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Abstract

We present an approach for identifying condition-specific regulatory modules by using separate
units of gene expression profiles along with ChIP-chip and motif data from Saccharomyces cerevisiae.
By investigating the unique and common features of the obtained condition-specific modules, we
detected several important properties of transcriptional network reorganization. Our approach
reveals the functionally distinct coregulated submodules embedded in a coexpressed gene module
and provides an effective method for identifying various condition-specific regulatory events at high

resolution.

Background

Transcription regulation is a starting point for controlling a
variety of biological processes, such as cell cycle progression
and adaptive responses to environmental stimuli. Moreover,
the regulation is realized by intricate regulatory gene net-
works that are mainly controlled by transcription factors. In
order to appropriately process and respond to environmental
changes, cells are likely to use distinct transcriptional regula-
tory networks by detecting specific features of complex envi-
ronmental stimuli. Through altering the activities and targets
of transcription factors depending on the cellular conditions,
rewiring of transcriptional regulatory network occurs to
adapt to various stimuli or initiate cellular programs [1].
Therefore, identifying the sophisticated architecture of tran-
scriptional regulatory networks and further deciphering the
mechanisms of transcriptional rewiring in response to vari-

ous conditions would reveal the fundamental aspects of the
mechanisms involved in the maintenance of life and adapta-
tion to new environments.

Recently, many studies attempted to address these challenges
by examining the transcriptional regulatory networks of Sac-
charomyces cerevisiae from various complementary per-
spectives. Luscombe et al. [2] analyzed the dynamics of
transcriptional networks by using known transcriptional reg-
ulatory information and gene expression profiles of five spe-
cific environmental and developmental conditions. They
reported that a majority of regulatory interactions among
transcription factors and genes are highly condition specific,
based on the observation that many of the transcription fac-
tors that regulated a large number of target genes in a certain
condition did not maintain their regulation in other
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conditions. They also suggested that the topological proper-
ties of the networks differ considerably depending on the
types of the conditions, classified as exogenous (for example,
environmental stress) and endogenous (for example, cell
cycle and sporulation). Harbison et al. [3] attempted to iden-
tify the dynamic nature of the transcriptional regulatory net-
works by conducting genome-wide binding assays for 203
transcription factors under various conditions. They found
that, for most of the examined transcription factors, tran-
scription factor binding to a regulatory sequence is highly
dependent on the environmental condition of the cells. From
these results, it is evident that dynamic alterations in the
transcriptional network occur in response to changes in cellu-
lar conditions, although the actual mechanisms of rewiring
and the detailed descriptions of the condition-specific regula-
tory networks remain to be explored.

To study all these aspects, we need to identify reliable condi-
tion-specific transcriptional regulatory modules. Identifica-
tion of transcriptional regulatory modules, that is, gene
groups sharing common regulatory mechanisms, is a major
step toward deciphering the dynamic cellular regulation sys-
tem more concretely. Many previous studies strived to iden-
tify the transcriptional regulatory modules and contributed to
the detection of the links between gene expression and gene
regulation by suggesting coexpressed gene modules control-
led by their own regulators in various manners [4-6]. How-
ever, most studies assumed that a transcriptional regulatory
network is static and usually defined coexpressed gene groups
as the genes displaying similar expression profiles across
multiple conditions; this viewpoint prevented the detection of
the distinct features of condition-specific regulation.
Although other studies employed condition-specific
approaches [7-11], they did not clearly show the actual rewir-
ing mechanisms of the condition-specific regulatory networks
in response to external or internal signals. Moreover, most of
them also presumed that the similarity in expression profiles
among several genes implies their coregulation. In fact, strat-
ification based on expression similarity obscures the tran-
scriptional regulation program in many cases because an
environmental or biological condition can activate multiple
processes in parallel, and similar expression patterns can be
elicited under multiple alternative regulatory mechanisms

[12].

Here, we present an approach for identifying condition-spe-
cific regulatory modules in high resolution by integrating
ChIP-chip, mRNA expression and known transcription factor
binding motif data. By investigating diverse aspects of the
identified modules and their regulators, we tried to dissect
the dynamic properties of the condition-dependent regula-
tory networks and their rewiring mechanism. In this study,
we adopted two distinctive strategies to reveal the dynamic
transcriptional regulatory modules in detail. First, we identi-
fied the modules from each of the selected cellular conditions
independently and then compared them in order to reveal the
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detailed and distinct features of the reorganized transcrip-
tional regulatory network specified in each condition. Our
results included various examples of regulatory events occur-
ring in specific conditions that describe the reorganization of
the transcriptional regulatory program depending on the
change in stimuli conditions. Second, we identified multiple
coregulated submodules from each of the coexpressed gene
modules in high resolution. In order to obtain coregulated
gene groups, we identified small coexpressed gene groups -
initial module candidates (IMCs) - that comprised genes
sharing common transcription factor binding evidence and
employed them to identify the transcriptional regulatory
modules. By considering the notion that the same expression
can be activated through many independent transcriptional
regulatory programs [12], this bottom-up approach allowed
the detection of the local regulatory mechanisms that affect
only a part of the entire coexpressed genes.

Through specialized strategies, we identified various condi-
tion-specific regulatory modules and their designated tran-
scription factors in high resolution by using gene expression
data obtained under different experimental conditions: heat
shock, nitrogen depletion and mitotic cell cycle [13,14].
Excluding the treatment for cell cycle synchronization, the
cell cycle condition can be regarded as a normal condition
(YPD medium) with no limitation in cell growth and prolifer-
ation. The two stress conditions - heat shock and nitrogen
depletion - were selected in order to investigate the distinct
effects of environmental stress; the former elicits rapid and
massive alterations in gene expression, while the latter is a
prolonged nutrient-limiting condition. Although the regula-
tory modules from the three conditions shared some func-
tional modules, most of them displayed unique functional
properties specific to each condition due to the rewiring of the
transcriptional regulatory network. In addition, many of the
functional gene groups that exhibited distinct expression pro-
files in other conditions were coexpressed in a certain condi-
tion. We also investigated the distinguished condition-
specific regulatory roles of the transcription factors by classi-
fying them based on the degree and the manner in which they
switch their target genes. Among the results obtained, many
clear cases indicated that target switching by a transcription
factor depending on the change in conditions entailed altera-
tion of transcription factor combination and nucleosome
occupancy on the promoters of the condition-specific target
genes; these provided clues to the condition-specific rewiring
mechanisms of the dynamic transcriptional regulation pro-
grams. We further examined the condition-specific features
of the specialized regulatory networks by investigating the
structure of the networks among the transcription factors and
identifying the feed-forward loops (FFLs). We found that,
compared to the cell cycle condition, the stress conditions
required a wider propagation of regulatory signals and a sub-
stantially larger number of FFLs. Finally, through a case
study on an expression pattern module (EPM), we deter-
mined a novel regulatory mechanism that can explain how
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several different transcription factors can induce similar
expression profiles of their target genes by suggesting a regu-
latory hierarchy among the transcription factors.

