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Abstract

Interpretation of microarray data remains a challenge, and most methods fail to consider the
complex, nonlinear regulation of gene expression. To address that limitation, we introduce Learner
of Functional Enrichment (LeFE), a statistical/machine learning algorithm based on Random Forest,
and demonstrate it on several diverse datasets: smoker/never smoker, breast cancer classification,
and cancer drug sensitivity. We also compare it with previously published algorithms, including
Gene Set Enrichment Analysis. LeFE regularly identifies statistically significant functional themes

consistent with known biology.

Background

Data from microarrays and other high-throughput molecular
profiling platforms are clearly revolutionizing biological and
biomedical research. However, interpretation of the data
remains a challenge to the field and a bottleneck that limits
formulation and exploration of new hypotheses. In particular,
it has been a challenge to link gene expression profiles to
functional phenotypic signatures such as those of disease or
response to therapy. A number of partial bioinformatic solu-
tions have been proposed. The most mature and promising
such algorithms have analyzed the data from the perspective
of categories of related genes, such as those defined by the
Gene Ontology (GO) or by the Kyoto Encyclopedia of Genes
and Genomes [1]. Gene categories group genes into nonexclu-
sive sets of biologically related genes by linking genes of com-
mon function, pathway, or physical location within the cell.

Gene categories introduce an independent representation of
the underlying biology into the analysis of complex datasets

and therefore serve to guide the algorithms toward conclu-
sions congruent with conventional knowledge of biological
systems. Algorithms that take such an approach have often
demonstrated a higher level of functional interpretation than
did earlier, single-gene statistical analyses. However, most
gene category based methods still perform the analysis on a
gene-by-gene, univariate basis, failing to capture complex
nonlinear relationships that may exist among the category's
genes. If, for example, upregulation of gene A influenced a
drug sensitivity signature only if gene B in the category were
downregulated and gene C upregulated, then that relation-
ship would be missed. Here, we introduce a novel gene cate-
gory based approach, the Learner of Functional Enrichment
(LeFE) algorithm, to the interpretation of microarray (and
similar) data. LeFE captures that type of complex, systems-
oriented information for prediction of functional signatures.

The input to LeFE consists of the following components: sig-
nature vector, microarray (or analogous) data, and a
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predefined set of categories and the genes within them. The
'signature vector' describes the biological behavior, process,
or state to be predicted for each experimental sample. The
signature vector either classifies samples (for example, as
normal or diseased) or assigns each sample a continuous
value (for example, relative drug sensitivity). That is, the sig-
nature can be nominal or continuous. A discrete signature
vector is handled as though it were continuous.

The goal of LeFE or any other gene category based algorithm
is to determine which categories (for instance, molecular sub-
systems) are most strongly associated with the biological
states described by the signature vector. Toward that end,
most previously published methods, for example Gene Set
Enrichment Analysis (GSEA) [2], assign each gene category a
score based on nonparametric statistics, t-statistics, or corre-
lations that reflect the relationships between individual genes
and the signature vector. The gene categories most enriched
with those strong single-gene associations are said to be
related to the signature. The degree of enrichment is usually
represented by a P value or false discovery rate using, for
example, a Fisher's exact test [3,4], a weighted Kolmogorov
Smirnov test [2], or comparison with a x2[5], binomial [6], or
hypergeometric [7] distribution. Although those approaches
have proved useful, they neglect the fact that gene products
generally function in complicated pathways or complexes
whose expression patterns may not be reflected in the sum-
mation of univariate associations between single genes and
the biological activity [8-11].

To address that shortcoming, LeFE uses a machine learning
algorithm to model the genome's complex regulatory mecha-
nisms, determining for each category whether its genes are
more important as predictors (variables) than are a set of ran-
domly sampled negative control genes. Although any of sev-
eral different machine learning algorithms could be used in
LeFE, we chose the Random Forest algorithm [12] because it
has features (discussed below) that make it particularly apt
for this application. The power of Random Forest has been
successfully demonstrated in numerous bioinformatic and
chemoinformatic applications [13-16]. As per the 'mo free
lunch' dictum [17], no single machine learning algorithm can
be optimal for all datasets and applications, but Random For-
est appears to be an appropriate choice as an engine for LeFE.

The Random Forest algorithm builds an ensemble of decision
trees using the Classification and Regression Tree (CART)
method [18]. Random Forest is therefore included among the
general class of 'ensemble learning' algorithms. The algo-
rithm injects diversity into the tree creation process by build-
ing each tree on an independently bootstrapped (resampled
with replacement) subset of the samples. Further diversity
among the trees is generated by basing each tree-split deci-
sion in each tree on a different randomly chosen subset of the
variables. After the entire forest of slightly different decision
trees has been built, it can be applied to new, unseen data by
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running each new sample down each tree. Just as in CART,
each tree's ultimate classification or regression decision is
determined by class voting on sample class or the median
regression value of the training samples in the case of contin-
uous variables. The aggregate forest's output is then deter-
mined by averaging the regression values of the trees or using
a weighted voting process to determine the most common
class decision reached by the trees. The power of random for-
ests is derived from both the low-bias and the low-variability
they achieve on the basis of the 'ensemble' of low-bias, high-
variance decision trees.

