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Abstract

To meet the increasing demand of linking sequence information to gene function in vertebrate
models, genetic modifications must be introduced and their effects analyzed in an easy, controlled,
and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out,
despite continuous methodologic improvement and extensive effort. Moreover, a large proportion
of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of
gene function, new genetic tools and strategies are currently under development in these model
organisms. Loss of function and gain of function mutagenesis screens based on transposable
elements have numerous advantages because they can be applied in vivo and are therefore
phenotype driven, and molecular analysis of the mutations is straightforward. At present,
laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly
because of their earlier discovery in these organisms. Transposons have already been found to
facilitate functional genetics research greatly in lower metazoan models, and have been applied
most comprehensively in Drosophila. However, transposon based genetic strategies were recently
established in vertebrates, and current progress in this field indicates that transposable elements
will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review
we provide an overview of transposon based genetic modification techniques used in higher and
lower metazoan model organisms, and we highlight some of the important general considerations
concerning genetic applications of transposon systems.
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Introduction
Class II transposable elements (TEs) that move in the host

genome via a “cut and paste” mechanism are the most useful

for genetic analyses, because of their easy laboratory

handling and controllable nature. A schematic outline of the

transposition process of a Tc1/mariner TE is presented in

Figure 1a. Class II TEs are simply organized; they encode a

transposase protein in their simple genome flanked by the

inverted terminal repeats (ITRs). The ITRs carry the

transposase binding sites that are necessary for trans-

position (Figure 1a). The transpositional process can easily

be controlled by separating the transposase source from the

transposable DNA harboring the ITRs, thereby creating a

non-autonomous TE. In such a two component system, the

transposon can only move by trans supplementing the

transposase protein (Figure 1a,b). Practically any sequence

of interest can be positioned between the ITR elements,

depending on experimental need. Transposition will result

in excision of the element from the vector DNA and

subsequent integration into a new sequence environment.

In this review we discuss the utility of class II TEs for various

genetic modifications in metazoan model systems. We do not

cover applications of class I retrotransposable elements, such



as L1; for coverage of such elements, the reader is referred to

another review included in this supplement [1]. We describe

those features of the transposons that are important to

consider for their proper use as genetic tools. Next, we provide

an overview of their applications in the most prominent animal

models, with a focus on Caenorhabditis elegans and Droso-

phila. Finally, we discuss and suggest directions for further

development of transposon technology in vertebrate genetics.
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Figure 1
‘Cut and paste’ DNA transposition. (a) Scheme of a class II ‘cut and paste’ transposable element (TE) and that of a binary transposition system created
by dissecting the transposase source from the transposon. (b) Outline of the mechanism of ‘cut and paste’ transposition and the DNA repair events that
complete the transposition reaction. The model shows transposition of a Tc1/mariner element. The transposase introduces double strand DNA breaks at
the ends of the transposon. Tc1/mariner elements generate 3’ overhangs of varying length at the excision sites. At the excision site, nonhomologous end
joining (NHEJ) typically generates a footprint (FP) that consists of the terminal base pairs of the transposon. Homology dependent DNA repair (HDR)
can also contribute to repairing the transposase induced gaps. HDR can restore the wild-type sequence in cells that are heterozygous for the transposon
insertion, if the homologous chromosome is available as a template. HDR can also restore either complete or partial transposon sequences at the
excision site, if a homologous template containing a copy of the transposon is available. HDR may also generate deletions of flanking sequences at the
excision site. The excised transposon integrates into a new TA target sequence. The single stranded gaps flanking the integrated element are repaired
and give rise to target site duplications (TSD) flanking the newly integrated element. ITR, inverted terminal repeat.



General considerations in the application of
transposons as DNA delivery tools
The class II TEs most frequently used in metazoan models

are listed in Table 1. Five out of the eight TEs listed belong to

the Tc1/mariner family. The predominant application of the

Tc1/mariner elements results mainly from their broad host

range [2] as compared with other TEs (for example, the P

element is only active in Drosophila flies). The basic require-

ments for applicability of a TE in any given model organism

are that there is a sufficient level of transpositional activity

in the given host and that there is a lack of endogenous

copies in the targeted host genome (in order to avoid

mobilization of resident copies). Studies aimed at developing

hyperactive transposon mutants have established that it is

possible to increase transpositional activity using various

laboratory modifications [3-5]. However, host restrictions of

P elements could not be circumvented, despite much effort

[6]. Because host specificity barriers cannot easily be

challenged, transposon based genetic technologies in all of

the major model organisms were dependent on the discovery

of TEs that are active in the species of interest (for details,

see below). The use of TEs that originated from distantly

related species could guarantee satisfaction of the second

requirement, if they still exhibit acceptable activity in the

desired host. However, cross-mobilization is not fully

predictable and can be an issue, as was shown for the related

hAT superfamily elements Hobo and Hermes [7].

Other important phenomena should also be considered

when designing an individual experiment, such as cargo

capacity of the TE, sensitivity to over-production inhibition

(OPI), integration site preference, and transposition to

linked chromosomal sites (‘local hopping’).

Capacity for cargo
For mutagenesis purposes, small TE vectors can be designed

that retain two basic functions: the cis requirements for

transposition and a mutagenic feature designed to disrupt

normal gene function. However, size does matter for trans-

genesis purposes, including the generation of germline

modified laboratory stocks of model species and species of

biotechnologic interest, as well as for human gene therapy

applications. In these instances, transgene constructs that

include coding regions of genes with all of the necessary

transcriptional regulatory elements can exceed several

kilobases in size. The effects of increasing the size of the

DNA fragments cloned between the ITRs of the different TEs

are listed in Table 1. Tolerance for cargo size varies greatly

between elements. Although a 100 kilobase extended P

element that is capable of transposition has been reported
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Table 1

The most frequently used transposable element systems in metazoan models and some of their main characteristics

Transposon Target site 
Transposon name family Tolerated cargo size sequence Chromatic integration pattern 

Minos (Drosophila hydei) [112] Tc1 Possibly similar to other Tc1/mariner TA [113] No preference for genes. Gene hits 
transposons dominantly target introns [114]

Mos1 (Drosophila mauritiana) [115] Mariner Sensitive to increased cargo size [116] TA [115] Possibly similar to other 
Tc1/mariner transposons

P element (Drosophila melanogaster) P Usually the cargo size is not limiting Heterogenic Bias for 5’ regulatory sequences 
[44,45] utility (10 to 20 kb routinely handled) [117] [61,62]

piggyBac (Trichoplusia ni cell line piggyBac Efficiency drops above 9.1 kb in TTAA [119] High preference for transcription 
TN-368) [118] pronucleus injected mice [68] units, (but the pattern is distinct 

from the P element pattern) 
[11,62,68]

Sleeping Beauty (salmonid fish) [67] Tc1 Increased cargo size exponentially TA [67] Slight preference for genes. Gene 
decreasing the efficiency in cultured hits dominantly target introns 
cells [120] [12,121]

Tc1 (Caenorhabditis elegans) [29] Tc1 Increased cargo size exponentially TA [123] Mild preference for introns in 
decreasing the efficiency in cultured C. elegans [124]
cells [122]

Tc3 (C. elegans) [125] Tc1 Possibly similar to Tc1 TA [123] Mild preference for introns in 
C. elegans [124]

Tol2 (Oryzias latipes [medaka fish]) [126] hAT 11.7 kb did not reduce transgenesis Heterogenic May prefer the 5’ regions of genes 
rates in zebrafish [127]; [72] [128]
>10 kb transposons jump efficiently in 
human cells [98]

kb, kilobases.