Results

Identification of regulatory modules

For the condition-specific analysis, we used three different
gene expression data sets obtained from experiments per-
formed under the heat shock, nitrogen depletion and cell
cycle conditions [13,14]. For each condition, we identified
small regulatory units (IMCs) by using the gene expression
data and ChIP-chip data [3]. Each IMC comprised genes that
are coexpressed under a specific experimental condition and
share the same transcription factor binding evidence, as
determined by ChIP-chip data (Figure 1a). Since the experi-
mental conditions available in ChIP-chip data are not consist-
ent with those in gene expression data, transcription factor
binding evidence in any ChIP-chip data was respected at this
step. Due to the augmented evidence by ChIP-chip data, IMCs
were more informative than simple gene sets that are grouped
by expression similarity alone. Supporting this notion, it has
been reported that splitting the coexpressed genes into
smaller subsets based on prior knowledge can enhance the
identification of new regulatory elements [6]. The similarly
expressed IMCs were grouped together and used as the pre-
cursors of the expression pattern modules (preEPMs; Figure
1b).

In order to detect the plausible regulators of each preEPM,
transcription factor binding information from ChIP-chip data
[3], known motif data from SCPD [15], TRANSFAC [16] and
putative motifs from Harbison et al. [3] were exploited to
detect the regulators of each IMC (Figure 1c). First, we exam-
ined whether the shared transcription factor of an IMC is a
reliable regulator for the IMC. Just the fact that the transcrip-
tion factor was bound to the genes might not necessarily
imply regulation because the gene regulation activity of the
transcription factor depends on the condition or cofactors
[17,18]. Hence, we performed a hypergeometric test to inves-
tigate whether the binding of a transcription factor is associ-
ated with gene expression. The hypergeometric test assessed
the enrichment of the transcription factor-bound genes
among the genes showing expression profiles similar to the
mean expression pattern of the IMC in all yeast genes.
Throughout the test, we filtered out the transcription factors
that were not associated with gene expression. In addition, we
employed the transcription factor binding motif data to iden-
tify additional regulatory elements. For each IMC, we exam-
ined whether a motif was over-represented in the IMC by
using the t-test (see Materials and methods). Similar to the
relationship between transcription factor binding and gene
expression, the presence of a binding site does not guarantee
recruitment of transcription factor nor gene regulation.
Therefore, we filtered out the motifs that were not signifi-
cantly associated with expression pattern in the same manner

Genome Biology 2008, Volume 9, Issue , Article R2

described above. To remove false positives, a motif was con-
sidered as the reliable evidence of transcription factor regula-
tion only when it was qualified by the tests for at least two
IMCs in a preEPM. As a result, more than half of the initial
candidate regulatory evidence was filtered out (Additional
data file 1).

Finally, after discarding the IMCs that did not involve any
confirmed regulators, EPMs were identified by gathering the
retained IMCs in preEPMs. An EPM is defined as a group of
genes that share similar expression profiles under a specific
condition and their regulators that were confirmed by the sta-
tistical examination of the association with the common
expression pattern of the EPM. To each regulator identified
from the IMCs in the EPM, we allocated the target genes by
gathering the genes of the IMCs that had provided confirma-
tory evidence of the transcription factor (Figure 1d). To fur-
ther characterize the distinct coregulated gene subgroups in
an EPM, we analyzed the combination of regulators in the
EPM by examining the overlap level (OL) of their target genes
and subsequently defined the regulator-set modules (RMs). A
regulator set is a set of transcription factors that share many
target genes in an EPM, and the union of their target genes is
considered as the member genes of an RM (Figure 1e).

In order to characterize the genes in the EPMs/RMs and the
target genes of transcription factors, we conducted a func-
tional category enrichment analysis. Briefly, each gene set
was verified for significant enrichment in any of the Gene
Ontology (GO) categories [19] (shown in Additional data files
2 and 11). Interestingly, most of our regulatory modules
(EPMs and RMs) and the target genes of the transcription fac-
tors appeared to have condition-specific functional roles.
Moreover, each RM or a combination of multiple RMs
appeared to represent a functional part of an EPM. We will
discuss the functional enrichment of RMs in detail later in the

paper.

Overall results of module analysis

The module analysis described above revealed that several
EPMs and RMs differed in the average module size (number
of member genes) or in the average number of identified tran-
scription factors depending on the conditions (Table 1). The
average number of member genes per EPM was greater in
stress conditions, namely, heat shock and nitrogen depletion,
whereas that in the cell cycle condition was relatively small.
This indicates that a large number of genes are coexpressed in
response to stress stimuli, whereas a relatively small number
of genes are similarly expressed in response to intrinsic sig-
nals for cell cycle progression. A similar tendency was also
observed with regard to the number of target genes per tran-
scription factor; on average, 97 genes in the heat shock condi-
tion, 78 genes in the nitrogen depletion condition, and 32
genes in the cell cycle condition were found to be regulated by
a transcription factor. This tendency is in agreement with the
result of a previous report on the properties of condition-spe-
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Figure | (see previous page)

Overview of the method. (a) Splitting the genome-wide location (ChIP-chip) data into several coexpressed gene sets. Each of the derived target gene sets
was called an IMC. Each IMC was named after the transcription factor of the ChlP-chip data followed by a serial number. Gray rectangles indicate the
IMCs. Small dots indicate the genes bound to the transcription factor. (b) Generation of preEPMs. The IMCs with similar mean expression patterns were
grouped for further analysis. (c) Detecting the regulators in each IMC. Initially, the over-represented motifs in each IMC were detected by the t-test.
Next, biologically significant motif evidence and ChlP-chip evidence were selected using a test based on the hypergeometric distribution. Subsequently, in
the case of motif evidence, recurrently confirmed motifs in each preEPM were selected. Yellow diamonds and ellipses indicate biologically significant
regulators. Gray diamonds and ellipses represent the regulators that were not qualified by the test. Gray curved lines between the regulators indicate
synergistic pairs. (d) ldentification of an EPM. For each preEPM, the IMCs without a confirmed regulator were eliminated, and the retained IMCs and their
corresponding regulators were arranged. Solid lines indicate motif evidence, and dotted lines indicate ChIP-chip evidence. (e) Identification of an RM.

Regulators with highly overlapped target genes were united to identify an RM.

cific transcriptional regulatory networks [2], which suggested
that a relatively smaller number of target genes are linked to
a transcription factor in the cell cycle condition than to regu-
latory networks in stress conditions.

Interestingly, the average number of transcription factors per
RM was quite similar across all the three conditions. We have
previously noted that an RM is a coregulated functional unit
for the coexpressed genes. The number of regulators in each
functional unit was approximately three in all the conditions,
implying that, on average, three transcription factors partici-
pate in the gene regulation of a specific functional unit,
regardless of the condition. However, the average number of
RMs per EPM displayed a clear difference; the EPMs in the
stress conditions tended to have more RMs than those in the
cell cycle condition. On average, seven RMs in the nitrogen
depletion condition, six RMs in the heat shock condition, and
four RMs in the cell cycle condition were included in an EPM.
This implies that EPMs in the stress conditions include more
diverse functional units than those in the cell cycle condition.
Accordingly, the average number of transcription factors per
EPM in the two stress conditions was significantly larger than
that in the cell cycle condition. This might be the result of a
more intensive need for cooperation among various func-
tional gene groups in order to respond to stress stimuli. We
will describe the detailed examples of this cooperation later in
the paper.

