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Abstract

Viral and transposon vectors have been employed in gene therapy as well as functional genomics
studies. However, the goals of gene therapy and functional genomics are entirely different; gene
therapists hope to avoid altering endogenous gene expression (especially the activation of
oncogenes), whereas geneticists do want to alter expression of chromosomal genes. The odds of
either outcome depend on a vector’s preference to integrate into genes or control regions, and
these preferences vary between vectors. Here we discuss the relative strengths of DNA vectors
over viral vectors, and review methods to overcome barriers to delivery inherent to DNA
vectors. We also review the tendencies of several classes of retroviral and transposon vectors to
target DNA sequences, genes, and genetic elements with respect to the balance between
insertion preferences and oncogenic selection. Theoretically, knowing the variables that affect
integration for various vectors will allow researchers to choose the vector with the most utility
for their specific purposes. The three principle benefits from elucidating factors that affect
preferences in integration are as follows: in gene therapy, it allows assessment of the overall risks
for activating an oncogene or inactivating a tumor suppressor gene that could lead to severe
adverse effects years after treatment; in genomic studies, it allows one to discern random from
selected integration events; and in gene therapy as well as functional genomics, it facilitates design
of vectors that are better targeted to specific sequences, which would be a significant advance in
the art of transgenesis.
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Introduction
Elements such as viruses and transposons, through

evolution with their host organisms, have acquired the

ability to integrate into host genomes and ultimately shuffle

genetic material between organisms. These elements have an

established history in molecular biology and genetics

research because of their ability to deliver specific genetic

cargo, randomly disrupt host genomes for genetic screens,

and serve as vectors for delivery of therapeutic expression

cassettes to treat human disease. Viral vectors have been the

predominant tools for these applications for three reasons:

the ease and efficiency with which specific viral genetic

cassettes can be introduced into cells; the vast accumulated

knowledge of viruses and their mechanisms of gene transfer

into chromosomes; and the large number of sites in genomes

into which they can integrate. Retroviruses in particular have

been used for random insertion into chromatin to interrupt

host genes (insertional mutagenesis) and thereby identify

their function [1-3] as well as for delivery of therapeutic genes

[4-6]. Moreover, viral activation of oncogenes and, more



recently, inactivation of tumor suppressors have been used

to discover several novel genes that are involved in cancer

progression [7-12]. The consequence of insertional

activation of host cell oncogenes by viral vectors, however,

has emerged as a major risk/obstacle in gene therapy, with a

few cases of leukemia arising from oncogene activation by

therapeutic vectors [13,14]. The potential genetic

consequences of insertions of integrating vectors are

summarized in Figure 1.

Risk of oncogene activation in gene therapy
Activation of oncogenes in mice by insertionally mutagenic

retroviruses suggested that inadvertent oncogene activation

resulting from the use of relatively benign therapeutic

vectors is a potential risk associated with gene therapy. Gene

therapy vectors are extensively minimized to eliminate their

replicative potential and reduce their collateral effects on the

target genome [15]. However, extensive testing in animals

demonstrated that the risk of oncogenic activation was real,

although variable and dependent on the viral vector used,

the genetic cargo, and the background genetics of the model

system [16-22]. Given what was assumed to be acceptable

risk, retroviral gene therapy trials have been conducted in

human patients. Nearly 1,000 clinical gene therapy trials

have been initiated, more than half with retroviral vectors

[4], but as yet no vectors have been approved in the USA for

clinical gene therapy outside the clinical trial setting [23].

(Gendicine, an adenovirus designed to restore p53 function

in cancerous cells, has been approved for commercial human

gene therapy in China [24], although this vector is

essentially nonintegrating and thus carries decreased risk for

oncogene activation via vector insertion.)
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Figure 1
Potential genetic consequences of integration of transgenic cassettes into chromatin. An expression cassette (orange box) in a viral or nonviral vector
(represented by purple inverted arrowheads, which indicate either inverted or direct terminal repeats) can integrate into four classes of chromatin. 
(1) Integration into heterochromatin will most likely result in the suppression of expression of the transgene and essentially no genetic consequences for
the host. (2) Integration into intergenic regions of euchromatin is the most desirable outcome; the transgenic cassette is expressed, leading to a gain of
function (GOF) in the host cell. (3) Integration into a transcriptional regulatory region can have several outcomes including expression (GOF) of the
transgenic cassette, potentially modified by neighboring enhancer and silencer elements in the region. Regulatory elements in the transgenic cassette may
either enhance expression of the neighboring gene (GOF for gene X) or, in rare cases, block expression of an active gene. (4) Integration of the vector into
a transcriptional unit may allow expression of the transgene but block expression of the host gene leading to a phenotypic loss of function (LOF).
Integration within some genes can also lead to a dominant gain of function (DGF) or production of a dominant-negative form (DNF) of the original gene X.
A further discussion of effects of insertional mutagenesis can be found in the reports by Carlson and Largaespada [61] and Collier and Largaespada [154].



The worst fears of the gene therapy field, oncogene activa-

tion, were realized when three of more than 20 patients

treated for X-linked severe combined immunodeficiency

disease (X-SCID) developed leukemia. These adverse

findings, including one death, occurred 3 years or more after

administration of therapeutic murine leukemia virus (MLV)-

derived retrovirus vectors [25,26]. The linkage between

treatment and leukemias could be inferred because the

expanded transformed cell populations harbored clonal

integrations of the therapeutic vector, which suggested a

biologic selection for the retrovirus-induced mutation

[27-30]. However, these studies also indicated that clonal

expansions in some cases appeared to be temporary and did

not always lead to adverse effects, features that could

actually improve the likelihood of successful gene therapy.