[8], members of the Tc1/mariner family are inhibited by

increasing size. The minimal 5’ and 3’ terminal sequences

necessary for highly active transposition are also well

defined for the elements listed in Table 1.

Over-production inhibition
OPI describes a phenomenon of decreasing efficiency of

transposition beyond a certain level of cellular transposase

concentration. OPI has been described for a wide variety of

TEs. Of the TEs listed in Table 1, it appears to affect at least

the Tc1/mariner elements [3,9] and piggyBac [10] (although

a recent study [11] was unable to confirm OPI of piggyBac).

Several lines of direct and indirect evidence suggest that

Tc1/mariner transposases act as oligomers. OPI is thought

to occur when transposase monomers are present in excess

concentrations; thus, in the absence of available DNA

substrate, they form inactive or weakly active oligomers.

Therefore, increasing the amount of transposase protein can

have an inhibitory effect on transposition and, accordingly,

the ideal level of transposase expression is not necessarily

the highest level. In case OPI is an issue in a given

experimental setup, it is advisable to test several conditions

for transposase expression.

Integration site preference
Target site preference varies among transposons. For

example, at the level of primary DNA sequence, the Tol2

element does not appear to exhibit a pronounced preference

for any sequence for insertion. In contrast, the piggyBac

transposon targets the sequence TTAA, whereas all

Tc1/mariner TEs target their integration into TA dinucleo-

tides (Table 1). In the case of Sleeping Beauty (SB), this

preference was studied in detail, and palindromic AT repeats

were found to be preferred sites for integration [12]. Compu-

tational analyses revealed that target selection is determined

primarily on the level of DNA structure, and not by specific

base pair interactions. It was shown that preferred target

sites have a bendable structure and increased distance

between the central base pairs [12,13]. It is possible that

similar structures are favored by other Tc1/mariner TEs.

This could be interpreted as meaning that integrations will

occur into any DNA available, depending solely on these

preferences. This, however, is not the case. In the context of

chromatin, Tc1/mariner elements have no or weak

preference for transcription units, the 5’ regulatory regions

are disfavored, and most hits in genes are localized in

introns (Table 1). On the contrary, the P element has a clear

preference for the 5’ regulatory regions of genes. The P

element in this respect is similar to retroviruses, because

murinie leukaemia virus prefers the 5’ end of transcription

units, whereas HIV exhibits strong preference for the entire

length of transcription units (for review [14]). This control of

integration at the chromatin level is poorly understood. One

possible explanation for this can be the affinity of the

transposase for unknown, chromatin associated factors.

Supporting this hypothesis, a recent study showed that a

host protein, lens epithelium derived growth factor, is

involved in directing HIV integration into active genes [15].

Integration site preference can greatly influence the utility of

transposon vectors for different applications. For example,

human gene therapy protocols would require application of

transposon vectors showing the least preference for genes,

for obvious safety reasons. On the contrary, mutagenesis

screens can capitalize on elements that exhibit a tendency to

land in genes. In this respect, the utility of transposons for

mutagenesis is greatly enhanced by the availability of multiple

vector systems with distinct preferences for insertion.

Local hopping
‘Local hopping’ describes a phenomenon of chromosomal

transposition in which transposons have a preference to land

into cis linked sites in the vicinity of the donor locus. Local

hopping appears to be a shared feature of cut and paste

transposons. However, the actual extent of hopping to linked

chromosomal sites and the interval of local transposition

varies. For example, the P element prefers to insert within

about 100 kilobases of the donor site at a rate that is about

50-fold higher than that in regions outside that interval [16].

Similarly, in germline mutagenesis screens in mice using SB,

30% to 80% of transposons have been observed to reinsert

locally on either side of the transposon donor locus [17-19].

In contrast to the P element, SB appears to have a much larger

local transposition interval between 5 and 15 megabases [18].

The local hopping feature not only differs between different

transposons; a given transposon may also exhibit great

variation in different hosts, and variations can be seen

between different donor loci even in the same host. For

example, in case of Ac element transposition in maize, about

50% to 60% of the reinserted elements were distributed

within a 5 cM distance of the donor site [20,21], whereas the

frequency of local hopping greatly varies in Arabidopsis and

tobacco, depending on the chromosomal location of the

donor site [22-24]. Moreover, local hopping of the Ac

element in tomato appears to be overall less prevalent than

in maize [25,26], and differences with regard to its tendency

toward local hopping out of different transposon donor loci

have been observed [27]. This variation in local hopping of

the same element could possibly be explained by varying

affinity of the transposase to unknown, chromatin associated

factors in different hosts [28]. If that is the case, then it can

be assumed that transposase mutants with altered tendency

for local hopping could be created.

Local hopping can play a significant role in mutagenesis

using chromosomally resident transposons. In practical

terms, local hopping limits the chromosomal regions acces-

sible to a transposon jumping out of a given chromosomal

site. To circumvent this limitation, establishing numerous

‘launch pads’ to initiate transposition out of different loci

can be a viable strategy to increase coverage of gene

mutations. On the other hand, local hopping can be useful
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for saturation mutagenesis within limited chromosomal

regions. Even for that purpose, however, starting with more

donor sites could be the most effective arrangement, because

even two donor sites in closely related loci can produce

strikingly different local hopping frequencies [27].

Current state of applications of transposon
systems in prominent metazoan model organisms
In all model organisms described in the following sections, the

TEs are used via slightly different approaches to reach similar

goals. This is because of the distinct biology of the model

organisms. Alterations in culturing or maintenance and other

features of the organisms, and the features of the TEs alike, all

influence the methodology of harnessing transposons as

experimental tools in the particular model systems.

Nematodes: Caenorhabditis elegans
In C. elegans, Tc1 and Tc3 (see Table 1) have been widely

used for insertional mutagenesis during the past 20 years.

The reason for this extensive use is their early discovery in

this model organism. However, their use is also limited here

because of two major drawbacks. First, all known isolates of

C. elegans contain multiple copies of Tc1 and Tc3, which

makes identification of the relevant mutagenic insertions

difficult. The second drawback is that germline mobilization

of Tc transposons cannot be controlled in mutator strains, in

which these elements are active in the germline. However,

these drawbacks can to some extent be circumvented,

because the Tc insertion sites are well known in most of the

laboratory strains, and because of differential transpo-

sitional activity in the germline of the different strains.

With respect to Tc1 copy numbers, the strains can be divided

to low copy strains such as Bristol N2 (containing approxi-

mately 30 copies) and high copy strains such as Bergerac

(containing >500 copies per haploid genome) [29-31]. Tc1 is

active in somatic cells in all genetic backgrounds examined,

but its germline activity is undetectable in Bristol and 1,000-

fold lower as compared with somatic cells in Bergerac.

Mutants have been isolated that exhibit increased Tc1 (and

occasionally other TE) activity in the germline, and their

certain derivatives have low Tc1 copy numbers. These

mutant strains with elevated germline transposition rates

are the so-called mutator strains. Generally, the mutations

in the mutators affect the RNA interference and transgene

co-suppression pathways [32]. The mut-2 mutator exhibits

the highest frequency of transposition, at about 40-fold

above Bergerac [33]. Some of its derivatives, in which the

original mut-2 strain is back-crossed into the Bristol

background, harbor fewer Tc1 copies. Intensive germline

transposition in the mutator strains as well as stabilization of

the new insertions by repeated back-crosses to low copy

nonmutator strains can be achieved. The C. elegans model

has significant advantages in supporting rapid crossing and

selection procedures needed for mutagenesis by transposons.