Condition-specific organization of regulatory modules
Our results showed that the transcriptional regulatory mod-
ules were largely reorganized depending on the cellular con-
ditions. As expected, the difference between the normal
condition (for example, cell cycle) and the environmental
stress conditions (for example, heat shock and nitrogen
depletion) was conspicuous. In the cell cycle condition, peri-
odic changes in the gene expression levels along cell cycle pro-
gression were reflected in the organization of relatively small
EPMs. On the other hand, in the environmental stress condi-
tions, an evident symmetry of expression profiles appeared
between stress-induced EPMs and stress-repressed EPMs.
Moreover, clear differences in the reorganizing patterns
between the EPMs under the heat shock condition and those
under the nitrogen depletion condition were observed,
although they shared some common features of general
response to stress. Regarding the average expression profiles

of the EPMs, the heat stress-induced or the heat stress-
repressed EPMs displayed transient but significant changes
in their transcription levels, whereas the genes in the nitrogen
depletion-induced EPMs showed induction or repression
over an extended period. Besides, there were many unique
features of the organized condition-specific modules depend-
ing on the type of the stimulus.

In the heat shock condition, two large clusters of EPMs exhib-
ited reciprocal expression profiles: one comprised upregu-
lated EPMs and the other comprised downregulated EPMs.
Further, the EPMs in each of the clusters could be distin-
guished based on their distinct peak points (Figure 2a and
Additional data file 3). In the upregulated EPMs (heat shock
EPMs 10-14), various stress-response genes (for example,
protein folding and degradation, oxidative stress response,
and energy reserve metabolism-related genes) were included
together with the genes for energy derivation (for example,
aerobic respiration and fermentation genes) (Figure 2c).
These results are consistent with several known facts: first,
the concurrent induction of protein folding/degradation
genes and aerobic respiration genes supports the notion that
chaperones and proteolytic proteins require large amounts of
ATP [20] that can be supplied by aerobic respiration and fer-
mentation; second, it has also been reported that the levels of
major energy reserves (for example, glycogen and trehalose)
increase in response to the heat shock condition [21]; and
third, heat stress produces oxidative stress that involves mito-
chondrial respiratory electron carriers [22]. The downregu-
lated EPMs were largely organized into two groups: one
comprised the genes related to cell cycle, mating and cell wall
(heat shock EPMs 0, 2, 8 and 9), and the other comprised the
genes involved in ribosome biogenesis and protein biosynthe-
sis (heat shock EPMs 4 and 7). Their expression profiles
exhibited the process of adaptation to the heat shock condi-
tion, that is, initially they are highly repressed, but after sig-
nificant time has elapsed, their expression levels start
increasing [23] (more detailed descriptions are provided in
Additional data file 3).

In the nitrogen depletion condition, a wide range of func-
tional gene groups displayed various expression profiles, and
anumber of EPMs were organized; these demonstrated inter-
esting condition-specific features. There were four EPMs
related to amino acid metabolism, and they could be divided
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Number of IMCs, EPMs, RMs and their average number of member genes and regulators

Average no. of genes/transcription factors

Condition No. of No. of EPMs No. of RMs IMC EPM RM No. of confirmed
survived IMCs (average number of transcription factors
RMs per EPM) (average number of
targets per

transcription factor)
Heat shock 249 14 88 (6.3) 9.8/3.2 102.7/11.6 58.9/3.0 67 (96.6)
Nitrogen depletion 340 24 166 (6.9) 9.1/3.3 77.5/13.1 40.3/3.1 96 (78.0)
Cell cycle 77 9 35(3.9) 7.5/29 36.3/7.3 26.6/3.0 43 (31.5)

For each condition, we calculated the number of retained IMCs that have at least one confirmed transcription factor. And then, total numbers of
EPMs and RMs were counted. We also calculated the average number of genes and transcription factors per IMC, EPM and RM.

into two groups - amino acid biosynthetic EPMs (nitrogen
depletion EPMs 0, 1 and 2) and amino acid catabolic EPMs
(nitrogen depletion EPM 25) (see Additional data file 2). In
the microarray experiments for nitrogen depletion, a medium
containing a small amount of a nitrogen source but neither
amino acids nor nucleotides was used [14]. Until the deple-
tion of the nitrogen source, the cells behaved as if they were
under amino acid starvation. Genes in the amino acid biosyn-
thetic EPMs (EPM o, 1 and 2) were induced as long as the
nitrogen source was available but displayed an abrupt decline
after the depletion of the nitrogen source. On the other hand,
EPM 25, which included amino acid catabolic genes and the
genes responsible for the nitrogen starvation response, dis-
played a reverse pattern; they were quiescent while the nitro-
gen source was available but started to be induced after the
depletion of the nitrogen source. It appears that amino acid
catabolic EPMs contribute to increasing the turnover rate of
amino acids in response to nitrogen starvation. Moreover, the
expression profiles of ribosome biogenesis EPMs (nitrogen
depletion EPMs 11, 12 and 19) fluctuated depending on the
availability of amino acids; their expression levels were
upregulated when amino acids were available (Additional
data file 3).

In the cell cycle condition, several phase-specific cell cycle
EPMs (cell cycle EPMs 1, 5 and 6) were identified, and their
regulators were largely in agreement with those mentioned in
the previous reports (Additional data file 4). In addition, we
detected ribosome biogenesis EPMs (cell cycle EPMs o and
4), an energy generation-related EPM (cell cycle EPM 7) and
an amino acid metabolism-related EPM (cell cycle EPM 8)
(Additional data file 2). The expression levels of all these

EPMs commonly peaked at the G1 phase and the G2/M tran-
sition, although their overall expression profiles were distin-
guishable (Additional data file 3). This result indicates that
the roles of these EPMs are particularly important during the
G1 phase and the G2/M transition; this finding is supported
by the previous studies wherein genes controlling ribosome
biogenesis and protein translation have been identified as the
critical regulators of cell growth and cell cycle in yeast [24-26]
and by the studies demonstrating that the critical cell size
requirement is fulfilled in the G1/S and G2/M transitions
[27,28]. Unexpectedly, a stress response-related EPM was
also detected (cell cycle EPM 3). The presence of this EPM
appears to reflect the experimental condition adopted by Cho
et al. [13]; they employed the heat shock treatment for cell
cycle synchronization before their measurements. The aver-
age expression of this EPM displayed a peak at the beginning
of the experiments but abruptly decreased later, implying that
the influence of the heat shock treatment vanishes with time.
The phase-specific cell cycle EPMs are discussed in more
detail in Additional data file 4.

Comparison of modules across conditions

To further investigate the differences and similarities among
EPMs from the three tested conditions, the member genes in
the EPMs were compared across conditions. Although the
shapes of the reorganized EPMs differed among the three
conditions, the following three highly overlapped EPM clus-
ters were detected in all the conditions (Figure 3a): EPMs of
stress response (heat shock EPM 11, nitrogen depletion EPM
17 and cell cycle EPM 3), EPMs of ribosome biogenesis (heat
shock EPMs 4 and 7, nitrogen depletion EPMs 11 and 12 and
cell cycle EPMs 0 and 4) and EPMs of the cell cycle (heat

Figure 2 (see following page)

EPMs identified in the heat shock condition. (a) The result by hierarchical clustering of the average expression patterns of EPMs in the heat shock
condition. The numbers indicate the EPM indices. (b) Regulator matrix whose entries represent the percentage of genes controlled by each transcription
factor in the EPM. The names of transcription factors are shown on the left side. (c) Gene annotation enrichment matrix whose entries represent the
enrichment levels of each EPM in the GO 'biological process' categories shown on the left side. For efficient explanation and visualization, only selected
GO categories are shown. EPMs identified in the nitrogen depletion and the cell cycle conditions are shown in Additional data file 2.
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shock EPM 8, nitrogen depletion EPM o0 and cell cycle EPM
1). These modules shared some common transcription fac-
tors, and we conjecture that the regulation of these modules
would be conserved in various physiological conditions.