The cause of at least two of the leukemias appears to be

insertion of the MLV vector close to the LMO2 oncogene,

which led to LMO2’s activation by enhancers in the long

terminal repeat (LTR) sequences of the vector [31-33].

Retrospective examination of the role in LMO2 during

development supported this conclusion [34,35]. Subsequent

studies in which the cargo gene IL2γc was over-expressed in

mice (albeit at levels higher than in the X-SCID leukemia

patients) suggested that this gene could itself act as an

oncogene in T cells [36]. Also, simultaneous activation of

IL2γc and LMO2 by oncogenic retroviruses had been

observed in one mouse, suggesting a possible genetic

interaction between the cargo IL2γc gene and LMO2 [33].

The relevance of these observations to clinical cases,

however, is highly debatable [37,38].

In contrast, other gene therapy trials that employed retro-

viral vectors to treat adenosine deaminase deficiency [39-41]

and chronic granulomatosis disease (CGD) [42] have not yet

reported any equivalent adverse events. In the CGD study,

there appeared to be powerful selection for integration

events of the spleen focus-forming virus vector, which also

was used as a vector for X-SCID [43], into the neighbor-

hoods of three previously identified genes, namely MDS-

EVI1, PRDM16, and SETBP1, which have been associated

with enhanced proliferation following integration of retro-

viruses with activating LTRs [44-46]. As noted previously,

findings of preferential integration around certain genes is

not necessarily due to a preference for these genes, but may

rather be a consequence of clonal expansion that can be

transient and thereby beneficial in terms of enhancing the

number of therapeutic cells. A similar effect has also been

observed in nonhuman primate studies, indicating that this

result may not be unique [19]. Despite the striking incidence

of common integration sites that are often associated with

tumor or leukemia formation [8,47,48], there has been no

report of adverse events in the CGD patients and no

indication that the corrective gene, gp91phox, synergizes with

any of the three common integration site genes to promote

growth. Likewise, a murine stem cell retrovirus has been

used to deliver the α and β chains of the antiMART-1 T-cell

receptor complex ex vivo into peripheral blood lymphocytes

to treat melanoma without any apparent adverse effects,

although integration sites were not examined and the patient

population had low odds for survival, even with the

treatment (two out of 15 survived) for more than 1 year [49].

Taken together, the results of the CGD and X-linked plus

adenosine deaminase SCID trials demonstrate that onco-

genesis is not necessarily an inherent, inevitable side effect

of gene therapy. In more than 20 patients, the genetic

deficiencies of more than 80% have been fully corrected,

allowing them to lead normal lives. However, tumors and

leukemias can take years to manifest, and these trials are in

their early years. A clearer understanding of the variables

that underlie oncogenesis is needed in order to increase the

safety of these trials. These variables include insertion site

preferences of therapeutic vectors, their abilities to activate

nearby genes, and interactions between specific genetic

cargos and activated host genes. Although cargo-host inter-

actions will be specific to each gene therapy approach, the

vectors themselves govern other parameters of insertion

preference and neighboring gene activation. Analyses of

insertion preferences, in particular, have received much recent

attention, and have sparked interest in the use of transposons

as alternatives to viruses as gene therapy vectors.

Nonviral vectors for introduction of genetic
cassettes into mammalian genomes
Transposable elements also have been used for insertional

mutagenesis and genetic studies in model organisms, and are

being developed as gene therapy agents in humans [50-53].

The most well characterized DNA transposon vector used in

mammals is the synthetic Sleeping Beauty (SB) transposon

system [54], which over the past decade has become a

powerful tool in functional genomics to identify genes in

vertebrates, including fish and mammals [55-61]. Application

of transposon-mediated gene transfer to gene therapy has

been explored because it avoids several disadvantages of viral

delivery systems. These disadvantages of viruses include the

following: (1) their preference for integrating into genes [62-

65]; (2) the difficulty with purification to eliminate toxic or

infectious agents [66]; (3) their potential to elicit unwanted

immune or inflammatory responses [67,68]; (4) the

constraint on therapeutic cargo size; and (5) the difficulty and

expense associated with their production in large quantities

[69,70]. In contrast to viral vectors, preparations of nonviral

plasmid-based transposon vectors are relatively inexpensive

to purify, are largely nonimmunogenic, and have no hard

constraints on genetic sequences that can be delivered.

A negative tradeoff with DNA vectors is increased difficulty

in delivery. Delivery of nonviral DNA into mammalian

genomes involves avoiding or traversing numerous barriers,

including enzymes in the blood and cellular environments,

the endothelial lining of vessel walls, cellular plasma
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membranes, endosomal membranes, nuclear membranes,

and chromosomal integrity [71].

There are three delivery approaches that work across the

nanoscale, microscale, and macroscale [72]. Nanoscale

delivery involves particles or complexes that are most often

designed to be about 100 nm or less in diameter, although

sizes up to 1 μm fit into this category. The nanoscale

approach comprises delivery of single or small numbers of

DNA molecules, which most often are collapsed by

polycationic polymers (for example, polylysine and other

modified amino acids, and various linear and branched forms

of polyethylenimine, among others) or lipids, with or without

various ligands (for review, see the report by Wagner and

coworkers [71]). Some polycationic complexes are cytotoxic

or unstable in the blood, which can be circumvented by

encasing the complexes in polyethylene glycol [73].

Alternative delivery routes are those at the microscale and

macroscale, in which DNA in packages up to 10 μm are

phagocytized (microscale) or enter cells via fusions with other

cells or entities larger than 10 μm (macroscale).