At the simplest level, the Random Forest algorithm has only
two tunable parameters: mTry, the fraction of all variables
tried in each tree-split decision, and nTree, the number of
trees grown. Typically in Random Forests, nTree is set to 500,
but we used nTree = 400 since that choice showed no appre-
ciable decline in the algorithm's accuracy and achieved a
modest increase in efficiency. The best values of mTry, sug-
gested by the literature [14], are n,/3 for regression on a sig-
nature vector with continuous values and Vn, if the signature
data contains class information, where n, is the number of
experimental samples. We used those values, so there were no
parameters that we tuned. The algorithm is therefore simple
to deploy, and over-parameterization is relatively rare. The
Random Forest algorithm also has two other properties that
make it especially apt for use within LeFE. The first is that it
includes an internal cross-validation procedure that esti-
mates the forest's predictive performance without the need
for explicit a priori separation of the testing and training
samples. That feature is particularly important in this appli-
cation because microarray experiments are often run on lim-
ited numbers of samples. Because each tree is constructed on
a bootstrapped sample representing 1 - e, or approximately
two-thirds of the samples, about one-third of the samples are
not used to build any given tree. Those unused 'out-of-bag'
(OOB) samples are unseen in training and therefore can be
used to determine the predictive performance of the tree.
After the forest is built, each sample serves as a test case for
the approximately one-third of the trees for which it was
OOB. That procedure provides an estimate of the forest's
error in the prediction for each individual sample. The OOB
error of each sample is averaged over all samples to estimate
the total error of the model. Fivefold cross-validation and the
internal performance assessment using OOB samples have
been shown to yield quite similar results [14].

The second useful property of random forests is that they can
determine the importance placed on each variable in the
model. Each variable's importance is assessed by randomiz-
ing the variable's association (permuting the variable's row
elements) with the samples and then reassessing the model's
error by OOB cross-validation. The Random Forest software
package, which we used for the computations, has one itera-
tion as the default, and the documentation states that more
than one randomization does not appreciably improve the
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The LeFE algorithm illustrated schematically for a category of two genes. See Materials and methods for further details and Table 4 for a description of the

steps (keyed to the circled letters). LeFE, Learner of Functional Enrichment.

stability of the calculated importance scores. The loss of
model accuracy is normalized by the accuracy of the unper-
muted, intact model's performance to give an 'importance
score' for each gene in a category. When Random Forest is
applied to a classification problem, the model's error is a
weighted classification accuracy, and in the regression con-
text model error is the mean squared error. The greater the
decrease in normalized performance, the more instrumental
was the variable (gene) in achieving the forest's predictive
performance. See Materials and methods (below) for a
detailed description of the importance score.

The steps in the LeFE algorithm (shown schematically in Fig-
ure 1) are described more formally in the Materials and meth-
ods section (below). Here, we summarize the basic elements
conceptually. For each category, LeFE builds a random forest
to model the signature vector on the basis of a composite
matrix consisting of genes in the category and a proportion-
ately sized set of randomly selected negative control genes
that are not in the category. On that basis, the random forest
determines the importance score of each gene (variable) in
the multivariate model. The distribution of importance scores
of the genes in the category is then compared with the distri-
bution of importance scores of the negative control genes.
The expectation is that the two distributions will be similar
when that comparison is made for a category that is biologi-
cally unrelated to the signature vector. However, if the cate-
gory includes Dbiologically relevant genes or gene
combinations, then Random Forest is expected to assign
higher importance scores to at least some of the genes. A one-
sided permutation t-test [19] is used heuristically to compare
the distribution of importance scores of the genes in the cate-
gory with those of the negative control genes. Because the test
compares the calculated t-scores with the distribution of such
t-scores obtained after permuting the sample labels (instead
of comparing them with a parametric t-distribution), it is
nonparametric. To ensure diversity in the sampling of nega-
tive control genes, that process is repeated n, times, each with

the same gene category and a different set of randomly
selected negative control genes. As n,becomes large, the ran-
dom gene sets asymptotically reflect the overall covariance of
the dataset. The median of the permutation t-test's P values
from the n, iterations is taken as an index of the degree of
association between the gene category and the signature vec-
tor. After LeFE has been applied to each gene category, the
categories are ranked according to those median P values.

LeFE is different from the other category-based algorithms
listed previously [2,3,5-7] in that it assesses gene importance
within the context of a multivariate model. That enables LeFE
to access the gene information contained in complex biologi-
cal interrelationships, rather than relying on the summation
of univariate relationships within a category. For example, if
two genes in a category were related to the samples' biological
process or state by an 'exclusive OR' association, then LeFE
could capture that relationship, whereas category-based sum-
mations of univariate associations would be likely to overlook
it.

Results

As proofs of principle we applied LeFE to three different pre-
diction problems that represent diverse biological and com-
putational scenarios. The first, current versus never-smoker
classification, involvesIdentification of the molecular features
that distinguish 57 current smokers from never-smokers on
the basis of gene expression profiles of their lung epithelia
[20]. The second problem, breast cancer classification,
involves identification of characteristic molecular features
that classify 49 primary breast cancer microarray samples as
basal (estrogen receptor [ER] negative/androgen receptor
[AR] negative), luminal (ER positive/AR positive), or 'molec-
ular apocrine' (ER negative/AR positive) [21]. In the third
problem, sensitivity to gefitinib, gene expression profiles are
used to predict the gefitinib (Iressa, AstraZeneca, London,
England) sensitivity of 26 non-small cell lung cancer cell
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Top 20 LeFE Categories for current versus never-smokers classification

Rank Category FDR
| Electron transporter activity BioCarta ~0

| Carbohydrate metabolism (GO:0005975) ~0

| Electron transport BioCarta ~0

| Glutathione metabolism GenMAPP ~0

| Pentose Phosphate Pathway BLACK ~0

6 Xenobiotic metabolism (GO:0006805) 0.016
6 O Glycans biosynthesis GenMAPP 0.016
8 PentosePathway BLACK 0.045
9 Protein amino acid O-linked glycosylation (GO:0006493) 0.069
10 Pentose phosphate pathway GenMAPP 0.094
10 Gamma hexachlorocyclohexane degradation GenMAPP 0.094
12 Tyrosine metabolism GenMAPP 0.097
13 Cysteine metabolism (GO:0006534) 0.105
13 G pPathway BLACK 0.105
13 T cell differentiation (GO:0030217) 0.105
13 Fatty acid metabolism BioCarta 0.105
17 Retrograde vesicle-mediated transport, Golgi to ER (GO:0006890) 0.11
18 Aldehyde metabolism (GO:0006081) 0.11
19 Digestion (GO:0007586) 0.114
19 MAP0005| Fructose and mannose metabolism GenMAPP 0.114

FDR, false discovery rate; GO, Gene Ontology; LeFE, Learner of Functional Enrichment.

lines. The continuous-valued signature vector consists of 26
log,, values of the 50% inhibitory concentrations [22].