More recently, use of the heterologous transposon Mos1

(Table 1) has also been established in C. elegans [34,35]. The

Mos1 elements are absent from the C. elegans genome;

therefore, different experimental strategies involving this

transposon could also be developed in C. elegans (see

below).

Transposon-mediated reverse genetic approaches
Transformation of C. elegans is traditionally carried out by

microinjection of DNA into the cytoplasm of the syncytial

part of the gonad [36]. This predominantly results in forma-

tion of long, extrachromosomal arrays (a special character-

istic of C. elegans) that can pass through the germline.

Infrequently, chromosomal integrations can also occur,

depending on the injection conditions. Because this method

is efficient, and the extrachromosomal arrays can be

maintained in the transgenic strains for a long period of

time, the transposon systems have not typically been utilized

for the purpose of simple transgenesis.

Reverse genetics in C. elegans has been hampered by the

practical inability to target specific mutations to a selected

gene via homologous recombination based gene targeting.

Developing this technology in C. elegans has been un-

successful for a long time, because of the inefficient homolo-

gous recombination and chromosomal transformation in

this model organism. Recently, these difficulties were

addressed by the introduction of DNA into the worms using

novel methodology, which involved more efficient harvesting

of chromosomal integrations and use of the new selection

marker unc-119 [37]. This method is not yet in routine use,

however.

TE based mutagenesis is suitable for the purpose of target

selected gene modifications in C. elegans. This approach

relies on screening mutant libraries created by transposon

insertions. In C. elegans it is relatively easy to isolate a

specific transposon insertion in any genomic region of

interest, using a polymerase chain reaction (PCR) based sib-

selection method [38]. One difficulty in generating loss of

function phenotypes with transposon insertions is that by

using endogenous, unmodified Tc1-like elements, the chance

for insertions creating null alleles is very low. For example, it

was shown that animals homozygous for transposon

insertions in the myosin light chain 2 (mlc-2) gene are

phenotypically wild type. Interestingly, not even insertions

in exons caused loss of function effects, because different

atypical splicing events removed the Tc1 part out of the mlc-2

pre-mRNA, leaving only small, in-frame deletions and

insertions [39]. Analysis of five more Tc1 insertions in two

other genes revealed that each mutant expressed substantial

quantities of mature mRNA from which most or all of the

Tc1 sequences have been removed.

To circumvent the above problem and to obtain knockouts

via TE insertions, a strategy of searching for chromosomal
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deletions following TE excision can be used. The following

mechanism is suggested to explain transposition associated

deletions. TEs generally create target site duplications upon

insertion and leave footprints upon excision. These foot-

prints are generated when the double strand break (DSB),

created by the transposase at the excision site, is repaired by

the nonhomologous end joining DNA repair pathway

(Figure 1b). Alternatively, the DSB can undergo homology

dependent DNA repair (HDR). This may not result in any

change to the original sequence, if the wild-type homologous

chromosome is available as template, and it is used for the

repair. HDR can also fill back transposon sequences to

different extents, in case a homologous template containing

the transposon is available for repair (Figure 1b). However,

one of the free DNA ends can scan the DNA at the other end

for a short homology; when this is encountered, DNA repair

reactions ligate the two ends, thereby deleting the intervening

DNA. In the study conducted by Zwaal and coworkers [40],

gene specific PCR primer pairs were used to detect Tc1

insertions in five genes, and subsequently to detect the DNA

repair mediated partial deletions of these genes following

transposon excision. Such deletion derivatives were detected

at a surprisingly high frequency (>10-3). This approach is

definitely useful in a model organism such as C. elegans that

has short generation time and easy culturing properties.

However, the transposon insertion-deletion method described

above has limitations as compared with homologous

recombination based approaches. Namely, it is limited to

isolating only those deletions that are of a size that is

detectable by PCR and that occur between the two pre-

determined gene specific primers; therefore, it is not useful

for creating gene mutations other than null alleles. To

circumvent these limitations, a method based on transgene

directed, transposon mediated gene conversion was recently

introduced [41]. This approach capitalizes on the

observation that an episomal transgene construct can also

serve as a template for the repair after the excision of the TE.

In this protocol, a plasmid carrying an engineered gene

modification and some regions homologous to the targeted

locus is introduced into a mutator C. elegans strain

harboring the gene specific Tc1 insertion. This strain is then

expanded into independent populations, in some of which

the DSBs generated by transposon excision are repaired

from this extrachromosomal template. These populations

are subsequently tested for the presence of the desired

mutation. The efficiency of this method seems to be about

tenfold higher than that of the standard insertion-deletion

approach mentioned above. Recently, the protocol was

adapted to the use of Mos1 transposition in worms [42]. The

advantage of using a heterologous TE is that background

transposition events can practically be ruled out.

Transposon mediated forward genetic approaches
Mutagenic insertions for forward genetics involve molecular

tags that are used to clone the mutated gene rapidly.

Therefore, the above strategy utilizing the Tc1 transposon is

rather cumbersome for use in forward genetics research in

C. elegans, because the Tc1 insertions do not provide unique

tags, and so it is difficult to identify the relevant insertion

responsible for a given phenotypic change. Moreover, the

Tc1 elements are active in all C. elegans strains, at least in

their soma. Therefore, a phenotype driven insertional muta-

genesis screen is more promising by using the heterologous

transposon Mos1, which expedites the process of identifying

the mutated genes [35,43]. It has been shown that

mobilization of Mos1 can also be carried out via the generally

used binary system of a non-autonomous transposon and a

separate transposase source (Figure 1a). These two

components are maintained as extrachromosomal arrays in

separate strains, and expression of the transposase protein is

controlled by a heat shock promoter [34]. The mutagenicity

of the Mos1 system is in the range of that of Tc elements in

mutator strains [43]. Therefore, the newly developed Mos1

system is a promising tool for use in insertional mutagenesis

in C. elegans.

Insects: Drosophila melanogaster
The predominantly used transposable elements in Drosophila

are the P element, piggyBac, Mos1, and Minos (Table 1). The

two closely related hAT elements Hobo and Hermes are also

used to some extent, essentially for simple transgenic

purposes. The most prominently used transposon in

Drosophila has been the P element. P elements are currently

active resident TEs in Drosophila. They have a very narrow

host spectrum, because they are not active outside the

Drosophila genus. P elements are thought to be very recent

invaders of the D. melanogaster genome, because they were

present in recently wild caught strains but not in laboratory

stocks established during the first half of the past century.