In mice, the most effective method for in vivo gene transfer

and expression has been demonstrated in hepatocytes using

simple infusion of naked plasmid DNA under increased

pressure. This can be accomplished by hydrodynamic

delivery of DNA using high pressure/high volume injection

[74,75]. In mouse, this procedure involves injection of a

large volume (10% volume/weight) of DNA/saline solution

through the tail vein in less than 10 seconds. This procedure

results in uptake of infused DNA into as many as 10% of

hepatocytes in test animals [74,75] by expanding and

rupturing liver endothelium, which in mice heals within 24

to 48 hours [76]. Achieving a clinically feasible method of

local delivery to liver in large animals, including humans, is

a challenge that is being addressed by more localized

hydrodynamic delivery using specialized catheters or

pressure cuffs [77,78]. On the microscale, condensing DNA

with polyamines such as polyethylenimine to a complex

small enough to be taken up by cells into endosomes has

been studied intensively [79,80]. Our findings (Hackett PB,

Podetz-Pedersen K, Bell JB, McIvor RS, unpublished data)

suggest that gene expression following hydrodynamic

delivery is about 100-fold more effective than delivery using

polyethylenimine [81,82] and only about 10-fold to 100-fold

less effective than viral delivery to liver [72]. Alternative

delivery ex vivo using electroporation is under development

and has been achieved in hematopoietic stem cells [83].

Since the development of the SB system, nonviral,

integrating DNAs have established themselves as potential

vectors for gene therapy. Following hydrodynamic delivery,

transposons have been used in mice to cure hemophilias A

and B [84-87] and tyrosinemia type I [88,89]. Other somatic

delivery methods were used to ameliorate blistering skin

disease (junctional epidermolysis bullosa) [90], retard

glioma xenographs [91,92], produce Huntingtin protein in a

model of Huntington disease [93], and as a preventive

treatment for lung allograft fibrosis [94]. Based on the

findings summarized above, we estimate that only about one

in 10,000 SB transposons that are delivered to liver or lung

actually transpose into chromatin (Hackett PB, unpublished

data). Although this is a small fraction, it is possible to

deliver more than 108 therapeutic cassettes to an animal in

order to treat as many as 10% to 20% of liver cells with a

single injection of plasmids [84,88,95]. This procedure is

sufficient to cure diseases such as hemophilia and tyrosinemia

type 1, and to ameliorate other diseases such as mucopoly-

saccharidoses types I and VII. Although quantifying the

number of transposon insertions per cell has not been done

because of the difficulty of cloning insertion sites in mostly

nondividing cells in most organs of animals, the expression

data are consistent with a single integration in most if not all

transgene-expressing cells.

In addition to SB, several other transposon vectors and phage

integrase-based vectors have been tested for their potential to

deliver therapeutic genes, including Frog Prince [96], Tol2

[89], and piggyBac [97], as well as other well characterized

transposons such as the Drosophila P-elements, which are

not mobilized very efficiently in mammalian cells [98]. These

vectors differ in their efficiency of gene insertion, genetic

cargo capacity, integration site preferences, and effects on

chromosomal stability. Among other advantages these

systems have over retroviruses as gene therapy vectors,

transposons present a wide variety of insertion site

preferences that differ from those of retroviruses, with

possible consequences for oncogene activation. The charac-

teristics of these vectors are summarized in Table 1. The

remainder of this review discusses these differences as they

relate to gene therapy and functional genomics.

Factors governing insertion site preferences and
their variation among vectors
Although most vectors will integrate into a vast number of

sites scattered throughout the genome, numerous studies

have shown that these integrations are not random with

respect to several variables. Global preferences for vector

integration can be governed by large-scale genomic context

such as coding and regulatory regions of genes, and their

transcriptional status, as compared with intragenic regions

[99]. The fine tuning that determines specific sites of

integration is governed by smaller scale, physical features,

such as the specific sequences of nucleotides surrounding

insertion sites and DNA structural characteristics derived

from these sequences. Figure 2 illustrates some of the physical

features of DNA that are influenced by local sequence.

Viruses and transposons exhibit a wide range of variability

with respect to preference for genes and transcriptional

units. Several studies have mapped hundreds to thousands of
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insertions into human or mouse genomes, and correlated

insertion positions with known genes. Many retroviruses

exhibit a nonrandom preference for genes [65]. This could be

due to greater accessibility of the DNA in ‘open’ chromatin or

interaction of integrase enzymes with cellular factors bound

to transcriptional regulatory elements. In the case of HIV, the

LEDGF/p75 transcriptional factor may act as a tether

between the integrase and transcriptionally activated

chromatin [100-102], which is similar to an idea that was

proposed previously for designer targeting of integrating

vectors [103-105]. In a similar approach using the SB

transposon, Yant and coworkers [106] found that SB

exhibited a much lower (although nonrandom) preference for

genes. Although a preference for transcriptional units might

seem beneficial for functional genomics studies, the myriad

of recently identified noncoding RNA genes [107] (as well as

other RNA product genes such as those encoding rRNA and

tRNAs) involved in gene regulation may not be targeted by

viral vectors that preferentially integrate into or near protein

encoding genes. Targeting of various vectors to these non-

coding RNAs in gene therapy, and any resulting deleterious

effects, has not been extensively examined.