Gene categories

For use in all three applications, we assembled a set of 1,918
nonexclusive gene categories from multiple sources as fol-
lows. First, 1,396 gene categories were selected from the GO
Consortium's biological process hierarchy. To ensure high
quality of the categories, we removed those with evidence
codes that denote lower quality assignments: inferred from
electronic annotation, nontraceable author statement, no
biological data available, and not recorded. Second, 522 gene
categories, defined by the MSigDB v1 [2] collection of func-
tional gene sets, was selected. Those categories had been
assembled from various sources including BioCarta, Gen-
MAPP, the Human Protein Reference Database, the Human
Cancer Genome Anatomy Project, and a large number of
manually curated publications.

For the analyses, we mapped the microarray gene annota-
tions to categories and then included all categories in the
broad size range from 2 to 150 genes. Because all of the stud-
ies used Affymetrix HG-U133A microarrays (Affymetrix Inc,
Santa Clara, CA, USA), the mapping process was the same for
all three datasets. That filtering process reduced the original
set of 1,018 categories to a set of 1,282. Summaries of the 20

top-ranked categories for all three demonstration applica-
tions are given in Tables 1 to 3. Complete results for the three
prediction problems, namely current versus never-smokers
classification, breast cancer classification, and sensitivity to
gefitinib, are available as Additional data files 1, 2, and 3,
respectively.

Current versus never-smoker classification

Figure 2 shows what we term 'importance plots', which show
the distribution of normalized importance scores of genes
with respect to their prediction of the signature vector. The
red and black curves represent the category's genes and the
negative control genes, respectively. Each category is repre-
sented by a smoothed distribution, rather than a single value,
because the curve represents importance scores calculated for
all genes in all n, iterations of the Random Forest algorithm.
The glutathione metabolism and aldehyde metabolism cate-
gories (positive examples) ranked among the top 20 catego-
ries, whereas the viral life cycle category (negative example)
ranked 742th out of 1,282. Each of the two positive examples
includes at least two peaks: one that corresponds to a peak in
the negative control gene distribution (gray arrows) and one
or more (red arrows) that reflect the biologically relevant
genes. For example, the two top genes in aldehyde metabo-
lism (aldo-keto reductase 1B10 and aldehyde dehydrogenase
3A1) have median importance scores in the peak denoted with
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Table 2

Top 20 categories for breast cancer classification

Rank Category FDR

| Breast_cancer_estrogen_signalling GEArray 0.02

| Drug_resistance_and_metabolism BioCarta 0.02

| FRASOR_ER_UP Frasor_et_al 2004 0.02

4 mta3Pathway BioCarta 0.041
5 Fatty_Acid_Synthesis BioCarta 0.065
6 Cell_cycle_checkpoint Il 0.065
6 p35alzheimersPathway BioCarta 0.065
6 FRASOR_ER_DOWN Frasor_et_al_2004 0.065
9 L-phenylalanine catabolism 0.068
9 UDP-glucose metabolism 0.068
9 Cell_cycle_regulator 0.068
12 Electron_transporter_activity BioCarta 0.078
13 skp2e2fPathway BioCarta 0.1

14 Fatty_acid_metabolism BioCarta 0.1

15 Ubiquinone biosynthesis 0.102
16 MAPO000 | 0_Glycolysis_Gluconeogenesis GenMAPP 0.12
16 MAPKKK _cascade GO 0.12
18 G| Pathway BioCarta 0.134
18 MAP00280_Valine_leucine_and_isoleucine_degradation GenMAPP 0.134
20 Response to metal ion 0.144
FDR, false discovery rate; GO, Gene Ontology; LeFE, Learner of Functional Enrichment.

Table 3

Top 20 categories for sensitivity to gefitinib

Rank Category FDR
| Androgen up genes na 0.347
2 EGF receptor signaling pathway BioCarta 0.408
3 MAPO00100 Sterol biosynthesis GenMAPP 0.531
4 Epidermal growth factor receptor signaling pathway (GO:0007173) 0.531
5 G,/S transition of mitotic cell cycle (GO:0000082) 0.628
6 positive regulation of I-kappaB kinase/NF-kappaB cascade (GO:0043123) 0.628
7 Cell-cell adhesion (GO:0016337) 0.748
8 Aspartate catabolism (GO:0006533) 0915
9 Calcium-independent cell-cell adhesion (GO:0016338) 0.915
10 Regulation of glycolysis (GO:00061 10) 0.915
I Detection of pest, pathogen or parasite (GO:0009596) 0.915
12 MalatePathway BLACK 0.915
12 RarPathway BLACK 0915
14 Epidermis development (GO:0008544) 0.931
14 Regulation of endocytosis (GO:0030100) 0.931
16 NFKB reduced Hinata et al 2003 0.998
17 mRNA editing (GO:0006381) ~I