The source of this horizontal transfer was presumably

another Drosophila sp. The early discovery of the P element,

its high transpositional activity, and the P-element-free

nature of the D. melanogaster laboratory strains have made

this transposable element the workhorse of Drosophila

genetics research. Early mutagenesis schemes, similar to

some extent to the C. elegans mutator strain system, were

based on crossing two strains to mobilize P elements in the

genome, exploiting the phenomenon of P-M hybrid dys-

genesis [44,45]. However, use of hybrid dysgenesis was soon

exchanged for the easily controllable binary system

mentioned earlier. In contrast to Tc1 in C. elegans, building

of this system in Drosophila was facilitated by the fact that

the P element has no resident copies in the D. melanogaster

laboratory strains. This allowed the generation of transgenic

stocks each containing a separate component of the binary

transposon system in its genome: one element, encoding the

P element transposase, is carried by the ‘jump starter’ strain,

which, upon inter-crossing, efficiently mobilizes the second,

non-autonomous transposon in the genome of the ‘mutator’

strain [46]. This system is extremely suitable for forward

genetics applications.
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Transgenesis
Genetic transformation in Drosophila is traditionally done

by the injection of preblastoderm embryos [47]. Enhance-

ment of this transformation procedure via TE transposition

into the genome is a widespread technique. Practically, all

TEs listed above are successfully used for this purpose in

Drosophila. The injection of in vitro synthesized mRNA as a

transposase source can further enhance the efficiency of this

technique because of the more rapid availability of the

transposase, resulting in reduced transgene mosaicism in

the embryo and therefore elevated germline transmission

rates. For example, in the case of Minos based transfor-

mations, such methods have been shown to yield germline

transgenesis rates about tenfold higher as compared with

straight plasmid injections [48]. Moreover, the application

of insulator sequences in combination with TEs can facilitate

reliable transgene expression, and may protect endogenous

genes from the effect of enhancer elements carried by the

transposon construct. Indeed, a recent study demonstrated

the usefulness of scs/scs’, gypsy, and β-globin HS4

insulators to minimize position effects influencing the

expression of transgenes delivered by the piggyBac trans-

poson in Drosophila [49].

Transposon-mediated reverse genetic approaches
Homologous recombination is fairly inefficient in flies. Thus,

classical gene targeting, as applied in mouse embryonic stem

(ES) cells, has not been successfully established in Drosophila.

However, induced DSBs can enhance recombination to some

extent, and can trigger HDR at the breakpoints; therefore,

the excision of TEs can efficiently facilitate gene conversion

events. Utilizing this phenomenon, targeted gene replace-

ment in Drosophila via P element induced gap repair has

already been reported (some 15 years ago) [50]. P elements

have also been used for the isolation of rare deletion

derivatives after element excision from a gene of interest, to

obtain null alleles [51], long before such a strategy was

applied in C. elegans.

Transposon-mediated forward genetic approaches
Insertional mutagenesis using engineered TEs has proven to

be one of the most productive and versatile approaches to

disrupting and manipulating Drosophila genes on a genome-

wide scale, and by far it leads the field among metazoan

model systems. The experimental strategies generally utilize

the ‘jump starter/mutator’ experimental setup, as described

above. The usefulness of these screens is strongly promoted

by the highly developed classical genetic tools and methods in

Drosophila.

The P element has been the most widely used vehicle for

these purposes. The mutagenicity of P element insertions is

higher than that of Tc1/mariner elements (Table 1). More-

over, P elements appear to transpose efficiently with large

cargo sequences inserted within the transposon (Table 1).

The early mutagenesis screens carried out in Drosophila

utilized vectors that harbor marker genes that are easy to

screen such as white, and functional bacterial components

(antibiotic resistance genes, origins of replication) that aid

molecular analysis of the transposon insertion sites. Vectors

of later generations were equipped with gene trapping

features, representing an improvement to the basic design.

The basic strategies employed to enhance the mutagenicity

as well as reporting capabilities of insertional vectors by

trapping transcription units are shown in Figure 2.

Moreover, elements of binary systems for controlled gene

expression such as the GAL4 DNA binding transcription

factor (GAL4)/GAL4-upstream activator sequence (UAS)

system, or for site-directed recombination such as the flip

recombinase (FLP)/FLP recombinase target (FRT) system

have also been incorporated into advanced vectors. Thus, a

range of versatile experimental designs using P elements for

insertional mutagenesis has been developed.

Enhancer trap screens are designed for the identification of

enhancers by activating a reporter gene within the P element

(Figure 2b). In early enhancer trap versions, the transposase

promoter itself was utilized as a weak promoter to capture

the enhancers in the genome [52]. Gene trapping is based on

the activation of a promoterless reporter gene that is depen-

dent on splicing between the exons of the trapped gene and a

splice acceptor site carried by the transposon (Figure 2c).

Thus, gene trap vectors both report the insertion of the

transposon into an expressed gene, and have a mutagenic

effect by truncating the transcript through imposed splicing.

Both enhancer and gene trap vectors have been combined

with the yeast GAL4/UAS transcription activation system

(Figure 2). For example, enhancer detection vectors that

direct the expression of GAL4 in a genomic integration site

dependent manner have been developed [53]. Therefore,

such vectors report the expression pattern of trapped

enhancer elements, and can also activate a cloned, UAS

driven gene of interest in a tissue specific manner

(specifically, in those cells in which GAL4 is expressed). The

system proved to be highly useful for identifying genes that

are involved in a variety of biological processes, and many

GAL4 driver lines have been created and made available to

the research community [54].

More sophisticated vectors that contain a polyA trap cassette

that reports insertion into a Pol II transcription unit have

also been developed (Figure 2d). Because polyA trap cassettes

have their own promoters, they can report insertion into

genes irrespective of their expression status in a given cell

type. Importantly, polyA trapping is not expected to be

mutagenic, because the vector is not designed to express the

downstream exons of the targeted gene at the protein level.

Therefore, polyA trap insertions are unlikely to cause

dominant effects. Dual tagging systems that combine both

gene trap and polyA trap elements (Figure 2e) have been

used both in mouse [55] and in Drosophila [56].

http://genomebiology.com/2007/8/S1/S1 Genome Biology 2007, Volume 8, Suppl 1, Article S1 Mátés et al. S1.7

Genome Biology 2007, 8(Suppl 1):S1



http://genomebiology.com/2007/8/S1/S1 Genome Biology 2007, Volume 8, Suppl 1, Article S1 Mátés et al. S1.8

Genome Biology 2007, 8(Suppl 1):S1

Figure 2 (for legend see following page)



Protein trapping (Figure 2f), similar to the trapping systems

described above, is also based on hybrid splicing events

between an endogenous gene and the transgene cassette

carried by the transposon; however, the vector is designed to

ensure that the inserted reporter manifests at the protein

level. A protein trap strategy to detect GFP tagged proteins

expressed from their endogenous loci has been developed by

Morin and coworkers [57]. The P element based PTT vector

was constructed to tag proteins randomly with an enhanced

GFP, without disrupting their subcellular localization. PTT

carries an artificial exon that encodes GFP and is deprived of

initiation and stop codons but flanked by splice acceptor and

donor sequences. To enhance protein tagging efficiency, a

series of constructs were created to allow reporter gene

activation in each of the three reading frames (Figure 2).

GFP chimeras typically retain the localization properties of

the trapped proteins, except when GFP disrupts a domain

necessary for subcellular targeting. Thus, transgenic lines

exhibiting tissue specific GFP expression and targeting the

GFP signal to virtually any compartment of the cell can be

recovered. A disadvantage of the system is that it relies on

the relatively rare intronic insertions of the P element. Other

transposons such as piggyBac may produce more intronic

insertions, which may be better suited to the requirements of

such a screen (Table 1; also see below).