Many vectors appear to exhibit a preference for specific

genes. In insertional mutagenesis studies, the identification

of recurrent viral insertions into a specific group of genes was

taken to mean that viral activation of these putative

oncogenes in individual cells led to clonal expansion among a

pool of cells in which every host gene was an equal target for

integration (as discussed above for LMO2). However, when

MLV insertions were mapped in normal HeLa cells that did

not undergo any type of selection, oncogenic or otherwise,

many of these same genes harbored recurrent integrations,

suggesting that vectors may inherently target specific genes

[48]. The basis of this selection is not understood, but it may

be similar to that discussed above for HIV.

In addition to general preferences for genes, many viral

vectors, including retroviruses, lentiviruses, and adeno-

associated virus, preferentially target transcriptional units or

their promoters. MLV retroviruses have a preference for

integration proximal to transcriptional initiation sites

[64,65,108-111], which is a problematic trait, considering that

MLV-based vectors are the most commonly used vectors in

human gene therapy [4]. HIV and adeno-associated viruses

have preferences for entire transcriptional units [100,108,111-

113] (see Note added in proof, below); this is in contrast to

MLV, which targets only the region proximal to promoters.

Additionally, expression array studies have shown that HIV

has a preference for transcriptionally active genes [65] as well

as an avoidance of chromatin regions in which transcription

is repressed [114].

In contrast to these viral vectors, SB transposons and avian

leukosis virus (a retrovirus) apparently have only a slight

preference for either transcriptional units or their regulatory

elements [106,115], with little or no preference for

transcriptionally active genes [65]. In one survey, SB

exhibited an overall preference for microsatellite repeats,

found primarily in noncoding regions [106], possibly due to

the preferred target sites found in TA repeats [116]. A study

that correlated insertions sites with hundreds of genome

annotations [99] illustrated the degree to which genomic

features and primary sequence influenced vector integration

preferences for several vectors (for example, the L1 and SB

transposon insertions were much more influenced by

primary sequence than were retroviral vectors). This study

also found variable preferences between vectors for elements

such as CpG islands, DNase I sensitive sites, and trans-

cription factor binding sites. The recent identification of a

periodic sequence encoding nucleosome positioning [117]

may also correlate with vector integration patterns, because

nucleosomes have been shown to affect patterns of retroviral
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Table 1

Properties of nonviral integrating vectors proposed for gene therapy

Properties

Vector system Activitya Target preferencesb Positive/negative attributesc

Sleeping Beauty Standard TA sites, random Highly tested/cargo capacity decreases efficiency

ΦC31 Lower Pseudo-att sites Highly tested/induces chromosomal mutations and rearrangements

piggyBac Same TTAA sites (genes) Too new to evaluate/targets transcription units

Tol2 Higher Unknown Cured tyrosinemia type 1 in mice/may target genes, too new to evaluate

ΦBT1 Lower Pseudo-att sites Cured PKU in mice/too new to evaluate

Frog Prince Same TA sites Too new to evaluate

aActivity is given relative to Sleeping Beauty (SB) in HeLa cells or other cells in which SB has been tested. bTarget sites for phage integrases φC31 and
φBT1 are not found in mammalian genomes; sequences with similarities to the phage attachment sites (att sites) are targets, but they vary with cell type.
cEvaluation with respect to gene therapy: only SB and φC31 have been extensively tested; the others are too new to know positive and negative
attributes. PKU, phenylketonuria.



integration [118]. Similar studies to identify trends for

piggyBac and Tol2 with respect to genome-wide integration

preferences will be valuable in assessing the relative safety of

these vectors for gene therapy.

Local insertional preferences: DNA sequence
and structure
Although many vectors exhibit a preference for genes, and

even specific genes, few vectors repeatedly integrate into the

same precise position with any significant frequency. Rather,

most genes harboring frequent insertions show a

distribution of insertions into several positions within the

same gene. Some vector integrases, such as those for phages

φC31 [119-121], φBT1 [122], as well as the Escherichia coli

Tn7 transposon [123], recognize specific DNA sequences or

degenerate sequences that exist in mammalian genomes. SB

integrates specifically at a TA dinucleotide, and the

piggyBac transposon integrates into the sequence TTAA.

Because the oncogenic potential of a vector is related to its

propensity to integrate in or near a select few genes,

understanding local parameters that affect integration may

contribute to our ability to assess the risk associated with

these vectors in gene therapy.

For retroviruses and the SB transposon, consensuses

sequences have been described surrounding the sites of inte-

gration [111,124-127]. Although retroviruses do not exhibit a

strong consensus sequence, the nonrandom pattern of

integrations and the observation that frequently hit sites did

not match the consensus sequences led investigators to

examine other properties of DNA sequences surrounding

target sites, including structural characteristics of the DNA

itself. DNA structural characteristics are based on non-Watson

and Crick interactions between nucleotides and encompass

deformations to the regular double helix structure caused by

interactions between adjacent, planar bases (Figure 2).

Originally characterized from analysis of crystal structures of

DNA bound to histones and other proteins, these

characteristics include ‘protein-induced DNA deformability’,

‘A-philicity’, and trinucleotide ‘bendability’. These properties

underlie local variations in DNA structure that are probably

relevant to recognition of DNA by transposases and

integrases. Early investigations into insertion preferences

showed that viruses preferred ‘bent’ DNA [118,128,129], and

several groups have investigated secondary DNA structural

patterns in sequences that flank mapped insertion sites for

both transposons [115,124,130,131] and retroviruses [111,126]

to determine general characteristics of the flanking sequence

of ‘preferred’ integration sites. Similarly, the RAG1/2 protein

complex, which has properties akin to the cut-and-paste

transposases, recognizes a specific sequence/structure for

recombination of antigen receptor genes [132].