17 EMT DOWN Jechlinger et al 2003 ~I

19 Chloride transport (GO:0006821) ~I

19 Induction of apoptosis by intracellular signals (GO:0008629) ~1

FDR, false discovery rate; GO, Gene Ontology; LeFE, Learner of Functional Enrichment.
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Importance plots (probability density distributions) of gene importance scores calculated by LeFE: smoker versus nonsmoker dataset. Shown are
representative distributions for three gene categories (red curves) and their corresponding negative control gene sets (black curves). The curves were
smoothed according to default settings of the 'density’ function in R. The shifted secondary peaks, denoted by red arrows, for aldehyde metabolism and
glutathione metabolism reflect genes important to the Random Forest models. The viral life cycle category contains no secondary peaks and therefore

does not appear to be associated with smoking. See Results for further details.

a red arrow, and, as discussed below, they are known to
metabolize cigarette smoke toxins [23]. The genes in the viral
life cycle category are unrelated to smoking and have distri-
butions indistinguishable from those of the negative control
genes.

The highest-scoring five out of the 1,282 categories run
through LeFE have median P < 0.001 (false discovery rate
[FDR] < 0.02), and all of them contain genes that are known
to exhibit altered expression in response to cigarette smoke in
vivo or in vitro. Among the most important genes in the top-
ranked category, electron transport, are CYP1B1, CYP2A13,
and MAOB, all of which are known to be upregulated by ciga-
rette smoke [24,25]. The top genes in the next category, elec-
tron transporter activity, include the aldo-keto reductases
AKRi1B10, AKR1C1, AKR1C2, and AKR1C3, as well as those
encoding aldehyde dehydrogenase (ALDH3A1) and monoam-
ine oxidase B (MAOB). In vivo studies have shown that those
genes are upregulated in response to cigarette smoke conden-
sate [23]. The third category, glutathione metabolism, fits
with current understanding because glutathione, a tripeptide
thiol antioxidant, forms conjugates with cigarette smoke tox-
ins [26]. The fourth ranked category, pentose phosphate
pathway, makes sense because, in response to blood plasma
previously exposed to cigarette smoke in vitro, endothelial
cells have been shown to release glutathione and activate the
pentose shunt [27].

Among the top genes in the sixth ranked category, xenobiotic
metabolism (FDR = 0.02), are AKRi1C1, CYP35A, and NQO1.
All three have independently been found to be differentially
expressed in the bronchial epithelium of smokers [28,29].

Also in the same category is the gene that encodes UDP glu-
curonosyltransferase 1A6 (UGT1A6). Eight out of the 11
probes for that gene perfectly match the related UGT1A7
gene, which has been shown to detoxify multiple tobacco car-
cinogens [30]. Hence, the importance score for UGT1A6 may
reflect a family resemblance in function, a cross-hybridiza-
tion of probes, or both.

The 10th ranked category, y-hexachlorocyclohexane degrada-
tion (FDR = 0.09), contains several cytochrome P450 genes
with polymorphisms that are known to alter lung cancer risk
for smokers. Furthermore, one of that category's highest scor-
ing genes, CYP1A1, is expressed in primary lung cancer sam-
ples in a manner highly correlated with tobacco dose [31]. The
12th ranked category, tyrosine metabolism (FDR = 0.10),
contains two previously mentioned aldehyde metabolism
genes, ALDH3A1 and MAOB. The 16th ranked category,
cysteine metabolism (FDR = 0.11), contains only two genes,
namely GCLC and GCLM. Together they form the glutamate-
cysteine ligase complex, which is responsible for increasing
the antioxidant glutathione in the lungs of smokers [32].

We next compared LeFE directly with the popular and useful
GSEA method [2]. The online documentation of that method
suggests that GSEA should not be applied to categories
smaller than 25 genes because such categories may produce
inflated scores. Abiding by that limitation, GSEA would not
have considered 13 of LeFE's top 20 categories, because they
include fewer than 25 genes. However, for the sake of this
comparison, we chose to ignore the 25-gene limitation and
operate GSEA on all categories with a size of at least two. That
resulted in a substantial overlap in the top 20 categories iden-
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tified by LeFE and GSEA. However, several categories
(including pentose phosphate pathway, aldehyde metabo-
lism, y-hexachlorocyclohexane degradation, and cysteine
metabolism) that were ranked in the top 20 by LeFE were not
in the top 140 categories as ranked by GSEA's FDR, despite
the fact that they are all likely to be biologically related to cig-
arette smoke (see above and Figure 2). Furthermore, LeFE
identified 44 categories with FDR below 0.2 and 150 catego-
ries with FDR below 0.5, whereas GSEA identified only 18
and 65, respectively. We cannot state definitively that LeFE
did 'better' than GSEA at distinguishing the biology between
the two sample classes, but the results do suggest that LeFE's
unique method provides a different (although overlapping)
set of categories that make considerable biological sense.

Breast cancer classification

A dominant molecular characteristic of the breast cancer
samples is ER-a (ESR1) status. Accordingly, the top catego-
ries identified by LeFE are intimately associated with that
molecule and related subsystems. Three categories had
median P values below 0.001 (FDR = ~0): breast cancer
estrogen signaling; MSigDB's set of ER-upregulated genes
identified by Frasor and coworkers [33]; and drug resistance
and metabolism, which contains ESR1, BCL2, AR and ER's
co-regulator ERBB4 [34]. The fourth category, the BioCarta-
defined MTA3 pathway, contains ESR1 and three estrogen-
regulated genes, namely PDZK1, GREB1, and HSPB1 (HSP27)
[35] as the four most important genes.