Another way to manipulate a trapped transcription unit that

has already been proven to be useful is the targeted over-

expression and/or mis-expression system (Figure 2g). Using

this method, one can bring about over-expression of the full

length or truncated protein product (depending on the

position of transposon insertion) of the targeted gene,

thereby producing dominant phenotypes by overdosing the

affected gene product. An improved version of this method is

the modular mis-expression system developed by Rorth

[58]. It allows directed mis-expression of P element targeted

genes in any temporal or spatial pattern. It is practically the

reversal of the GAL4/UAS system. This modular mis-

expression system benefits from the insertional preference

of P element; specifically, it tends to insert upstream of the

ATG codon of transcription units [58]. Therefore, the

integrated transposon carrying UAS enhancer and promoter

elements can frequently over-express the native full length

protein. Such insertion screens can identify genes that, when

over-expressed or mis-expressed in a pattern of interest, give

a specific phenotype or modulate an existing mutant pheno-

type. For example, in the first screen conducted by Rorth [58],

when activated in the developing eye, 4% of insertions gave a

dominant phenotype. The next study by Rorth and coworkers

[59] demonstrated the usefulness of the system in genetic

interaction screens. They identified many known and new

genes involved in the migration of border cells in the ovary, by

suppressing the cell migration defect on a mutant background.

An important consideration for the mutagenicity of any

transposon is its insertional preferences. The insertion

pattern of P elements (and that of all other TEs) is non-

random (Table 1). Moreover, P element insertions have

numerous ‘hotspots’ and ‘cold regions’ on a genome wide

scale. Investigators at the Berkeley Drosophila Genome

Project have created and analyzed large collections of

insertions utilizing some of the vectors mentioned above

[60]. They found that, interestingly, the observed hotspots

can be divided to ‘common hotspots’ and ‘screen specific

hotspots’. The first class is commonly hit by all P element

vectors, whereas the second is preferentially hit only in a

particular mutator strain [60]. Hotspots seen in local

hopping are excluded from the second class. The existence of

screen specific hotspots suggests that the specific

parameters of the screen, such as the structure and location

of the mutator transposon, can affect the spectrum of

hotspots and the diversity of the targeted genes. This pheno-

menon is poorly characterized, and the underlying cellular

mechanisms remain unclear.
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Figure 2 (see previous page)
Summary of the basic gene trapping strategies. Genomic integration of the gene trap markers is facilitated by transposition. (a) Structure of a putative
endogenous target gene. (b) The enhancer traps incorporate a reporter expression cassette driven by a minimal promoter (mP) that only results in
reporter gene expression when it is affected by a genomic enhancer element, for example by transposition into a gene. (c) The conventional gene
trapping cassettes contain a splice acceptor (SA) followed by a reporter gene and a polyadenylation signal (pA). The reporter is only expressed when
transcription starts from the promoter of an endogenous transcription unit. Thus, the expression of the reporter follows the expression pattern of the
trapped gene. The GAL4 system is a particularly interesting version of gene or enhancer trapping in Drosophila. Here, GAL4 expression is driven by the
trapped regulatory regions of endogenous genes in GAL4 driver lines. Using these driver lines, any protein of interest can be over-expressed or mis-
expressed by crossing these lines with others carrying the protein of interest expressed from GAL4 controlled promoter (upstream activator sequence
[UAS]). (d) Polyadenylation (poly(A)) traps contain a promoter followed by a reporter gene and a splice donor (SD) site, but they lack a poly(A) signal.
Therefore, reporter gene expression depends on splicing to downstream exon(s) of a Pol II transcription unit containing a poly(A) signal. (e) The ‘dual
tagging’ vectors are based on both gene and poly(A) trapping of a targeted transcription unit. (f) The protein trap strategy inserts an artificial exon
encoding a reporter into a gene, where the reporter is designed to be incorporated at the protein level into the endogenous gene product. The P
element based protein trap (PTT) vector set has been created to tag proteins in all three reading frames with green fluorescent protein (GFP) in
Drosophila. (g) Targeted over-expression/mis-expression is a version of the poly(A) trap strategy. Here, a strong promoter (sP) oriented toward the
outside of the element is directly followed by a splice donor site. This strategy allows over-expression/mis-expression of truncated or full length
endogenous proteins, depending on the site of vector integration. An improved version of this approach is the so-called modular mis-expression system
in Drosophila. Here, a GAL4 controlled promoter (UAS) is inserted by the P element into an endogenous transcription unit. This arrangement allows
expression of the trapped gene in any arbitrary manner of interest by crossing the carrier line with a GAL4 driver line. E1 to E4, exons 1 to 4; GAGA,
GAGA transcription factor (GAF) binding site; ITR, inverted terminal repeat; P, promoter; pA, poly(A).



Common hotspots represent the main obstacle to full

genome coverage with P element vectors. It is estimated that

about 150,000 P element insertions might need to be

screened to obtain 87% saturation of the estimated 13,500

Drosophila genes [61]. To complement the use of P

elements, alternative transposon systems have successfully

been contributing to large scale insertional mutagenesis of

the Drosophila genome. For example, investigators at the

Berkeley Drosophila Genome Project have already included

piggyBac and Minos element based screens in the collec-

tion. A large scale comparison of the insertion patterns of

piggyBac and P element vectors has already been reported

[62]. It has been found that piggyBac exhibits an insertional

preference that is distinct from that of P elements. It does

not share chromosomal hotspots that are associated with P

elements and, although piggyBac favors genes as targets, it

lacks the bias for 5’ regulatory sequences [62]. The target

preference of Minos also differs from both P elements and

piggyBac, and appears to be similar to that of SB (Table 1).

Therefore, these TEs are used as complementary tools for

Drosophila mutagenesis.

The combined use of different TEs is common in Drosophila.

Practically all of the insertional mutagenesis screens have

been established by the creation of ‘jump starter’ and

‘mutator’ P element lines, whose generation is facilitated by

use of other TEs, generally the Hobo or Hermes elements.

For some more sophisticated screening strategies, it is also

important to have alternative TEs for effective insertional

mutagenesis on a background already carrying P elements

and possibly also Hobo or Hermes. Hacker and coworkers

[63] used piggyBac for insertional mutagenesis on a chromo-

some harboring P element inserted FRT sites for the genera-

tion of mitotic recombinants. The FRT sites remained stably

integrated, demonstrating that the two systems are compatible.

Chromosome rearrangements
Chromosomal deletions in Drosophila are indispensable,

classic genetic tools for mapping mutations, characterizing

alleles, and identifying interacting loci. The P element based

methods for creating deletions are extremely useful because

the end-points of the deletions are molecularly marked.

Furthermore, their positions can be designed, which is of

particular importance in avoiding haplolethal or haplosterile

loci. Two P element based methods are in predominant use

to create chromosomal deletions [64]. One is based on the

observation that P transposase often induces chromosomal

aberrations that involve the sites of two distinct P element

insertions. The process behind this is called ‘hybrid element

transposition’, in which the TE ends come from separate

elements rather than a single element (the 5’ end of one

element pairs with the 3’ end of another one at a different

location) [65]. This results in different chromosomal

rearrangements from which the deletions can be selected.

An improved version of the transposon based method for

creating deletions makes use of the FLP/FRT site specific

recombination system (Figure 3a). Transposon vectors,

usually the P element, are used to facilitate single copy

chromosomal integration of FRT sites. FLP mediated

recombination between two of these P elements can result in

chromosomal rearrangements. With a sufficiently high

density of starting insertions, even single gene deletions can

be created. Progress is currently being made toward covering

the genome of Drosophila with characterized deletions [64].