Different DNA sequences may produce highly similar

patterns of DNA secondary structure, and thus common

structural patterns that are preferred for integration may be

obscured by approaches that analyze sequence alone.

Analysis of secondary structure for a DNA sequence is based

on translation of a sliding window of two or three bases into

structural values for each ‘step’. For example, the tendency

of a B-form helix to adopt the A-form (A-philicity; Figure 2)

can be predicted by translating each consecutive (over-

lapping) dinucleotide into one of 10 A-philicity values for the

16 combinations of base pair transitions [133-135]. Similarly,

protein-induced deformability encompasses several changes

in base pair orientation from a ‘perfect B-form double helix’

in a transition between two consecutive base pairs

(Figure 2c). All of these changes can be expressed as a single

composite parameter of protein-induced DNA deformability

known as Vstep [136-138]. Vstep represents the physical

relationships of any two planar base pairs in terms of their

relative shifts and angular orientation. In contrast to A-

philicity and protein-induced deformability, DNA bendability

is best modeled using a sliding window of three bases, with

64 possible trinucleotide bendability values [139].

An example of DNA structural analysis for the Tol2

transposon is shown in Figure 3, in which average structural

values for each position flanking an insertion site are plotted

and compared with a plot of random sequences. In the case

of Tol2, weak preferences in Vstep and A-philicity values at

specific coordinates are apparent by the peaks in the heavy

black lines in Figure 3a,b (left sides), in contrast to the same

averages derived from random sequences (right sides).

Overall, the bendability around Tol2 insertion sites exhibits

little deviation from a random sequence (Figure 3c), unlike

those preferred by SB transposase (Figure 3d). Analysis of

hundreds of integration sites for potential gene therapy

vectors, including viruses as well as transposons, shows that

many have subtle preferences for these variables (Figure 4).

For example, the piggyBac transposon may favor sites with

slightly higher A-philicity, lower bendability, and lower Vstep

values than random sequences. In contrast, ‘preferred’ SB

insertion sites (see below) clearly display a jagged Vstep

pattern and higher bendability. Interestingly, although

retroviruses (avian sarcoma virus [ASV], HIV, MLV, and

simian immunodeficiency virus) integrate into bent DNA

[128], such as that bound to nucleosomes, our analyses of

sequences around viral insertion sites do not indicate a

particular preference for bendable DNA (Figure 4). A

similar, more rigorous approach has been utilized to

characterize Drosophila P-elements [130] and non-LTR

retrotransposons in Entamoeba histolytica [140], demon-

strating that DNA structural characteristics at insertion sites

for both elements are significantly different from collections

of random sequences.

For SB, the observation of general structural trends surround-

ing insertion sites eventually led to the identification of a

specific DNA structural pattern governing insertion

preference. Vigdal and coworkers [124] observed that
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increased DNA deformability and A-philicity were features

of a consensus sequence that flanked SB TA insertion sites.

Subsequently, Liu and colleagues [131] mapped about 200

integrations into a relatively small 7 kilobase plasmid

sequence and observed that some common integration sites

did not share the consensus sequence. These results

identified several ‘preferred’ TA dinucleotides that harbored

recurrent integrations. These preferred integration sites

exhibited a striking, specific pattern of alternating high and

low deformability (Vstep) values that were absent in TA sites

and that were rarely, if ever, used. This led to the conclusion

that SB transposase prefers a ‘zigzag’ Vstep pattern of DNA

deformability [131], which was later confirmed on a larger,

genomic scale [115]. It remains unknown whether these

patterns influence the recognition and binding of the SB

transposase, catalysis of the transposon integration, or some

other mechanistic factor.

This analysis was repeated for other vectors, including

piggyBac, P-elements, and several retroviruses [115].

However, only weak structural signatures were detected,

which were no more informative than the weak consensus

sequences previously identified. A key difference in the SB

screen was the level of saturation of a small target, which

allowed for the identification of highly preferred sites over

nonpreferred TA dinucleotides. In contrast, the datasets for

the other vectors were derived from a relatively small

number of insertions into mammalian genomes, which were
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Figure 2
Deviations of DNA structure from the average B-form DNA that play a role modeling three-dimensional structures of specific DNA sequences. The
figure illustrates physical parameters of B-form DNA structure that are altered in preferred sites for integration of insertional vectors. (a) B-form DNA.
(b) A-DNA. Interactions between neighboring nucleotides govern the variable energy needed to convert from B-DNA to A-DNA. The propensity of a
sequence of B-form DNA to adopt the A-form is referred to as A-philicity [134]. (c) Parameters of base pair orientation affected by protein-DNA
binding. ‘Twist’ (horizontal looping arrow) refers to the rotation of base pairs around a central axis (heavy vertical black line); the average rotation
between two base pairs is 36°. ‘Tilt’ (dotted lines) refers to the inclination of the base pairs with respect to the central axis; the average tilt is 0° between
base pairs, which are normally parallel in B-form DNA. ‘Rise’ (vertical double arrowhead) is the distance between adjacent base pairs; the normal spacing
is slightly more than 3.3 Å, but it can be more than 3.4 Å at preferred target sites. ‘Slide’ (horizontal double arrowhead) refers to the shifting of the axis
of a base pair out of alignment with the central axis. ‘Roll’ (vertical looping arrow) refers to rotation of the nucleotide plane around a horizontal axis. A
given base pair may be distorted in more than one of these parameters. Vstep analysis is a method of examining these, and other physical parameters such
as ‘shift’, in terms of a single number that derives from the transition from one base pair to another [131,137]. (d) DNA bendability.



insufficient to obtain an initial set of preferred sequences.