Categories related to fatty acid synthesis and metabolism are
represented three times in the top 25 categories, with FDRs
below 0.02. That result is consistent with the observation that
carcinomas of the colon, prostate, ovary, breast, and
endometrium all express high levels of fatty acid synthase
[36]. Manual literature searches failed to identify
independently confirmatory research. However, we analyzed
three independent breast cancer studies [37-39] on the
Oncomine website [40] using conventional t-statistics and
confirmed that many of the fatty acid related genes are,
indeed, significantly differentially expressed among the three
classes of breast cancers. Specifically, PRKAB1, PRKAGI,
PECI, CROT, FABP7, and ACADSB levels were significantly
higher in the ER-positive luminal class, whereas PRKAA1 lev-
els were significantly higher in ER-negative samples. FASN,
FAAH, and SCN were significantly lower in the AR-negative
basal samples. The original publications on the datasets ana-
lyzed with LeFE noted the altered expression of metabolism
genes but failed to identify that fatty acid metabolism systems
are associated with breast cancer or breast cancer subtypes.
The three categories related to fatty acid synthesis and metab-
olism contain various combinations of the aforementioned
genes and interact with each other in complex ways that dis-
tinguish the breast cancer classes. GSEA does not handle
multiclass analyses, at least directly, but even if it did it might
well have overlooked the fatty acid categories because it

Genome Biology 2007,  Volume 8, Issue 9, Article R187

depends on univariate associations between genes and sam-
ple class.

The three independent breast cancer datasets [37-39] from
Oncomine also confirmed our findings for several other cate-
gories that had received top LeFE ranks and FDRs below 0.01.
L-phenylalanine catabolism, cell cycle regulator, electron
transporter activity, skp2e2f pathway, MAPKKK cascade, and
response to metal ion (Table 2) contain many genes that
received high LeFE importance scores in our LeFE analysis
and were also significantly differentially expressed in those
independent studies. Precise interpretation of the association
between breast cancer and our independently verified genes,
which include GSTZ1, BCL2, MPHOSPH6, SRPK1, MCMs5,
BTG2, SKP2, DUSP7, NRTN, MTL5, NDRG1, and MT1X, is
beyond the scope of the present study. A direct comparison of
results from GSEA [2] and LeFE for the breast cancer study
was not possible because there were three classes.

Gefitinib sensitivity

Gefitinib inhibits the tyrosine kinase activity of the epidermal
growth factor receptor (EGFR) [41]. Accordingly, the second
and fourth ranked out of 1,282 LeFE categories are the EGF
receptor signaling pathway (FDR = 0.41) and EGFR signaling
pathway (FDR = 0.53). If one is accustomed to a critical point
such as 0.05 for P values, then an FDR of 0.53 may seem high.
However, the implication is that almost half of the time such
a category would constitute a true positive, rather than a false
positive, even after correction for multiple hypothesis testing.
Whether that level of certainty is high enough to act on
depends, of course, on the relative cost and benefit of follow-
ing up the finding. The predictions are clearly not as strong in
the case of gefitinib as in the other two applications of LeFE
presented here, but some of the top-ranked categories do
make biological sense.

The first ranked category, androgen upregulated genes (FDR
= 0.35), is interesting because there is evidence that androgen
levels increase in non-small-cell lung cancer patients treated
with gefitinib [42]. The third-ranked category, sterol biosyn-
thesis (FDR = 0.53), assigns a high importance score to the
gene that encodes 3-hydroxy-3-methyl-glutaryl coenzyme A
(HMGCR). Gefitinib is synergistic with lovastatin [43], which
inhibits HMGCR and is in clinical trials with simvastin,
another HMGCR inhibitor, for treatment of non-small-cell
lung cancer. That observation suggests the possibility of a link
between the sterol biosynthesis pathway and gefitinib's
activity.

The association between gefitinib and the fifth-ranked cate-
gory, G,/S transition in mitotic cell cycle (FDR = 0.63), is not
completely clear, but it has been shown that EGFR inactivity
is required for G,/S transition in Drosophila [44]. The sev-
enth category, cell-cell adhesion (FDR = 0.75), contains
EGFR and Annexin A9, the latter being a cousin of the EGFR
substrate Annexin A1. That could represent a novel finding or
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be due to cross-hybridization of the microarray's probes. A
comparison of LeFE and GSEA was not possible because
GSEA [2] does not operate directly on continuous valued sig-
nature vectors.

Discussion

LeFE is a novel statistical/machine learning method for func-
tional analysis of microarray (and analogous) data. Here, we
have implemented it using the Random Forest algorithm with
internal cross-validation. LeFE's attention to gene categories
differentiates it from earlier microarray analysis methods
based on individual genes (for instance, correlation analysis
or t-tests). Its ability to model complex relationships among
the genes within a category also differentiates it from previ-
ous category-based ((hyphen necessary to meaning))algo-
rithms (for example, GSEA and methods based on the
Fisher's exact test) that are founded on summation of the uni-
variate effects of individual genes within a category. Needless
to say, the ability to build more complex models carries with
it a potential cost, namely that of 'over-fitting'. However,
LeFE's use of negative control gene sets and internal cross-
validation mitigate that concern considerably, and the three
proof-of-principle applications described in the Results sec-
tion speak for themselves. We would not claim that LeFE is
‘better' than previous useful methods such as GSEA, but it
does clearly have independent value, and it does directly han-
dle problem types (multi-class, continuous valued signature,
small categories) that are not handled directly by the other
methods.

Our application of LeFE to gene expression in the lung epithe-
lia of current smokers, as opposed to never-smokers, demon-
strated its ability to identify and elucidate molecular
differences between two sample classes. LeFE correctly iden-
tified categories containing the glutathione related genes,
aldehyde dehydrogenases, monoamine oxidase, several aldo-
keto reductases, and cytochrome P450 genes, all of which are
differentially expressed in response to cigarette smoke or in
the lungs of smokers. Four of the top biologically important
categories were overlooked by GSEA, thereby highlighting
LeFE's independent value.

