of life can be reconstructed from them

but that such a tree can provide insights into the evolu-

tionary dynamics of seed compounds. In particular, the

study revealed that novel compounds can be integrated into

the metabolic network of an organism as either non-seeds or

seeds, and that seed compounds are more likely to be lost

during evolution than non-seed compounds. From the

comparison with ancestral metabolic networks, Borenstein

et al. [4] suggest that the transition from seed to non-seed

compound occurs 2.5 times more often than the reverse.

This suggested that, of the two main current hypotheses of

metabolic network evolution - the ‘patchwork’ and ‘retrograde’

models (see Box 1) - the retrograde model, in which

pathways evolve in a direction opposite to the metabolic

flow, might best explain the observed events. However, the

observations of Borenstein et al. [4] on the high overall rate

of integration of non-seed compounds and the relatively

high rate of transition of non-seed compounds into seed

metabolites, suggest that some aspects of network evolution

could be explained by the patchwork and other models. The

results highlight the fact that these models are not mutually

exclusive, but complementary, and might have contributed

to pathway evolution to different extents [21,22].

It should be noted that there are limitations to studies such

as those reported here, in that the incompleteness of meta-

bolic maps, the reversibility of reactions, possible alternative

mechanisms controlling metabolic import, and the ignoring

of the distinction between catabolic and anabolic pathways

can all potentially result in false positives in the identified

seed sets. Nevertheless, it is exciting to note that seed sets

obtained using the approach developed in these studies not

only reflect the metabolic environments of the species

themselves but also provide insight into their natural

biochemical habitats - the union of all the metabolic

environments an organism encounters.

Hence, such approaches can be exploited to study the

interaction and association of microbes with other species

thriving in similar habitats. This may help in the identifi-

cation of host-parasite and symbiotic relationships between

organisms and also enable the prediction and design of

drugs that can precisely target an organism of interest

without adversely affecting the host. With the availability of

metagenomic data ranging from viromes to biomes [23], we

anticipate that similar approaches can be applied to study

metagenomic environments to decipher species relationships

and dependencies occurring in large ecological niches, thereby

providing insights into ecological imbalances or tradeoffs.
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