Because nonpreferred sites are likely to vastly outnumber

preferred sites in the genome for most vectors, any genome-

wide screen will produce a mix of indistinguishable

preferred and nonpreferred sites. For example, we have

estimated that of the approximately 200,000,000 TA sites

in a human genome, only about 10% fall into the preferred

category [115], although in the screen conducted by Yant and
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Figure 3
Approaches to identification of DNA structural characteristics governing insertion site preferences for Tol2 and SB transposons. (a) Averaging of all
available insertion sites smoothes trends observed in individual plots. Plot of Vstep profiles of 18 20-base-pair Tol2 insertions (left, from Balciunas and
coworkers [89]) compared with 18 randomly generated sequences (right). Averages are shown by thick black lines. Although individual Tol2 profiles
appear jagged, peaks are not position specific, and so the plot of the average of 36 sites reveals only one small, distinct peak. Individual random sequences
also appear jagged, but an average of over 9,000 random sequences is a flat line. (b) Analyses of Tol2 insertion site A-philicity profiles, compared with 18
random sequences. Trends are similar to Vstep patterns. (c) Plot of trinucleotide bendability for Tol2 and random sites, indicating only small common
trends compared with random sequence. The random sequences in panels a to c were acquired from a 10 megabase portion of human chromosome 1p.
(d) Bendability plots for Sleeping Beauty (SB) insertion sites (from Yant and coworkers [106]). The average trinucleotide bendability at each position of
12-base insertion sites is shown for 574 insertions (‘all sites’), as well as a subset of 189 insertions classified as ‘preferred’ based on Vstep profiles
(‘preferred sites’). Random TA sites are shown in green, and random sites in black. This plot shows how identification of ‘preferred’ sites can be useful in
distinguishing structural patterns for common insertion sites; preferred sites (based on common patterns of protein-induced deformability in recurrently
hit sites) exhibit an overall increase in a separate parameter, DNA bendability, when ‘basal’ sites are removed.



coworkers [106] 189 out of 573 (33%) genomic SB insertions

were classified as preferred sites. Analysis of the bendability

of all SB sites mapped in the screen reported by Yant and

coworkers shows a peak at the center of the insertion site

that is defined by the central TA dinucleotide. However,

when only the preferred sites are analyzed, the surrounding

nucleotides exhibit a much greater level of bendability

(Figure 3d). This effect is in spite of the fact that the

preferred sites were identified based on protein-induced

deformability, Vstep, which is distinct from DNA bendability.

The lesson from these studies is that most genome-wide

datasets (particularly from experiments involving some

form of genetic selection) will probably show a similar

dilution effect of preferred sites by greater numbers of

nonpreferred sites.

There is a caveat to the analyses discussed up to this point;

they all assume that the structures around integration sites
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Figure 4
Variability in DNA structural characteristics between insertion sites for various vectors. All (a) A-philicity, (b) trinucleotide bendability, and (c) Vstep
values were summed across 12 nucleotides and averaged for all sites of each vector class. (d) ‘Jaggedness’ was measured by taking the absolute value of
differences between adjacent Vstep values, which were then summed and averaged, as in panels a to c. Error bars represent standard deviations. ‘SB’
indicates 574 Sleeping Beauty integrations into human cells identified by Yant and coworkers [106]. ‘SB preferred’ indicates a subset of 189 sites from the
Yant dataset classified as ‘preferred’ by ProTIS [116]. ‘tol2’ indicates 63 Tol2 integrations [89]. ‘piggyBac’ indicates 297 piggyBac insertions deposited into
Genbank by Exelexis containing a single TTAA sequence flanked by 10 bases on each side. ‘P-element’ indicates 920 P-element insertion sites mapped by
Liao and coworkers [130]. ‘ASV’ indicates 357 avian sarcoma leukosis virus (ASLV) insertions into 293T-TVA cells. ‘HIV’ indicates 334 HIV integrations
into SubT1 cells. ‘MLV’ indicates 695 murine leukemia virus integrations into HeLa cells. ‘SIV’ indicates 148 simian immunodeficiency virus integrations
into CEMx164 cells. All P-element, ASV, HIV, MLV, and SIV sequences were kindly provided by Dr Xioalin Wu. All sites were compared with three sets
of over 9,000 randomly selected 12-mers from 10 megabase sections of human chromosome 1 (Hs), mouse chromosome 4 (Mm), and Drosophila
chromosome 3L (Dm), and 10,000 randomly selected TA and TTAA sites from human chromosome 1.



have an absolute center of reference, defined by the site into

which the vector integrated. Such analyses could miss

structural patterns that are not strictly position specific. For

instance, an integrase may have preference for a local region

that is highly bendable or deformable, but it may not have a

requirement for a particular pattern (or sequence). To

account for this, we have examined a parameter called

‘jaggedness’, which we define as the degree to which Vstep

values alternate from high to low, as in the preferred ‘zigzag’

sites for SB. We calculated jaggedness by taking the sums of

the absolute values of the differences between adjacent Vstep

values across a sequence, so that a jagged/zigzag site would

have a higher total value than a flat, basal site, which should

have a jaggedness value close to 0. Jaggedness values for

several vectors are shown in Figure 4. Although jaggedness

values at insertion sites are similar to Vstep values for most

vectors (with the possible exception of Tol2), the jaggedness

patterns show a high degree of variability across genomic

sequences and are somewhat independent of Vstep patterns

(for instance, the c-myc gene; Figure 5).