However, a cautionary consideration is in order. Given the
vast searchable archives of published biological research, it
seemed possible that identifying literature citations consist-
ent with LeFE's findings had a high a priori probability or
that it was tainted by multiple hypothesis-testing. To address
those possibilities, we designed a simple blinded experiment
to test how well LeFE performed in the eyes of a pulmonology
expert, Dr Avrum Spira, lead researcher on the lung epithe-
lium gene expression study and first author of the resulting
article [20]. We presented him with the top 20 gene catego-
ries identified by LeFE, each of them matched with a ran-
domly chosen category of identical, or essentially identical,
size. Because some categories have vague names, we also pro-
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vided the names of the five most important genes in each cat-
egory. We then asked Dr Spira, who was blinded to the LeFE
results, to identify which category in each pair was more likely
to be associated with gene expression differences in the epi-
thelium of smokers as opposed to nonsmokers. He correctly
distinguished the top seven categories and 17 of the top 20
from their size matched, randomly chosen counterparts. The
binary probability of achieving at least 17 out of 20 correct by
chance is P < 0.0002. An additional, independent application
of LeFE to the same dataset yielded an overlap of 17 out of the
top 20 categories. All three of the new results were correctly
identified by Dr Spira.

Our additional applications of LeFE, to gene expression in
three breast cancer classes and to in vitro gefitinib sensitivity
(see Results), provide further proofs of principle. The find-
ings highlight the distinctions between LeFE and the univar-
iate category based methods. They also underscore the utility
of LeFE's novel 'importance plots' for relating the individual
gene importance scores to complex relationships within a
category.

LeFE's hybrid machine learning/statistical algorithm com-
pares gene categories with sets of randomly selected negative
control genes. That approach distinguishes LeFE from the
superficially similar PathwayRF [45] program, which was
recently reported during the preparation of this paper. The
PathwayRF algorithm trains a single random forest on each
gene category's genes and then ranks the categories according
to the model's predictive accuracy. Unlike LeFE, PathwayRF
does not use gene importance scores at all. Results presented
in the PathwayRF report indicate that it can provide biologi-
cally meaningful insight into gene microarray datasets, but
the algorithm has a hidden bias that favors large categories.
The predictive power of a statistical or machine learning
model increases as independent variables are added if no
penalty is imposed for adding those variables, and Path-
wayRF does not impose such a penalty. Therefore, as shown
in Figure 3a, it strongly favors large gene categories because
they contain more variables (genes). The mean and median
numbers of genes in the top 20 categories for PathwayRF are
68 and 36, respectively. The corresponding values for LeFE
are 32 and 22.

PathwayRF's bias toward larger categories can be demon-
strated most concretely, as shown in Figure 3b, by consider-
ing the frequently occurring superset-subset (nested)
relationships between gene categories in the hierarchically
organized GO. With PathwayRF, the superset of a nested cat-
egory's model is essentially guaranteed to exhibit predictive
power at least as great as that of any nested subcategory; all
models that can be generated by the subset can also be gener-
ated by the superset. (The few points above the diagonal line
for PathwayRF in Figure 3b are probably there by chance
because the algorithm is stochastic in nature.) However, as
shown in Figure 3¢, even when there is no nesting, larger and
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more biologically diffuse categories are much more likely to
do better than smaller, more specific ones. Methods that favor
a general hypothesis over a more specific one are likely to
mis-prioritize follow-up studies. Therefore, any method in
the spirit of LeFE or PathwayRF must correct for category
size, and LeFE does that by using a set of negative control
genes proportional in size to that of the category.

Conclusion

In conclusion, we have presented LeFE, a novel statistical/
machine learning algorithm for interpretation of microarray
(and analogous) data. LeFE exploits information related to
the complex, interactive regulation of gene expression and
does not suffer from bias toward large category size. We have
demonstrated LeFE's value on three diverse datasets and
have shown that the results are either consistent with inde-
pendently determined biological conclusions or generate
novel, plausible hypotheses. A comparison of results from
LeFE and GSEA suggests that LeFE identifies important bio-
logical information overlooked by the latter method, which
does not take into account the complex interrelationships
among genes within a category. A new type of visualization,
the 'importance plot', captures the distribution of importance
scores within a category. Unlike GSEA [2], LeFE is directly
applicable to problems with multiple classes or continuously
valued signature vectors. A user-friendly program package,
LeFEminer, is freely accessible on the internet [46].

Materials and methods

Technical description of LeFE

Input

Figure 1 shows a schematic flow diagram of the LeFE algo-
rithm. The first input(indicated by i in Figure 1) is a vector Y
of ngsample signature values, each representing a behavior,
phenotype, or state of the sample. The signature values may
denote classes of samples (for example, for the three breast
cancer categories) or continuously distributed values (for
example, drug sensitivity). The second input (denoted ii in
Figure 1) is a matrix X of gene expression values for n, genes
measured over the n samples. The third input (not shown in
Figure 1) is a set E of m gene categories {E,, E, ... E;... E,,}.
Each category E; contains n; genes predetermined to be func-
tionally related. Categories can, for example, be GO catego-
ries [47] or Kyoto Encyclopedia of Genes and Genomes
pathways [1].

LeFE algorithm

The LeFE algorithm assigns a score that indicates the cate-
gory's predicted biological association with Y. The steps in the
algorithm, as applied to a single category, are listed in Table
4, which is keyed to the circled letters in Figure 1.
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Output

The results (not shown in Figure 1) of applying the algorithm
to all categories are as follows: a sorted vector of length m,
representing the ranked median permutation P values of the
m gene categories; an importance score for each gene in the
context of each category in which it occurs; and an impor-
tance plot (provided only for top categories), which shows the
distribution of importance scores for all genes in all n, itera-
tions (Figure 2).