This technique can also create predesigned chromosomal

translocations between the chromatids in flies with

transgenic FRT sites at identical positions on the homolo-

gous chromosomes [66]. Thus, FLP mediated recombination

can be used to generate mitotic clones (Figure 3b), in which

only clones of the cells of interest are homozygous for the

studied mutation, whereas the rest of the organism is

heterozygous. Spatially or temporally controlled expression

of FLP recombinase can create homozygous clones in any

tissue or developmental stage of interest.

Chromosomal inversions are also powerful tools in classical

Drosophila genetics. They have been applied in the majority

of genetic screens in Drosophila as balancer chromosomes,

because they can block recombination within the region of

the inversion. For practical reasons, the balancers carry

visible markers, and are also designed to be recessive lethal.

Most of them were isolated as spontaneous or induced

chromosomal rearrangements having break points in vital

genes. TEs have not been typically used to engineer balancers.

The balancers greatly help to map and maintain mutations in

the Drosophila genome.

Vertebrates
Transposons have successfully been used in lower metazoan

and plants for transgenesis and insertional mutagenesis, but

until the reactivation of the SB transposon system in 1997

[67] there was no indication that any DNA based trans-

posons in vertebrates were sufficiently active for these

purposes. Subsequently, other elements were shown to

catalyze efficient transposition in vertebrate model orga-

nisms. For example, the insect TEs piggyBac and Minos

have proven to be useful in germline mutagenesis in verte-

brates [68,69]. Moreover, the reconstructed endogenous

amphibian element Frog Prince [70], the reconstructed

human Hsmar1 element [71], and the Tol2 element isolated

from the medaka fish [72] have been found to be active in

vertebrates. We do not extensively review current trans-

poson applications in vertebrate models here (other reviews

in this supplement provide coverage of these areas). How-

ever, we do discuss the general approaches that have been

taken, and suggest further avenues for exploiting TEs in

applications in vertebrates.

Transposon based experimental strategies in vertebrates all

utilize the two component, binary approach, in which

transposition is controlled by trans supplementation of the
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Figure 3
FLP/FRT site-specific recombination-mediated chromosomal rearrangements in Drosophila. The FRT sites are introduced into the genome via P element
transposition. (a) Creation of deletions with well defined end-points. Two fly lines bearing FRT sites within P elements localized at different positions on
the same chromosome are crossed. Subsequently, FLP creates the desired deletion. (b) Generation of mitotic clones in Drosophila. In this arrangement,
the FRT sites are in identical positions on the homologous chromosomes of which one parental carries the mutation of interest. FLP, flip recombinase;
FRT, FLP recombinase target.



transposase proteins, owing to the fact that the majority of

these TEs are not endogenous in the most important model

organisms.

Transgenesis
Classic ways to induce expression of foreign genes in

vertebrates rely on microinjection of nucleic acids into

oocytes or fertilized eggs. Two main drawbacks of these

approaches are the low rates of genomic integration and

that the injected DNA generally integrates as a concatemer.

Both drawbacks can be circumvented by utilizing

transposition mediated gene delivery, because it can

increase the efficiency of chromosomal integration and

facilitates single copy insertion events. Single units of

expression cassettes are presumably less prone to

transgene silencing than are the concatemeric insertions

created using classical methods. Retroviral vectors are also

useful tools for the same purpose, but their integration

pattern is potentially more mutagenic because of their

preference for the 5’ end of transcription units (for review

[14]). In case of transgenesis, a single copy insertion away

from endogenous genes is clearly desired. The insertional

spectrum of Tc1/mariner elements satisfies this need the

best (Table 1), because these elements integrate randomly

at the genome level, and do not exhibit pronounced bias for

integration into genes. Another particular problem

concerning transgenesis is that founders that develop from

the injected oocytes or eggs are predominantly mosaic for

the transgene, because integration generally occurs

relatively late during embryonic development. Therefore,

in order to promote successful transmission of the

transgene through the germline to the next generation, it is

necessary to shift the window of integration events to as

early as possible. This can be facilitated by co-injection of

engineered transposons with transposase mRNA. This

method has been employed to generate transgenic

zebrafish with Tc3 [73], Mos1 [74], Tol2 [72] and SB [75];

transgenic Xenopus with SB [76] and Tol2 [77]; and

transgenic mice with SB [78-80].

Transposon mediated forward genetic approaches
To carry out phenotype-driven forward genetic screens in

vertebrates, one must achieve efficient germline muta-

genesis. To date, the most efficient mutagen in the mouse

germline is the chemical N-ethyl-N-nitrosourea (ENU).

Mutagenesis rates using ENU are two to three orders of

magnitude higher than those with insertional mutagens [81].

However, ENU is an ethylating agent that generally causes

single base pair mutations. Therefore, the average pheno-

typic effect of an insertional vector can be more dramatic,

and the total number of insertions required to reach the

same mutagenic effect is expected to be lower. Moreover,

identification of the point mutations causing a phenotype

requires positional cloning, which is time consuming and

laborious work. Therefore, insertional mutagenesis is an

attractive alternative to ENU screens.

Both TEs and retroviral vectors can successfully be applied

to insertional mutagenesis. Cultured cells can be efficiently

infected with viruses [82]. A pseudotyped retrovirus has also

been applied to generate insertions in zebrafish via

microinjection of virus particles into blastula stage embryos

[83]. In this approach, however, the transgenic founder fish

are mosaic and must be out-crossed to establish F1 fish with

retrovirus insertions. Therefore, one drawback of the appli-

cation of retroviruses is that the convenient ‘jump starter’ and

‘mutator’ method is not applicable with these vectors. More-

over, handling of such viruses may bring up safety issues.

Using TEs as tools for insertional mutagenesis is simpler,

and the ‘jump starter’ and ‘mutator’ scheme can be applied.

In Drosophila, transposon mediated insertional muta-

genesis is predominantly carried out using such a scheme.

This is also the preferred method in vertebrates, and it has

successfully been adopted for germline mutagenesis in the

mouse, but not in zebrafish, in which the screens are

currently performed by co-injection of the transposon DNA

and the transposase mRNA.

In zebrafish, SB and Tol2 were shown to be useful for

insertional mutagenesis in co-injection experiments [84-

88]. In the mouse, it has been demonstrated that SB, Minos,

and piggyBac transposases can function in transgenic

animals [17,18,68,78,89-92]. Recently, SB based insertional

mutagenesis was also established in the rat [93,94]. In these

experiments, chromosomally resident transposon vectors

were mobilized in transgenic animals that either ubiqui-

tously expressed the transposase or expressed the trans-

posase in the male germline using the protamine 1 (Prm1)

promoter. SB based insertional mutagenesis has successfully

been applied in mice to recover a range of mutant pheno-

types in a crossing scheme applying a balancer chromosome

[95]. This and other studies [96] demonstrated that local

saturation mutagenesis of a genomic region is a realistic goal

using the SB transposon system with a chromosomally

resident transposon donor site. The Minos transposase has

also been shown to mobilize non-autonomous Minos

elements in mice by transposase expression in the oocytes

using ZP3 [69] and in the lymphocytes using CD2 promoters

[91]. PiggyBac has also been used in co-injection

experiments in mice [68]. The activity of Tol2 element has

already been demonstrated in mouse ES cells [97] and in

vivo in the mouse liver [98].