Integration preference versus oncogenic selection
We see two uses for profiling the insertion site preferences

for integrating vectors. First, in functional genomics screens,

insertion profiles that emerge can be compared with

expected profiles that are only structure based rather than

genetics based. A striking example of this is evident in the

oncogene screens conducted with the SB transposon [58,59],

which is illustrated in Figure 6 with respect to the Braf gene.

Integration sites that emerged from the screen are shown

across the entire locus (Figure 6b) and in a selected region

comprising exons 10-13/introns 10-12 (Figure 6d), where

most of the integrations were selected because of induced

expression of a truncated gain-of-function kinase polypeptide.

Panels a and c show insertion site preference scores across

the region obtained using an automated script (ProTIS) that

counts and scores preferred TA dinucleotide insertion sites

based on Vstep values [115]. The results shown in Figure 6

make two strong points. The first is that the frequency of

oncogenic insertions in a select region correspond to that

predicted on the basis of preference profiling (Figure 6c,d;

specifically, microscale structure can be a good predictor of

integration site preference). The second is that many

predicted hotspots (Figure 6a,b) were not sites that lead to

oncogenesis. The combination of these two observations

enhances the biologic importance of the integrations into

introns 11 and 12.

The second application of predicting profiles of vector

insertions may be as part of a risk assessment program.

Although current understanding of integration site prefer-

ences for most vectors is still inadequate to allow prediction

of the probability of integration into specific genes, genome-

wide integration datasets may suggest the likelihood that a

vector will integrate within the general vicinity of a specific

gene. Similarly, analysis of DNA structural characteristics

may be used to assess the likelihood that each vector will

integrate within specific regions of genes. For example,

although Braf can act as a potent oncogene, the pattern of

SB integrations into Braf suggest that integrations into a

relatively small region of the gene (introns 11 and 12) are the

most highly selected for oncogenesis, in spite of the presence

of hotspots across the entire gene. Thus, the range of

possible insertions that are capable of generating an

oncogenic transcript, combined with the relative ‘attractive-

ness’ of the sequence across these regions, will dictate the

chances of insertional activation.

An analysis of several structural characteristics is presented

for the mouse c-myc gene (Figure 5), the human ortholog of

which is activated in many cancers [141]. The figure

highlights the 3 kilobase region encompassing the promoter

that harbors the bulk of oncogenic retroviral integrations at

this locus that have been deposited in the Retroviral-Tagged

Cancer Gene Database (RTCGD [142]). The sequence was

divided into 50 base pair (bp) bins, and the total values for

Vstep, A-philicity, jaggedness, and bendability were summed

across each bin. Measured in 50 bp bins, these structural

parameters are highly variable across the sequence, and vary

independently from each other. Actual oncogenic retroviral

insertions observed in insertional mutagenesis screens and

deposited into the RTGCD are shown for comparison in

Figure 5a. The profiles indicate two features of transposons

under consideration for gene therapy. First, the most likely

sites for SB transposons to integrate (Figure 5g) are shifted

away from the most commonly found activation sites, as

revealed by retroviral integrations (Figure 5a). Second, the

profile of TTAA sites, required by the piggyBac transposon

(Figure 5f), is similar to the preferred SB sites, and further

shows that some regions harboring retroviral integrations

contain no TTAA sequences, making piggyBac insertions

into these sites impossible. Thus, at first approximation, it

would appear that the transposons are less likely to insert

close to the c-myc promoter than are retroviral vectors. In

support of this, c-myc is infrequently hit in SB-based inser-

tional mutagenesis screens; to date, only one c-myc integra-

tion has been deposited into the RTCGD. In contrast, many

retroviral insertions into c-myc have been mapped, although

the number of deposited retroviral insertions is much higher

than the number of transposons.

The relative lack of SB insertions into c-myc may be due to

either a paucity of favorable SB insertion sites in regions of

the gene competent for oncogenic activation, or an overall

lack of oncogenic selection for insertions into this gene. In

support of the former, transposon-free amplification of c-

myc was one of the few genomic aberrations observed in

tumors harboring mobile transposons (Largaespada DA,

Collier LC, Hackett CS, unpublished observations), suggest-

ing that activation of c-myc plays a role in the biology of

these tumors (there was probably oncogenic selection for the
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Figure 5
Insertion prediction for transposon vectors surrounding the c-myc locus on mouse chromosome 15. A 3 kilobase sequence from the mouse c-myc locus
(from 61,813,400 to 61,816,400 base pairs) harboring 37 retroviral insertions submitted to the Mouse Retrovirus Tagged Cancer Gene Database [155] is
shown. The first exon and intron of c-myc are shown in orange; the upstream promoter sequence is shaded in yellow. (a) Retrovirus insertion frequency
per 50 base pair (bp) segment. Panels (b) to (g) show DNA structural characteristics at 50 bp resolution. (b) Total Vstep for each bin across the region. (c)
Total Vstep jaggedness. (d) Total A-philicity values. (e) Total trinucleotide bendability. (f) Number of TTAA sequences per 50 bp bin, representing the total
number of possible piggyBac insertion sites. Notably, many regions harboring oncogene-selected retroviral insertions have few or no TTAA sequences,
suggesting that the likelihood of a piggyBac insertion causing an oncogenic event may be lower than that for retroviruses. Arrow represents a potential
‘hotspot’ for integration, over 1 kilobase upstream of exon 1. (g) ProTIS prediction shows a similar, low incidence of preferred SB integration sites. Arrow
indicates predicted hotspot for integration over 1 kilobase upstream of exon 1, and slightly upstream of the TTAA hotspot. SB, Sleeping Beauty.



genomic amplicon). Similar ProTIS analysis of the LMO2

locus revealed the most preferential integration sites for SB

transposons that were considerably farther away from the

LMO2 promoter than mapped integrations by activating

retroviruses [115]. That said, it is evident that prediction of

vector integration is not precise and even rare integrations

into unfavorable sites have a potential to promote oncogenic

expansion, as indicated in Figure 6.