Some functional EPMs were detected in only the two environ-
mental stress conditions. For instance, genes for energy res-
ervation (for example, generating glycogen and trehalose)
were included only in the EPMs in the heat shock (EPMs 11
and 14) and nitrogen depletion (EPMs 5 and 21) conditions.
All these EPMs were commonly regulated by Msn2/4 and
Skn7 (Figure 2b), which are well-known stress-response reg-
ulators [29-31]. Furthermore, both heat shock EPM 1 and
nitrogen depletion EPM 9 were enriched with 'biological
process unknown' genes and contained several common reg-
ulators (Yaps, Gat3, Swig/6, Teci, Mati-Mc and Abf1) and
were found to overlap significantly; however, these EPMs did
not overlap with any cell cycle EPMs. These EPMs may be
related to some unknown functions that are commonly
involved in heat shock and nitrogen depletion response.

By analyzing the overlap of several RMs, we found that vari-
ous gene groups involved in several distinct EPMs in other
conditions converged to form a single EPM in a specific con-
dition. For example, several stress-response gene groups and
energy generation-related gene groups, which showed diverse
expression patterns and were organized into several inde-
pendent EPMs in the nitrogen depletion or cell cycle condi-
tion, were coexpressed under the heat shock condition and
formed an integrated EPM (Figure 3b). Among the nitrogen
depletion EPMs, the crucial parts of the EPMs for energy
reserve metabolism (nitrogen depletion EPMs 5 and 21), pro-
tein folding and degradation (nitrogen depletion EPMs 17 and
7, respectively) and respiration (nitrogen depletion EPM 22)
converged into a single heat-shock EPM (heat shock EPM 11).
Similarly, many genes for protein folding, protein degrada-
tion and respiration in the EPMs in the cell cycle condition
(cell cycle EPMs 3 and 7) were found to be included together
in the heat shock EPM 11. Nitrogen depletion EPM o also
exhibited coexpression of multiple functional gene groups
that were included in several different EPMs in other condi-
tions (Additional data file 5).

It is also notable that the list of target genes of Rpn4, a tran-
scription factor for heat shock EPM 11 and known as a tran-
scriptional activator of genes encoding proteasomal subunits
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[32], was expanded to include the protein folding-related
genes, while Rpng retained its regulatory role on the genes
related to protein degradation in the heat shock condition.
Similarly, in addition to the previously characterized stress
response-related target genes, energy generation-related
genes were included in the target genes of Msn2/4 and Skn?,
which are the major regulators of heat shock EPM 11. From
these examples, we conjecture that some coordinated regula-
tion might operate for a more efficient response to the heat
stress. In the heat shock condition, protein folding and pro-
tein degradation might be coherently regulated because the
failure of the protein folding process often entails degradation
of the misfolded proteins. In addition, the coupling of energy
generation and protein folding (and degradation) would
enhance the response to heat stress because the latter process
requires considerable energy, as mentioned before. Several
previous studies support our inferences. It has been reported
that molecular chaperones assist in not only protein refolding
but also protein degradation by interacting with protein deg-
radation systems; when chaperones fail in their functions of
protein folding, assembly or translocation, they facilitate deg-
radation of the mishandled proteins [33,34]. Our results and
experimental evidence suggest that cells can respond to a
stimulus more rapidly and efficiently by co-inducing the
energy-consuming stress response genes and the energy-pro-
viding genes.

Specified regulatory roles of transcription factors
depending on conditions

A total of 109 transcription factors were confirmed as regula-
tors of all the EPMs and RMs identified from the three condi-
tions; 67, 96 and 43 transcription factors were confirmed in
the identified modules from the heat shock, the nitrogen
depletion and the cell cycle conditions, respectively. There
were 33 transcription factors common in all the three condi-
tions (Additional data file 6). In order to investigate the over-
all regulatory roles of the transcription factors in each
condition, we identified all the target genes of each transcrip-
tion factor and analyzed their enriched functional GO catego-
ries (Additional data file 7). Of the 33 common transcription
factors, 20 appeared to retain at least one of their regulatory
roles in all the conditions. Among the 109 total transcription
factors, 69 exhibited their known regulatory roles in at least
one condition. Considering that we conducted the analysis for
only three conditions and that many transcription factors
exhibit their roles only under specific conditions, we believe

Figure 3 (see following page)

Overlap matrices of regulatory modules. (a) Overlap matrices between EPMs in all the three conditions. The OLs were calculated as the proportion of the
intersection genes in the smaller EPM (minOL). The enriched GO categories of each EPM are also shown as several colored dots. Black-lined boxes
represent the EPMs that are significantly overlapped across all the three conditions. 'A' indicates the overlapped stress-related EPMs represented by the
three boxes linked by dashed lines. They have the common regulators Msn2/4 and Hsfl. Identically, the EPMs indicated as 'B' have the common regulators
Rapl, Sfpl and Fhil. The EPMs indicated as 'C' have Mbp|, Swi4, Swié and Stb| as their common regulators. Black arrows indicate EPMs that are highly
overlapped between the heat shock and nitrogen depletion conditions. (b) Overlap matrices between RMs (minOL). Several RMs, which were included in
the distinct EPMs in the nitrogen depletion and cell cycle conditions, are significantly overlapped with the RMs in heat shock EPM | |.
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Figure 4

Condition-specific types of transcription factor. The transcription factors were classified into four types based on the alteration in the target genes: (a)
condition-invariant, (b) condition-expanded, (c) condition-enabled and (d) condition-altered. The venn diagrams show the overlapped target genes of the
representative transcription factors among the three conditions. In the bar graph, the y-axis represents the significance of the p value for the enriched

functional categories of the target genes in each condition.

that the number of transcription factors that agree with their
experimentally proven roles would increase if more diverse
conditions were analyzed.

Similar to the classification of the transcription factor binding
patterns into four types based on the change in conditions by
Harbison et al. [3], we attempted to classify the transcription
factors based on the alterations in target genes as follows:
'condition-invariant', in which the transcription factor target
genes are highly conserved across the conditions; 'condition-
expanded', in which the list of target genes in one condition is
further expanded to include more target genes in other condi-
tion; 'condition-enabled’, in which the transcription factor
regulates some target genes in one specific condition but not
in other; and 'condition-altered’, in which different sets of tar-
get genes are regulated by the same transcription factor in dif-
ferent conditions. We found that most transcription factors
could be classified into one or more of these groups, and the
overall OL between the target genes of transcription factors in
different conditions indirectly reflected their types (Figure 4
and Additional data file 7).