All of the vectors used in vertebrate insertional mutagenesis

to date are versions of gene trapping insertional mutagenic

constructs (Figure 2), equipped with elevated mutagenicity

and other useful properties. The mutagenicity of gene trap

vectors is higher than that of simple insertional vectors, and

they enable easy identification of the mutagenized gene by

reverse transcription PCR of composite transcripts composed

of sequences of the insertional vector and the endogenous

gene. In cell culture, drug resistance markers are generally in
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use, whereas in animal systems other reporters such as GFP

are sufficient for this purpose. Similar to the GAL4/UAS

system in Drosophila, a conditional, tetracycline regulated

system has been shown to be applicable to TE mediated

insertional mutagenesis in mice [99].

As an alternative to the loss of function approaches, targeted

over-expression and/or mis-expression has been shown to

be efficient in somatic tissues of mice using SB. Viral

enhancer promoter elements incorporated into SB vectors

were shown to be useful in inducing cancer in experimental

animals [100,101]. These screens can also capitalize on TEs

with an intronic preference for insertion, such as members of

the Tc1 family. In order to devise customized screens for

cancer development, a current approach is focusing on

establishing mouse lines that conditionally express the

transposase [102]. One approach is to express the transposase

from tissue specific promoters. The second is to generate a

Cre recombinase inducible transposase allele, and to take

advantage of the many existing Cre strains to induce muta-

genesis in specific tissues in mice [102].

Perspectives
Insertional mutagenesis
The parallel development and application of alternative

transposon systems will be beneficial for insertional muta-

genesis in vertebrates. As described above, P elements,

piggyBac, and Minos elements are already in use as comple-

mentary transposon tools for large scale mutagenesis in

Drosophila [60,62]. The combined use of these TE systems

makes full genome coverage with TE based insertional

mutagenesis a realistic goal. Work to create comprehensive

mutant collections is already underway in mice by the

Knockout Mouse Project (National Institutes of Health, US)

and by the European Conditional Mouse Mutagenesis project.

The goal of these initiatives is to knock out every single gene in

mouse ES cells using conditional gene trapping and gene

targeting approaches. It is therefore likely that collections of

transposon insertional mutants for reverse genetic purposes

will prove even more useful in species that lack efficient

homologous recombination based gene targeting techniques

and ES cells, such as zebrafish, Xenopus tropicalis, and rats.

The ‘jump starter’ and ‘mutator’ experimental scheme is

widely used in both Drosophila and mice. Even though

microinjection does not appear to be a bottleneck in

transposition based transgenesis in zebrafish, establishing a

mutagenesis set-up based on breeding could be beneficial.

With this method, the numerous injections of fertilized eggs

could be eliminated, and transposition events segregated

into offspring by simple crossing of founders. Moreover,

local saturation mutagenesis would also be possible in this

way in zebrafish. In mice, the existence of the mutator lines

and the local hopping feature of the TE systems offers the

possibility of using local saturation mutagenesis to screen

through chromosomal regions harboring as yet unidentified

genes in which disease causing mutations occur.

Insertional mutagenesis with SB in both germline and

somatic tissues of the mouse has been approached with

mutator lines harboring transposon donor loci containing

many copies of the transposon vector in the form of

concatemeric arrays. The reason for this is that transposition

rates out of multicopy concatemers is far more efficient than

out of single copy donor sites. Consequently, Dupuy and

coworkers [100] used founder lines with 148, 214, and 358

transposon copies in concatemeric donor sites, whereas

Collier and colleagues [101] worked with animals containing

approximately 25 copies of the mutagenic transposon in

somatic mutagenesis studies. Similarly, a concatemeric donor

site of approximately 30 transposon copies was used in a

gene trap germline screen in mice [95]. However, trans-

position out of multicopy donor loci may complicate assign-

ment of a phenotype to a particular transposon insertion in

at least two ways. First, a phenotype may be associated with

multiple insertion events, and segregation of the insertions

may lead to loss or change in the phenotype. Second,

recombination between newly transposed transposon copies

and the donor concatemer could lead to unwanted genomic

rearrangements, as was observed by Geurts and coworkers

[95]. The most likely explanation for the rearrangements is

that transposition out of a concatemer generates new trans-

posase binding sites linked in cis (in case of local hops) or on

other chromosomes. However, because transposon copies

remain at the original donor locus, transposase can

recombine chromosomal sequences that are located between

the transposase binding sites by hybrid element trans-

position (described in the section on Drosophila, above),

leading to deletions and translocations. Alternatively, hybrid

element transposition involving transposon copies in the

donor concatemer could result in similar genomic

rearrangements. Such chromosomal rearrangements are

unlikely to occur (or would occur at a much reduced

frequency) if a single copy donor was used. Thus, there is a

great need for transposon systems that are sufficiently active

for efficient transposition out of single copy donors in

animal breeding schemes. Ongoing work in our laboratory

aiming at the isolation of hyperactive transposases could

potentially eliminate the need for concatemeric donor sites.

The use of single-copy donors would also enable the

application of dosage-dependent color markers such as

tyrosinase and agouti for phenotypic marking of transgenic

animals. These markers could be exploited to confer a light

brown or a much darker color to an albino coat, depending

on whether they are present as single- or double-copy

transgenes in the mouse genome, respectively. This would be

helpful to identify homozygous transposon insertions.

The approach used for the creation of the PTT vectors

(Figure 2) in Drosophila would possibly enhance the utility
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of protein over-expression studies in mice as well. In two

somatic mutagenesis studies in mice, the trapped genes were

over-expressed from a viral long terminal repeat carried by

the SB transposon [100,101]. In these experiments, trans-

cription started from the viral enhancer promoter and the

resulting pre-mRNA was spliced between a splice donor site

carried by the transposon vector and the downstream exon

of the trapped gene (Figure 2). However, translation of the

hybrid mRNA (and generation of a sense protein product) is

dependent on the fortuitous occurrence of an in-frame ATG

codon in the downstream exons. This can clearly be a

limitation to successful over-expression events. To circum-

vent this problem, we propose that, similar to the PTT

vectors applied in Drosophila (Figure 2), splice donor sites

set to phases 0, 1, and 2 (according to the three possible

reading frames) and built in behind a strong mammalian

translation initiation consensus sequence could be used in

over-expression studies. Because the intron phase distribu-

tion of mouse genes is unequal [103], using only the phase 0

construct could result in a success rate of about 50% in

terms of trapping potential.

In the over-expression experiments mentioned above, the

transposase was continuously expressed in the soma. This

could result in multiple rounds of transposition events of the

same transposon copy. Therefore, for these and possibly

other experimental set-ups, it would be beneficial to limit

secondary jumps by transposon immobilization after

transposition [104]. One possibility in this regard would be

to use recombinase systems, where FRT or loxP sites could

be inserted within the ITRs. This way, Cre or Flp mediated

recombination would result in the partial loss of the ITR and

a part of the internal transposon sequences, and so the

resulting defective transposon would not be able to move

again. The caveat of this strategy is that insertion of FRT or

loxP sites could negatively affect transposition of the

modified element.