Vector behavior in risk/outcome assessment:
lessons from intentional oncogenic insertional
mutagenesis
In spite of the inherent behavior of each integrating vector,

existing evidence suggests that the oncogenic potential of

any given vector can be attenuated depending on how it is

used. As with retroviruses, the SB transposon has been used

for functional genomics as well as for delivery of therapeutic

genes in mouse models of inherited disease. These studies

were motivated by two limitations of retroviruses for

insertional mutagenesis: the limitation of viruses to infect

specific cell types and the tendency of many viral vectors to

insert near and activate a possibly limited number of genes

[48]. In two recent SB mutagenesis screens, a transgenic

concatemer of T2/Onc transposons carried in the germlines

of mice was remobilized in somatic cells by a trans-acting,

transgenic SB transposase. The two screens differed in

expression level, domains of expression, and activity of the

SB transposase, as well as the copy number of the trans-

poson concatemers [58,59]. An important finding from the

two studies was that the oncogenic potential of the same

T2/Onc transposon vector, which was engineered specifically
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Figure 6
SB insertions across the mouse Braf gene. Thirty Sleeping Beauty (SB) insertions deposited in the Retroviral-Tagged Cancer Gene Database were mapped
across the entire Braf transcript and 10 kilobases upstream (NCBI 36 build; note that Braf is transcribed right-to-left). Most oncogenic insertions
occurred in introns 11 and 12 (formerly annotated as intron 9). (a) ProTIS profiling across the entire gene reveals predicted hotspots for SB integration,
but (b) most actual integrations were found in a relatively low scoring region corresponding to introns 11 and 12. A blowup of this local 4.9 kilobase
region demonstrates that (c) ProTIS scores closely match (d) patterns of actual transposon integration. bp, base pairs.



to activate oncogenes and cause cancers in mice, varied

between no observable phenotype on one end and rapid

development of severe cancer at birth on the other. The

oncogenic effect was directly related to the number and

types of cells at risk for transposon-induced mutations and

perhaps the remobilization rates. The same properties may

be relevant for a wide range of other gene therapy vectors.

Coupled with the lack of a preference to integrate near

genes, the chances that an SB insertion of a therapeutic gene

(in contrast to a genetic cassette designed to wreak havoc on

transcriptional units) will activate a neighboring host gene

would seem to be lower than for vectors that have an affinity

to integrate into genes [65,97]. This feature may be a

disadvantage for SB-based functional genomics studies

aimed at mutating genes, but it may be advantageous for

gene therapy.

Engineering safer vectors
As an alternative to finding vectors that do not target genes,

several groups are attempting to target vector integration to

a specific region of the genome by generating integrase and

SB transposase molecules that are fused to DNA-binding

domains that recognize specific DNA sequences [143,144]. It

appears that targeting introduces a reduction in activity,

without much increase in specificity of integration into

specific sites in a mammalian genome [144,145]. This is not

surprising if the ability of SB transposase to integrate

promiscuously into TA sites is not abridged. There are about

2 × 108 potential TA-dinucleotide SB integration sites into

which SB transposons can integrate, of which it is estimated

that 2 × 107 are preferred integration sites [115]. Consequently,

the chances of a sequence-specific targeting motif added to

SB transposase actually guiding transposition to a specific,

low-copy target sequence is expected to be extremely low

compared with the chances of integrating into any of the

millions of other available TA sites. Similarly, to overcome

the risk for activation of neighboring genes following vector

integration, self-inactivating vectors are being engineered to

have diminished ability to activate genes over long distances

[146,147], although it is not clear whether these vectors will

be safer [148]. The φC31 phage integrase system targets

relatively few sites in mammalian genomes [119,149], but it

appears to introduce a relatively high level of chromosomal

recombination [149-151]. Thus, further development of safer

vectors remains an open area of investigation.

Conclusion
Ultimately, functional genomics and gene therapy would like

to answer the same question for any given vector (while

hoping for opposite outcomes) - what are the chances of

activating genes? There are four major factors influencing

the answer, with each retroviral and transposon having

different characteristics for each factor. First, what is the

overall tendency of the vector to integrate into genes or

promoters? Second, are there adequate local target sites

around genes of interest to attract the vector? Third, over

what distance can the vector activate a gene? Fourth, to what

end can the integration activity be modulated to control the

overall likelihood of hitting specific insertion sites close

enough for activation of specific genes? Theoretically,

knowing each of these variables for every vector would allow

researchers to choose the vector with the most utility and

lowest risk for the specific purpose intended. In gene

therapy, these parameters translate into the risk for hitting a

specific oncogene or tumor suppressor gene that could lead

to a severe adverse effect. If, in the future, hotspots for

integration of SB and other potential gene therapy vectors

can be predicted, then we should be able to assess more

accurately and modify the various risks for adverse effects

from therapeutic vectors. This goal should be within reach in

the coming years.

Note added in proof
Since submission of the manuscript, adeno-associated viral

vectors (AAV) have been implicated in the induction of

hepatocellular carcinomas in mice [152] and in the death of a

patient in a clinical trial for treatment of rheumatoid

arthritis [153].
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