The transcription factors Rap1, Fhl1, and Sfp1, which are the
well-established ribosome biogenesis-related regulators
[35,36], were classified into the 'condition-invariant' group;

they retained most of their regulatory roles (protein biosyn-
thesis, ribosome biogenesis and assembly, and telomere
maintenance) in all the three conditions (Figure 4a). Mbp1, a
renowned cell cycle regulator, could be categorized as a 'con-
dition-expanded' transcription factor; it expanded its targets
to include the cell wall biosynthesis-related genes under the
two environmental stress conditions (Figure 4b). Many other
cell cycle-related transcription factors, including Swig/6 and
Stb1, showed a similar expansion of targets to regulate the cell
wall biosynthesis-related genes under the two stress condi-
tions. Rpng was another good example of 'condition-
expanded' transcription factors. As mentioned earlier, the
target gene list of Rpng was expanded to include the protein
folding-related genes in response to heat shock, while Rpng
retained its own regulatory role of protein degradation. Many
transcription factors could be categorized as 'condition-ena-
bled' transcription factors; Thi2, a transcriptional activator of
thiamin biosynthetic genes [37], appeared to exhibit its
known role only under the nitrogen depletion condition (Fig-
ure 4c¢). Zapil, a zinc-responsive transcription factor that
activates the zinc transporter genes [38], was confirmed as a
regulator of zinc transportation-related genes only under the
cell cycle condition. Snt2, a previously uncharacterized DNA-
binding protein, was predicted to control the genes related to
ATP synthesis and energy reserve metabolism only under the
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heat shock condition. There were some 'condition-altered'
transcription factors whose regulatory roles changed com-
pletely depending on the condition. Interestingly, the change
in regulatory roles often necessitated the alteration of partner
transcription factors. For example, Yap1, a regulator of genes
related to the response to oxidative stress and inorganic sub-
stances [39,40], was predicted to regulate the genes related to
oxidative stress response along with Msn2 under the heat
shock condition (RM 9 of heat shock EPM 10), whereas it
appeared to control the genes involved in response to
inorganic substances along with Yap3/5/6/7 and Arr1 (Yap8)
under the nitrogen depletion condition (RM 18 of nitrogen
depletion EPM 13); all these roles detected in this study were
largely in agreement with their known functions (Figure 4d)
[41,42]. Similarly, Uga3 appeared to regulate the genes
related to protein biosynthesis and ribosome biogenesis along
with Sfp1, Fhl1, Skn7 and Sut1 under the cell cycle condition
(RM 3 of cell cycle EPM 0), while it was predicted to regulate
the branched chain amino acid biosynthetic genes along with
Leu3s under the nitrogen depletion condition (RM 3 of nitro-
gen depletion EPM 2). Moreover, Uga3 along with Msn2/4
and many other transcription factors exerted its regulatory
role on the genes related to ATP generation and energy
reserve metabolism under the heat shock condition (RMs 2
and 3 of heat shock EPM 11).

In order to validate the prediction of 'condition-altered’ regu-
lators, we examined whether the accessibility of the predicted
target promoters undergoes changes depending on the
conditions by using an independent data set that represents
the genome-wide occupancy of nucleosomes and transcrip-
tional machinery under the heat shock condition [18]. Com-
pared to the normal condition, the promoter regions of
Uga3's and Yap1's target genes predicted by our analysis of
heat shock response exhibited lower occupancy of histones
and higher occupancy of most transcriptional machinery
components (for example, RNA polymerase II) under the
heat shock condition; on the contrary, the occupancy on the
promoters of Uga3's target genes predicted by our analysis of
cell cycle condition exhibited the opposite pattern (Additional
data file 8). This result indicates that the predicted target
genes of Uga3 and Yap1 become accessible to the transcrip-
tional machinery to different extents depending on the condi-
tions, supporting the predictions by our analysis.

Condition-specific regulatory networks among
transcription factors

To further investigate the specific properties of the transcrip-
tional regulatory networks in each condition, we analyzed the
relationship among the transcription factors by identifying
the transcription factors that regulate the expression levels of
other transcription factors. We could detect some condition-
dependent topological and functional features in the net-
works. The complexity of the regulatory networks among the
transcription factors (for example, the number of target tran-
scription factors of a transcription factor) in the stress condi-
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tions was higher than that in the cell cycle condition; on
average, 4.5, 3.7 and 1 transcription factor-encoding genes
were found to be regulated by a transcription factor under the
heat shock, the nitrogen depletion and the cell cycle condi-
tions, respectively (see Figure 5a for the cell cycle condition
and Additional data file 9 for the two stress conditions). It
appears that the number of target transcription factors and
the overall topology of networks are related to the different
responses to different types of stimuli. Under the heat shock
condition, fast and global signal propagation for adapting to
the new environment would be required; therefore, a highly
dispersed transcription factor hierarchy would be efficient for
such a response. On the other hand, such widespread regula-
tory signal propagation would not be necessary under the cell
cycle condition because cell cycle progression requires only
periodic control of some specific functional genes.

We found many FFLs in the condition-specific transcriptional
regulatory networks. An FFL is composed of two input tran-
scription factors, one of which regulates the other and both
jointly regulate a specific target gene. It responds only to a
persistent stimulus and is often detected under the conditions
wherein an external signal causes many systems to respond
rapidly [43]. Moreover, the combination of two input tran-
scription factors may contribute to the gain of specificity for
certain functional target genes. We defined an 'FFL group'
when two transcription factors shared some functionally
coherent target genes enriched in at least one of the GO cate-
gories. The numbers of the identified FFL groups were con-
sistent with the properties of the FFLs, and considerably
more FFL groups were identified in the two stress conditions
than the cell cycle condition. In total, we identified 91 FFL
groups in the heat shock condition, 132 in the nitrogen deple-
tion condition and 9 in the cell cycle condition, reflecting the
characteristics of the cellular conditions; nitrogen depletion
generates prolonged nitrogen starvation signals, while the
signals in cell cycle progression are relatively transient.
Moreover, the gene expression data of the heat shock condi-
tion indicated that a number of genes undergo an abrupt
change in expression level, implying that extremely rapid and
widespread regulatory signal propagation occurs during this
condition.

The target genes of the FFL groups reflected specifically acti-
vated (or repressed) functions that were related to the condi-
tions in which the FFL groups were identified. Recently, it has
been reported that Hsf1 and Pdri1/3 participate in the regula-
tion of Rpn4 that in turn activates the expression of proteas-
omal genes, particularly under the heat shock condition [44].
Our results from the heat shock condition were in good agree-
ment with this experimental evidence; Hsf1 and Rpng were
predicted to constitute an FFL group whose target genes are
involved in proteosomal assembly and protein folding, and
Pdri1 and Pdr3 appeared to form FFL groups along with Rpng
to regulate the genes related to vacuolar and lysosomal trans-
port, respectively (Figure 5b, heat shock). In the nitrogen
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Figure 5

Transcriptional regulation among transcription factors. (a) Regulatory network among the transcription factors in the cell cycle condition. Each arrow
represents transcriptional regulation. Two transcription factors linked by each colored arrow form an FFL group with the genes that are enriched in some
specific functional category. The colors of the arrows imply the enriched functional categories. The networks in the two stress conditions are shown in
Additional data file 9. (b) Condition-specific FFL groups. Each gray ellipse represents the overlapped target genes of the two transcription factors in an FFL
group. Only selected FFL groups are shown (see Additional data file 10 for the complete list of the enriched functional categories of the FFL groups).

depletion condition, we observed many FFL groups that spec-
ified their targets by altering the partner transcription fac-
tors; Geng and Uga3 were predicted to form an FFL group
that regulates the branched chain amino acid metabolic
genes, while Gat1 and Uga3 constituted another FFL group
controlling the genes involved in telomere maintenance. Gat1

also appeared to participate in an FFL group along with Gln3
to regulate the thiamin biosynthetic genes (Figure 5b, nitro-
gen depletion). Besides, we detected many cases in which the
FFLs reflected the known roles of the participating transcrip-
tion factors. For example, Ste12, Tec1 and Rlmzi, all of which
are reported to participate in the cell wall integrity signaling
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pathway [45-47], appeared to constitute the FFL groups reg-
ulating the cell wall biosynthetic genes. In the cell cycle con-
dition, all the identified FFL groups were involved in cell cycle
control or regulation of telomere maintenance; Mbp1, Swib6,
Stb1 and Mcmz1 appeared to regulate the genes involved in the
cell cycle along with Swig as a second transcription factor,
while Ndd1 and Mcm1 were found to regulate the expression
of Swis, leading to a coordinated regulation of the genes
related to telomere maintenance (Figure 5b, cell cycle).