Chromosomal rearrangements
The most effective agent in terms of mutagenicity is the

widely used chemical mutagen ENU. The application of ENU

is an efficient method in mice, but the precise identification

of the mutations in a screen requires a laborious positional

cloning approach. Classical genetic tools similar to those

extensively used in Drosophila could facilitate this identifi-

cation process. In this respect, both nested deletion sets and

balancers over different loci could be especially useful in

mouse forward genetics screens. One particularly interesting

transposon based experimental system for insertional

mutagenesis and chromosomal rearrangements, developed

by Osborne and coworkers in Arabidopsis [105], could

facilitate the creation of these genetic tools. Briefly, in this

arrangement, the advantages of Ac/Ds transposition and the

Cre-lox system were combined in Arabidopsis. The Dslox

transposon, carrying the phosphonothricin (Ppt) resistance

gene and a loxP site just in front of a promoterless

gentamicin resistance (Gn) gene, jumps out of a donor locus

harboring the chlorsulfuron (Cs) resistance gene and

another loxP site between a strong plant promoter and the

Cs coding sequence (Figure 4a). The excision and re-

integration of the Dslox transposon may result in double

PptR and CsR phenotypes. Subsequent Cre mediated

recombination leads to two types of chromosomal

rearrangement; deletions are associated with GnR phenotype

and clearance of PptR and CsR phenotypes (Figure 4b),

whereas inversions are associated with a GnR phenotype and

silencing of the Cs resistance gene (CsS; Figure 4c). The

other important key features of the system are the single

copy donor sites at different chromosomal positions that

make herbicide selection for coupled excision and re-

insertion possible, and the local hopping feature of Ac

transposition that generates the dominantly useful

arrangement of two loxP sites for inversions and deletions of

intervening DNA of different length. The system results in

inversions, deletions, and smaller numbers of trans-

locations, creating different resistance palettes and different

phenotypes and viability. This system can be used to map

loci with nested deletions and to establish balancer chromo-

somes from the inversions [106].

In case of vertebrates, composite arrangements of trans-

posons carrying a loxP site embedded in another TE that

carries the other loxP site could facilitate the generation of

allelic series of local hops out of single copy donor sites. The

Tol2 and piggyBac systems, having larger cargo tolerance,

appear to be suitable for the delivery of such a complex

arrangement. Transposition of the inner element out of the

donor locus would move one loxP away, whereas the other

loxP would stay at the original site. This system, based on the

subsequent Cre-mediated chromosomal engineering between

the transposed loxP sites, would greatly facilitate the creation

of both of the two experimental tools in mice described

above: viable balancer chromosomes and chromosomes

bearing large deletions for establishing segmental haploidy.

Balancer chromosomes usually contain one or more

inverted segments, and they suppress recombination within

those segments. They are used as genetic tools to maintain

recessive lethal mutations, providing an easy selection

system for the heterozygous carrier animals. Balancer

chromosomes are extensively used in Drosophila and also

proved to be very useful in mouse genetics [106,107]. In

Drosophila, because many animals are allowed to mate

randomly, and several generations can be maintained in

one tube, the balancer must contain a homozygous

embryonic lethal mutation. These recessive lethal muta-

tions are generally defined by the end-points of the

inversion, in which a gene necessary for embryonic develop-

ment is broken. In contrast, mice are maintained as single

mating pairs, and the offspring can easily be selected and

separated. This means that the recessive embryonic lethal

mutation on the balancer chromosome could be replaced
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with a visible marker, allowing the discrimination of

animals that are heterozygous or homozygous for that

marker [106]. This improvement permits discrimination of

the embryonic lethal mutations generated in a screen from

the mutation carried by the balancer, and it makes the

creation of useful balancers without pre-defined end points

possible. Such an improved mouse balancer chromosome

has been reported by Nishijima and coworkers [108]. They

used two coat color markers, tyrosinase and K14-agouti,

and therefore the dosage of the inversion chromosome

could be visually recognized.

Because of their usefulness, a current goal of the mouse

community is to establish balancers that cover the entire

mouse genome. Technologies based on transposition could

be developed to create a series of viable inversions bridging

over a genomic locus using an experimental scheme similar

to the one developed by Osborne and coworkers [105] in

Arabidopsis. The donor chromosome is generally favored for

insertion over the other chromosomes in SB transposition

about 60% of the time, with about 40% occurring in a 5 to 15

Mbp local hopping window and about 20% outside the

typical local hopping range, but still chromosomally linked
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Figure 4
A transposition mediated system for creating chromosomal rearrangements in Arabidopsis. (a) Structure of the donor locus. (b) Creation and detection
of chromosomal deletions. (c) Creation and detection of chromosomal inversions (for details, see text). Ac-ITR, Ac element inverted terminal repeat;
CsR and CsS, chlorsulfuron resistance gene (active and silenced, respectively); GnR and GnS, gentamicin resistance gene (active and silenced, respectively);
loxP, recognition site of the Cre recombinase; P, promoter; pA, poly(A); PptR and PptS, phosphonothricin resistance gene (active and silenced,
respectively).



to the donor locus [95,96]. Thus, a large portion of trans-

position events could yield potentially useful chromosomal

rearrangements in mice.

Chromosomes harboring segmental haploidy can be used for

deletion mapping of loci. An effective approach for mapping

novel recessive mutations is based on a nested chromosomal

deletion set, in which the deletions vary in size and have

different end-points, but they partially overlap across the

locus suspected of carrying the candidate gene affected by

the mutation. After crossing these mice with a mouse strain

carrying a novel recessive mutation, the recessive phenotype

is observed when the deletion spans over the mutated gene

on the other allele, and therefore no wild-type gene product

is present.

The classical gene targeting approach to create these

deletions would require two targeting steps for each deletion

end-point (for review [109]). It is a laborious work,

especially in the case of nested deletion sets, despite the fact

that one end-point could be common for all of the deletions.

Moreover, it is difficult to predict the viability of a given

chromosomal rearrangement. To circumvent these difficul-

ties, a deletion set has been made where the second end-

points of the deletions were defined by a randomly

integrating recombinant retrovirus that carried the second

loxP site necessary for Cre mediated rearrangements [110].

Recently, this method has been further developed by

delivering both of the loxP sites into the genome of mouse

ES cells via retroviral gene transfer [111]. In this study, the

authors created two recombinant retroviruses, one of which,

referred to as ‘anchor virus’, introduced the first loxP site,

whereas the other, referred to as ‘saturating virus’,

introduced the second loxP site into the genome of ES cells.

The drug selection system applied by these authors was

fairly similar to the one used by Osborne and coworkers in

Arabidopsis [105]. Although these methods based on the

application of replication-defective retroviruses proved to be

useful, one can predict that a transposon-based system that

exploits local hopping of transposons, and guarantees

single-copy insertion of the second loxP site, would

represent an efficient and elegant approach to the creation of

nested chromosomal deletion sets in mice.

Conclusion
Significant progress has recently been made toward the

development of improved transposon based systems for

genome manipulations in vertebrate model organisms,

including transgenesis and insertional mutagenesis in both

germline and somatic tissues. These efforts begin to pay

dividends to the research community, as we witness an

increasing interest in applying transposon tools for

applications ranging from simple tissue culture setups to

generate transgenic cell clones to experimental systems

aiming to unravel genetic networks cooperating in tumori-

genesis using transposon mutagenesis in living animals.

Nevertheless, applications of transposons for vertebrate

genetics are still lagging somewhat behind the sophisticated,

transposon-based technology platform that has been

established in invertebrate model systems, especially in

Drosophila. We highlighted in this article possible improve-

ments, and new avenues for the use of transposons in

vertebrates, based on the lessons that have been learned in

invertebrates. This ‘technology transfer’ offers a possibility

to expoit transposable elements as gene delivery agents to

their full potential.
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