Estimation of statistical significance

The FDR associated with each gene category's median permu-
tation t-test value is estimated by permuting the signature
vector and calculating the fraction of more extreme scores for
data that contain no true biological information. For each of
the example analyses described in this report, we have com-
puted FDRs using the method described by Benjamini and
Hochberg using 50 independent signature vector permuta-
tions [48].

Importance scores

Gene importance scores were described in general terms in
the Introduction (above). A more formal description, adapted
from Breiman and Cutler [49], is provided here. For each
(microarray) sample 7 in our experiment, let X; represent the
vector composed of gene expression values of the category's
genes and its randomly selected negative control gene set. Let
y; represent the sample's true classification or regression
value, let Vi(X) be the vote of tree j when trained on the values
contained in X;, and let ¢;; be an indicator variable equal to 1 if
iis an OOB sample for tree j and otherwise 0. Let XA = (X, @,
D, ..., X4 D) represent the gene expression values with the
value of gene A randomly permuted among the OOB observa-
tions for tree j. Then, X@is the collection of X4 for all trees,
where N samples have been selected with replacement from
the study's set of n, experimental samples. This notation can
easily be used to define importance scores in both the classi-
fication and regression contexts if we define the function
flo,B). In the context of classification, f = 1 if o is logically
equal to B and is otherwise 0. In the context of regression, fis
the mean squared difference between o and B. Thus, the
importance score, I, of variable A is defined as follows:

T N .
I1(4) =%2NLZ[f(Vj(Xi)7yi)‘f(VJ(XS‘A’J) }yi )]ty
J

j=1""J i=1

where T 'is the total number of trees in the forest and N;repre-

sent the number of OOB samples for the jth tree. It is then
straightforward to see that if the variable A is unimportant

and therefore infrequently used, f (ViXpy) ~ f(Vj X I(A’j ) )and
I T(A) ~ 0.

Importance plots show the distribution of importance scores
normalized by the standard error of the inter-tree variances of
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Figure 3 (see previous page)

A Comparison of LeFE with PathwayRF Shown is a comparison of Learner of Functional Enrichment (LeFE) and PathwayRF with respect to the size
distribution of categories identified as important for breast cancer classification using the Gene Ontology (GO) biological process categories. (a) Scatter
plots showing category rank versus category size. Ties in category ranks were resolved through random reordering. Red lines are lowess regressions. (b)
Comparison of GO superset and subset ranks. Almost all points for PathwayRF are below the blue x =y line, indicating that supersets rank lower (better)
than that their corresponding subsets. The panel for LeFE shows no such bias. (c¢) The GO biological process hierarchy (with the most general categories
toward the top). Blue circles denote the top 25 categories ranked by PathwayRF; red circles denote the same for LeFE; and yellow circles denote
categories in the top 25 for both algorithms. The mean GO level is 4.92 for PathwayRF and 7.08 for LeFE. There are no cases in which LeFE's top results
are the ancestors of top results from PathwayRF. However, the black edges highlight eight cases in which LeFE found categories that are progeny of

categories identified by PathwayRF.

I(A), o7 . Therefore, the normalized importance scores are

as follows:

The importance plot shows two smoothed probability density
distributions of importance scores: one for the genes in the
category (red curve) and the other for the sets of negative con-
trol genes (black curve). If category i has |E;| genes, then the
red distribution (of the category's genes) is composed of n,.x
|E;| genes, and the black distribution (with corresponding
negative control genes) has n,.x |E;| x C genes, where C is an
integer constant defined in Table 4 (step C).

Table 4

Importance scores are usually positive values, but it is possi-
ble for them to take on negative values if the model's perform-
ance happens to improve when the variable is permuted.

Because importance scores are computed within the model's
context, they reflect the complex, multivariate relationships
among genes in a category, even though they are assigned to
individual genes. That duality is key to the LeFE algorithm.

Implementation of LeFE

We implemented the algorithm in R v2.4 [50], using Biocon-
ductor [51], and the randomForest R package. Multiprocessor
capabilities in the Rmpi and snow R libraries were used to
speed up LeFE's extensive computations. A user-friendly,
Java-based web application, LeFEminer, is freely available on

Steps in the LeFE algorithm

Step Details
A The gene expression matrix, signature vector, and gene categories (not shown in Figure |) are entered
B For each category E, the genes in the microarray (X) are split into those in E;and those not in E; (denoted, respectively, by two blue and 12

green rows of the gene expression matrix)

C A negative control set consisting of C X n; genes in X but not in E; is selected at random. Those genes are noted as elevated rows in Figure I,
which was arbitrarily drawn for C = 3. The integer constant C is used to mitigate issues of statistical imprecision associated with small
categories. The default value C = 6 creates better run-to-run reproducibility and was used in the actual LeFE calculations

D A composite matrix of gene expression X, is assembled by selecting the rows in X that correspond to the n; genes in E;along with the

negative control genes selected in step C. The resulting data structure, X

E A random forest with 400 trees is built on X;,,

«ep Nas dimension (C X n)) + n;rows by n, columns

to model the signature vector, using the default value for the random forest parameter mTry.