High-resolution regulatory modules - a case study with
nitrogen depletion EPM 2

One of our interesting results is that each coexpressed gene
module (EPM) appears to include several separate
submodules (RMs) that are regulated by different sets of tran-
scription factors but yet share the same expression pattern.
Figure 6a shows how well RMs are defined as functional parts
in nitrogen depletion EPM 2. In this EPM, we detected six
RMs that were largely involved in cell wall biosynthesis (RMs
1 and 2) and amino acid metabolism (RMs 3-6). Each of the
RMs further included distinguishable detailed functional
parts. Notably, each or various combinations of the RMs 3-6
were specifically enriched with the functional categories
related to amino acid metabolism (for example, branched
chain family amino acid biosynthesis, sulfur amino acid bio-
synthesis). In addition, most of the predicted regulators of the
RMs in this EPM have relevant experimental evidence (more
detailed explanations and literature evidence are described in
Additional data file 4).

An interesting issue raised by our results is how several differ-
ent transcription factors in an EPM can drive a similar
expression pattern of their target genes. It is presumable that
there are 'master regulators' that, by hierarchically control-
ling distinct sets of transcription factors, allow coordinated
transcriptional responses of a large set of genes that are not
directly coregulated by the same transcription factors. By
combining our transcription factor-target gene prediction
and ChIP-chip data [3], we could detect a potential hierarchi-
cal structure of the regulators within nitrogen depletion EPM
2 (Figure 6b). Except Met32, 11 out of the 12 transcription fac-
tors participated in this potential regulatory scheme, and
Gceng, Cbf1, Pho4 and Mbp1 were located at the top of the
hierarchy, suggesting that these four transcription factors are
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the putative 'master regulators' for this EPM. Across all the
EPMs, on average 56% of the regulators in an EPM (60%, 59%
and 41% under the heat shock, the nitrogen depletion and the
cell cycle conditions, respectively) appeared to participate in
the potential regulatory network among the regulators in the
EPM (Additional data file 12).

Comparison with other methods

To evaluate our method, we compared our modules with sev-
eral other predicted gene regulatory modules, including
GRAM [5] and COGRIM [48], which were predicted using
similar types of data but different approaches. The GRAM
algorithm identified 106 modules by combining the ChIP-
chip and gene expression data, and COGRIM predicted 2,298
gene-transcription factor interactions by integrating ChIP-
chip, transcription factor binding motif and gene expression
data. First, for comparison of the coverage of the results from
different approaches, we compared the numbersof distinct
genes andtranscription factors that are included in the pre-
dicted modules. As shown in Table 2, the EPMs and RMs
included much more genes (2,099) and transcription factors
(109) than GRAM and COGRIM, indicating that our method
provides more information about transcriptional regulatory
events than other methods, despite that we used gene expres-
sion data from only 42 experiments while other methods
employed approximately 500 expression experiments.

We then compared the average GO enrichment level of the
predicted regulatory modules by calculating a negative-log
transformed p value. As shown in Table 2, the average enrich-
ment levels of EPMs were higher than those of the other pre-
dicted modules. This implies that EPMs comprise more
functionally coherent genes according to the GO annotation.
For a more objective comparison, we also analyzed the
enrichment levels of the target genes of 38 transcription fac-
tors that are commonly included in all the predictions. The
result showed that our method has the highest enrichment
level (Table 2).

In order to compare how well the modules can explain the
detailed parts of a function, we further analyzed the enrich-
ment levels of the modules related to ribosome biogenesis
and assembly. We found that our EPMs and RMs showed
higher enrichment levels than other methods in 11 out of 14

Figure 6 (see following page)

Case study: RMs in nitrogen depletion EPM 2. (a) EPM 2 of the nitrogen depletion condition is represented by two matrices. The upper matrix represents
the overlap between the target genes of the regulators in the EPM, and blue boxes represent the RMs. The lower matrix represents the enrichment of the
target genes per regulator in the GO 'biological process' categories. For simplicity, only selected categories are shown. A more detailed explanation is
presented in Additional data file 4, and the complete matrices with all significantly enriched categories (p value < 0.01) are presented in Additional data file
I'1. In the graph, yellow ellipses indicate the RMs. Blue lines represent a significant overlap (OL > 0.5) between the target genes of the two transcription
factors at nodes, and green lines represent synergistic links identified by the hypergeometric test for transcription factor pairs (see Materials and methods).
The detailed information about other EPMs and RMs is available in Additional data file | |. (b) Potential regulatory scheme among the regulators in the
nitrogen depletion EPM 2. Solid arrows indicate the regulator-target gene relationship from the prediction under the nitrogen depletion condition, and
dotted arrows indicate the transcription factor binding information from ChIP-chip data. Gatl is included for completion of the hierarchy, although it is

not among the predicted regulators of the nitrogen depletion EPM 2.
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Table 2
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Overall comparison with other methods

GO functional enrichment level

Overall modules

Method No. of modules No. of No. of distinct TFs BP MF CcC Target genes of
distinct genes common 38 TFs

EPM 47 2,099 109 14.36 (8.63) 12.94 (8.53)  15.32 (7.80) 17.86 (21.49)

RM 289 2,099 109 7.56 (3.43) 6.51 (3.24) 7.23 (4.95)

GRAM 106 655 69 8.54 (1.05) 7.77 (4.64) 8.73 (2.18) 12.28 (19.47)

COGRIM (B-/C+) 39 84| 39 8.67 (2.97) 6.81 (4.24) 743 (2.72) 8.81 (13.43)

COGRIM (B+/C+) 39 936 39 5.3 (0.68) 4.55 (0.18) 4.86 (0.68) 5.19 (4.81)

The number of modules obtained from each method and the number of distinct genes and transcription factors (TFs) that constitute modules
identified by each method are shown. In addition, GO functional enrichment levels are shown. The GO (BP, biological process; MF, molecular
function; CC, cellular process) enrichment p values were transformed to negative log values and averaged over all modules. We also performed a
functional enrichment test for the target genes of 38 transcriptional factors that were commonly predicted in all the three methods. The standard

deviations are shown in parentheses.

GO categories related to the function (Additional data file 13).
Furthermore, we compared nitrogen depletion EPM 12 with
several modules from GRAM, all of which are significantly
related to ribosome biogenesis. In GRAM, 17 transcription
factors were linked to 21 ribosome biogenesis-related gene
modules. However, many of their modules were found to
highly overlap with each other; therefore, they could not be
distinguished in terms of function. In contrast, nitrogen
depletion EPM 12 contained ten transcription factors (eight
transcription factors overlapped with GRAM) and was
divided into five RMs that clearly described the detailed
cellular process of ribosomal biogenesis, from rRNA synthe-
sis to ribosome assembly (Additional data file 13).

In general, a high coverage can be obtained by simply adopt-
ing lenient criteria for identifying modules. However, the
more lenient criteria are applied, the more false positives are
incorporated in the analysis result, leading to lower specificity
that would yield poor functional enrichment. Remarkably,
comparison with other methods suggests that our results are
not only functionally more relevant but also cover a wider
range of the whole yeast genome. We believe that higher
enrichment level and coverage of our results could be accom-
plished by the bottom-up approach that initially identified
small coexpressed and coregulated gene groups by efficiently
combining the ChIP-chip and expression data. In contrast to
other methods that used combined expression data over a
number of experimental conditions, we used separate experi-
mental units of expression data for identifying condition-spe-
cific regulatory modules; this enabled us to obtain the target
genes of transcription factors that are specific to each condi-
tion and functionally more coherent. Through this bottom-up
approach, it was possible to identify many distinct submod-
ules included in a coexpressed gene group and describe the
detailed multiple alternative regulatory mechanisms involved
in the coexpression.

Discussion

In this study, we elucidated the coexpressed gene modules
(EPMs) and their intrinsic functional submodules (RMs)
along with their regulators through a sensitive and robust
method using ChIP-chip, known motif and microarray data.
We presented several condition-specific EPMs and described
the differences between the EPMs reorganized depending on
the change in conditions. Substantial parts of the results are
consistent with the previously reported condition-specific
regulatory events and well-characterized regulatory mecha-
nisms, suggesting that our strategy and results are reliable.

Our results revealed several important features about the
dynamic nature of the condition-specific reorganization of
the transcriptional regulatory network. Certain functions
appeared predominantly in the organized gene regulatory
modules in each condition. For example, various stress
response- and energy-related genes constituted a large pro-
portion of the modules detected in the heat shock condition,
while genes for amino acid and nucleotide metabolism were
organized into many modules in the nitrogen depletion con-
dition. In the cell cycle condition, many gene regulatory mod-
ules responsible for the internal periodic phase-specific cell
cycle signals were identified. Besides, in the two stress condi-
tions, the change in condition triggered the coexpression of
many distinct functional groups related to the specific stim-
uli, and this coexpression might contribute to the efficient
response to the stress. Our results also suggest that the roles
of transcription factors can be altered depending on the con-
dition. Most transcription factors expanded or altered their
targets in order to regulate the genes that are required for the
specific condition, and this alteration of targets often entailed
the switching of partner transcription factors and a change in
nucleosome occupancy, which provide clues for understand-
ing the rewiring mechanism of transcriptional network. Sev-
eral possible factors might contribute to the condition-
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specific transcriptional regulation of diverse genes. For regu-
lation of a specific group of genes, the promoters of the genes
should become accessible and transcriptional machinery
should be recruited to them. As we demonstrated, condition-
specific binding of transcription factors is related to the
change in nucleosome occupancy, which can be either a cause
or a result of changing promoter specificity of the transcrip-
tion factors. The change in nucleosome occupancy induced by
chromatin remodeling in response to the specific cellular
condition might cause the condition-dependent transcription
factor binding [49]. On the other hand, the target specificity
might be obtained by variable association with other tran-
scription factors that can affect the nucleosome occupancy.
Supporting this notion, some transcription factors, such as
Rap1 and Msn2, are known to have a role in influencing the
accessibility of promoters [50,51].

Interestingly, our results indicated distinct and interesting
hypotheses regarding the condition-specific regulatory mech-
anisms, which are somewhat different from those of the pre-
vious studies. As mentioned before, Luscombe et al. [2]
employed an invaluable approach for revealing the dynamic
properties of transcriptional regulatory networks. Their find-
ings are partially consistent with ours; enormous alteration of
the targets of transcription factors occurred depending on the
conditions, and greater numbers of target genes per
transcription factor were observed in exogenous conditions
(for example, stress response condition) than in endogenous
conditions (for example, cell cycle condition). However, there
was some discrepancy between our results and those of Lus-
combe et al. [2]. In our results, constancy in the number of
transcription factors for regulating a certain functional gene
group across all conditions was observed. In contrast, Lus-
combe et al. [2] concluded that endogenous conditions
require more complex transcription factor combinations than
exogenous conditions based on the greater 'in-degree' of
endogenous conditions, implying that a larger number of
transcription factors regulate a target gene. They also found
significantly more FFLs in the endogenous transcriptional
regulatory networks, while we found a much larger number of
functional FFL groups in the exogenous conditions. This dis-
crepancy might be due to the different definition of the 'stress
response condition'. While we separately used only the small
subsets of the microarray experiments (heat shock and
nitrogen depletion) for analyzing the detailed features of the
selected stress conditions, Luscombe et al. [2] considered all
the various stress conditions included in the experiments of
Gasch et al. [14] as the stress response condition; therefore,
their results might reflect the regulatory events correspond-
ing to 'general stress responses', which occur commonly in all
stress conditions [14].

Although our approach deciphered the condition-specific
regulatory mechanisms efficiently, it has some limitations.
Our methodology depends largely on the quality and abun-
dance of the known transcription factor binding motif infor-
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mation and ChIP-chip data; hence, the results would reflect
only a part of the events actually happening in a cell. Moreo-
ver, the number of our tested conditions is too small to depict
a wide variety of alteration in the regulatory mechanisms cor-
responding to various conditions. In the future, we would like
to apply this method to other important conditions and per-
form putative motif analysis to identify additional novel reg-
ulatory factors. The increasing knowledge of regulatory
mechanisms in various conditions together with in-depth
studies focused on the comparison of the 'condition-specific'
transcriptional modules revealed by more diverse condition-
specific results will shed light on the highly sophisticated and
elaborate regulatory mechanisms of transcription in yeast
cells. Furthermore, with increasing ChIP-chip, mRNA
expression data and reliable genome information about
higher eukaryotes, the approach used in this work can be
readily extended to study condition-, tissue- and develop-
mental stage-specific transcriptional regulatory networks in
diverse organisms.

Conclusion

In this study, we aimed at deciphering the transcriptional reg-
ulatory mechanisms in yeast with two major perspectives; we
focused on unveiling the dynamic nature of transcriptional
rewiring entailed by the change in conditions and investigat-
ing multiple distinct coregulated functional parts existing in a
coexpressed gene group. Consequently, we could detect sev-
eral important features of the condition-specific transcrip-
tional regulatory networks. First, the organization of the
coexpressed gene modules is altered depending on the cellu-
lar conditions; many functional modules unique to each con-
dition were identified, although some modules related to
fundamental cellular processes were sustained over multiple
conditions. Second, there are some specific functions empha-
sized in each condition, and the genes related to these func-
tions tend to be coexpressed and, therefore, constitute
relatively larger EPMs. Third, the reorganization of the tran-
scriptional regulatory modules entail the alteration of targets
and partner regulators of transcription factors, suggesting
that rewiring of the transcriptional regulatory networks
occurs due to the dynamic properties of the transcription fac-
tors. In fact, many FFL groups, which include a common tran-
scription factor, exhibited distinct functional roles depending
on various secondary transcription factors, leading to a con-
clusion that alteration of partner transcription factors can
determine target specificity. Furthermore, our results indi-
cate that several different transcription factors in an EPM can
drive a similar expression pattern of their target genes, most
probably by the involvement of 'master regulators' that hier-
archically control distinct sets of transcription factors.
Besides, many EPMs and RMs suggest novel regulatory
mechanisms of various transcription factors, including their
partnerships and target genes, in a condition-specific man-
ner. These results provide reliable hypotheses for unveiling
the condition-specific transcriptional regulatory networks
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and for studying the regulation of biological processes
induced under specific conditions.