The random forest is given no information for distinguishing between category genes and negative control genes

F A vector | of standardized importance scores of each gene in X;

iter

is computed internally from the random forest. [ is then divided into two

sets of importance scores, Igand I, for the genes in E;and the negative control set, respectively

G The statistical significance of the gene expression evidence for rejection of the null hypothesis that the mean of I is less than or equal to the
mean of |, (that the category genes are, on average, more important to the Random Forest model than the negative control genes) is
determined by a one-sided permutation t-test. Because that test compares observed t-statistics with a null distribution of t-statistics of
permuted data, it avoids using the parameterized t-distribution and is therefore nonparametric. For statistical robustness, steps C to G are
repeated n, times with different, randomly selected sets of negative control genes. The covariate structures of the E and notE genes are likely
to differ, but the negative control genes, selected at random from notE, are unbiased with respect to the ranking of categories in the next step
and with respect to the calculation of false discovery rates

H Applying the above procedure to a single gene category creates three outputs. The first (denoted j, in Figure ) is a median importance score
for each of the n; genes in the category. Because the median importance scores are computed within the category's multivariate Random
Forest models, they reflect the genes' importance within its complex biological context. The second output (denoted ii) is the entire
category's median P value from the n, permutation t-tests. The third output (denoted iii) is an importance plot, which compares the
distributions of importance scores of the genes in the category and the negative control genes

Shown are the steps in the Learner of Functional Enrichment (LeFE) algorithm, with the letters in the left-hand column corresponding to those in
Figure I.
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the internet [46]. It enables nontechnical experimentalists
and biologists to apply the algorithm to their datasets. To
perform LeFE's heavy computational tasks, the web service
application is multiprocessed on six 1.5 GHz 64-bit Itanium
processors with 4 GB RAM at the National Cancer Institute's
Advanced Biomedical Computing Center. Analysis of a typical
microarray experiment takes 90 to 240 min.

To manage the high computational requirements of running
the LeFE algorithm, and because most users are most inter-
ested in the top-ranked gene categories, a slightly modified
version of LeFE is supported by the LeFEminer web applica-
tion [46]. Median permutation t-test P values are rapidly esti-
mated by the LeFE algorithm with n, = 10 iterations instead
of the more accurate (and time consuming) n, = 75 iterations.
Based on that preliminary ranking of each category's likeli-
hood of being important, LeFEminer prioritizes the calcula-
tion, running up to n, = 75 iterations for the top categories
and fewer for the less promising ones according to a logistic
curve. Using the logistic curve, LeFE sets n, to be at least 60
for the top 40 preliminarily ranked categories and then grad-
ually reduces n, until it settles at 20 for the least promising
(roughly 85%) of the categories. That slight modification pre-
serves the accuracy and reproducibility of the results for the
top ranked categories while using only a fraction of the
computation time. LeFEminer uses the increased efficiency to
estimate the FDR of the results. Replicate applications of the
faster version of LeFE to the three datasets analyzed (current
versus never-smokers, breast cancer type, and gefitinib sensi-
tivity) produced highly reproducible rankings, with Spear-
man correlation coefficients (calculated over all of the ranks)
ranging from 0.95 to 0.98 (see Figure 4 and Table 5).

Reproducibility of LeFE

Because LeFE is not a deterministic algorithm, reaching full
computational convergence may require relatively high val-
ues of n,and n,, along with random forests of considerable
size. We used n,. = 75, n,= 6, and nTree = 400, respectively, in
the present calculations. Figure 4 shows the reproducibility of
LeFE for the breast cancer classification dataset. The overall
Spearman correlation over replications was r = 0.99, and the
correlation of the top 50 categories was r = 0.82. The results
of repeated analyses using the more efficient LeFEminer

Table 5

Correlation of ranks between two applications of LeFE with dif-
ferent random number generator seeds

Dataset Overall correlation Top 50 correlations
Breast cancer 0.98 0.70

Current Smoker/ 0.97 0.70

Never- Smoker

Gefitinib 0.95 0.6l

LeFE, Learner of Functional Enrichment.
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Replicate applications of LeFE to the breast cancer classification dataset.
Scatter plot comparing the ranks resulting from two applications of
Learner of Functional Enrichment (LeFE) to the breast cancer classification
dataset, with n,= 75, n_.= 6, and nTree = 400. The inset represents a
blowup of the top 50 categories. r denotes the Pearson's correlation
coefficient of the ranks (the Spearman correlation coefficient).

implementation (see above) on all three datasets are summa-
rized in Table 5.

Data for use in LeFE

LeFE and its internal Random Forest algorithm can be oper-
ated on a variety of prediction problem types. Unlike GSEA
[2], it directly handles regression and multi-class classifica-
tion. However, its flexibility creates a limitation worth discus-
sion. LeFE's Random Forest algorithm requires a collection of
samples that exemplify diverse states or behaviors. The
default setting of the randomForest R package used by LeFE
grows each decision tree until the tree's leaves have no fewer
than five samples in a regression model or one sample in a
classification model. Because the goal of LeFE is to capture
any gene interactions, the simplest logical models not cap-
tured by standard univariate methods must contain at least
two genes. Despite the observation that random forests con-
sider only a subsampling of variables to make each decision
tree split, LeFE can, in fact, be applied to small categories
with as few as two variables (genes). That is so because the
random forests are actually constructed on composite catego-
ries of at least 2n, + 2 = 14 genes in the case of a category with
two genes and n, = 6. As an informal test of whether LeFE was
doing something reasonable with small gene categories, we
examined the highest ranked two-gene categories (T cell dif-
ferentiation and cysteine metabolism) in the current-smoker/
never-smoker dataset. In each case, the low permutation
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t-test P values were explained by the observation that both
genes in the category had high importance scores.

Abbreviations

AR, androgen receptor; CART, Classification and Regression
Trees; EGFR, epidermal growth factor receptor; ER, estrogen
receptor; FDR, false discovery rate; GO, Gene Ontology;
GSEA, Gene Set Enrichment Analysis; LeFE, Learner of
Functional Enrichment; OOB, out-of-bag; RF, Random
Forest.
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