Materials and methods

Identification of initial module candidates

The first step in our method was integration of the genome-
wide location data (ChIP-chip) and the gene expression data
to identify IMCs. In this study, we used the ChIP-chip data [3]
that contain the binding information of 204 transcription fac-
tors (although Harbison et al. [3] describe only 203 transcrip-
tion factors), and the gene expression data under three
experimental conditions - mitotic cell cycle (17 experiments)
from Cho et al. [13] and heat shock (15 experiments) and
nitrogen depletion (10 experiments) conditions from Gasch et
al. [14]. Each of the identified IMCs satisfied three require-
ments: first, all genes should have common transcription fac-
tor binding evidence with a p value < 10-3; second, the pair-
wise Pearson correlation coefficient (PCC) between two
expression profiles should be >0.7; and third, there should be
at least five element genes (Figure 1a). Eventually, the IMCs
with similar mean expression profiles (PCC > 0.7) were
grouped together and called preEPMs (Figure 1b). Determi-
nation of the appropriate cut-off values are described in Addi-
tional data file 13.

Detecting over-represented motifs

To identify the over-represented motifs in each IMC, we used
152 known or putative motifs (corresponding to 110 tran-
scription factors) obtained from SCPD (23 matrices) [15],
TRANSFAC (27 matrices) [16] and Harbison et al. (102 matri-
ces) [3]. A motif was considered over-represented in an IMC
if the p value was found to be <0.01 in the t-test examining the
difference between the distribution of maximum log-odds
scores calculated for the promoters of the genes in the IMC
and those calculated for the promoters of the genes that did
not have sufficient binding evidence regarding the transcrip-
tion factor of the IMC (p value > 0.95). In this study, the pro-
moter region was defined as the 750 bp upstream sequences
from the transcription start site. As usual, the log-odds score
of a motif for a promoter sequence was calculated using the
position-weight matrix constructed for each motif.

Confirming motif evidence and ChIP-chip evidence
From the over-represented motifs, we further identified the
motifs associated with the expression coherence in each IMC
(Figure 1c). Specifically, we performed the hypergeometric
test with the number of genes in the yeast genome (G), the
number of yeast genes that contained a motif in their promot-
ers (B), the number of yeast genes whose expression profiles
were similar to that of the IMC (g), and the number of yeast
genes whose expression profiles were similar to that of the
IMC and contained the motif in their promoters simultane-
ously (b) using the equation:
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This hypergeometric test measured the level of enrichment in
a gene group whose expression profiles were similar to that of
an IMC by genes that contained the motif in their promoters
against the average number of genes that contained the motif
in their promoters for a randomly selected gene group. Motifs
with a p value < 0.01 were considered as biologically signifi-
cant in this study.

For the ChIP-chip transcription factor that was used for iden-
tifying the IMC, we also examined the association between
transcription factor binding and expression coherence using
the hypergeometric test. In this case, B and b were calculated
for the transcription factor binding target genes with a p value
< 0.001 in the ChIP-chip data instead of the genes containing
the motifs (Figure 1c).

Identification of EPMs and RMs

All the IMCs without biologically significant regulators were
eliminated, and the selected genes of a preEPM were com-
bined to form an EPM (Figure 1d). The RMs were identified
by grouping the regulators in each EPM according to the
degree of overlap between their target genes (Figure 1e). We
listed the non-redundant regulators in the IMCs and calcu-
lated the OL between the target gene sets for all the possible
pairs of regulators in each EPM using the equation:

oLy =|s:Ns;/ [Is:]+] 8] :

where S;and S;denote the target gene sets of regulators i and
J, respectively.

An RM was identified by gathering the regulators and their
target genes in an EPM, where all the OLs between any pair of
target gene sets were >0.5. The cut-off value (OL of 0.5) guar-
anteed a sufficient diversity in functional enrichment for
explaining the functional parts in detail and the low redun-
dancy level of the RMs (Additional data file 14).

Analysis of synergistic pairs

We defined a combination of transcription factors as a syner-
gistic pair when the genes having evidence of both transcrip-
tion factors showed a significantly more coherent gene
expression pattern than the genes with evidence for only one
transcription factor. There is a clear difference between
sharing target genes (RMs) and synergism of a transcription
factor pair; synergism might involve physical or genetic inter-
action between the transcription factors ('AND' logic),
whereas overlap of target genes implies that the transcription
factors might have similar regulatory roles regardless of sig-
nificant dependency between them ('OR' logic). To identify
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synergistic pairs, all the pairs of over-represented motifs in
each IMC were examined using the hypergeometric test. For
a motif pair 'a and b', P(b|a, X) was considered the p value in
the hypergeometric test examining the enrichment of genes
with motif 'b' in the group of genes that have motif 'a’ and
show a similar expression pattern with an IMC X against the
genes that have motif 'a' alone. We defined the motif pair 'a
and b' as a synergistic pair when the value of P(b|a, X) or
P(a|b, X) was <0.01. For each of the two motifs, we used the
mean maximal log-odds score of the IMC X as the threshold
score for deciding whether the motif exists in the promoter of
a gene. The motif synergistic pairs detected in more than one
IMC of each preEPM were considered reliable in this study.
We also searched for transcription factor synergistic pairs by
applying the same method to a pool of IMCs with a similar
expression pattern and their related transcription factors.

Functional enrichment analysis

We examined whether the genes of each EPM and the
assigned target genes of each regulator in the EPM were sig-
nificantly enriched by specific functional categories using the
GO categories. Categories with a p value of <0.01, as revealed
by the hypergeometric test, were considered statistically sig-
nificant in this study, and the redundant categories were
trimmed (for example, when 'response to pheromone', 'conju-
gation with cellular fusion' and 'response to pheromone dur-
ing conjugation with cellular fusion' were simultaneously
enriched, we adopted only one proper category). For Figure 2,
we used only the GO 'biological process' categories, and a sub-
set of the attributes was selected for their diversity.

Abbreviations

ChIP-chip, chromatin immunoprecipitation microarray;
EPM, expression pattern module; FFL, feed-forward loop;
GO, Gene Ontology; IMC, initial module candidate; OL, over-
lap level; PCC, Pearson correlation coefficient; preEPM, pre-
cursor of expression pattern module; RM, regulator-set
module.
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depletion and the cell cycle conditions. Additional data file 3
contains detailed descriptions of condition-specific features
of EPMs with their average gene expression profiles. Addi-
tional data file 4 contains the case studies that describe the
RMs and their regulators in several cell cycle EPMs, heat
shock EPM 0 and nitrogen depletion EPM 2. Additional data
file 5 contains the matrices describing nitrogen depletion
EPM o, which includes various functional gene groups that
formed several EPMs in other conditions. Additional data file
6 is a Venn diagram showing the numbers of overlapped reg-
ulators among three conditions. Additional data file 7 is a
table listing enriched functional categories for the target
genes of all confirmed transcription factors. Additional data
file 8 includes bar graphs representing the relative nucleo-
some occupancy levels on the promoters of condition-specific
target genes of Ugag and Yap1. Additional data file 9 is a dia-
gram showing the regulatory networks among transcription
factors under the heat shock and the nitrogen depletion con-
ditions. Additional data file 10 is a table listing enriched func-
tional categories for the targets of FFL groups. Additional
data file 11 contains the matrices describing all EPMs and
RMs, including lists of synergistic pairs of regulators. Addi-
tional data file 12 is a table listing possible regulatory relation-
ships among transcription factors in the same EPM.
Additional data file 13 contains detailed descriptions of RMs
in nitrogen depletion EPM 12 and a comparison with the
modules determined using other algorithms. Additional data
file 14 contains detailed descriptions of the criteria for choos-
ing appropriate cut-off values.
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