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Dynamic cumulative transcriptional regulation<p>By combining information on the yeast transcription network and high-resolution time-series data with a series of factors, support is provided for the concept that dynamic cumulative regulation is a major principle of quantitative transcriptional control.</p>

Abstract

Background: The regulation of genes in multicellular organisms is generally achieved through the
combinatorial activity of different transcription factors. However, the quantitative mechanisms of
how a combination of transcription factors controls the expression of their target genes remain
unknown.

Results: By using the information on the yeast transcription network and high-resolution time-
series data, the combinatorial expression profiles of regulators that best correlate with the
expression of their target genes are identified. We demonstrate that a number of factors,
particularly time-shifts among the different regulators as well as conversion efficiencies of
transcription factor mRNAs into functional binding regulators, play a key role in the quantification
of target gene expression. By quantifying and integrating these factors, we have found a highly
significant correlation between the combinatorial time-series expression profile of regulators and
their target gene expression in 67.1% of the 161 known yeast three-regulator motifs and in 32.9%
of 544 two-regulator motifs. For network motifs involved in the cell cycle, these percentages are
much higher. Furthermore, the results have been verified with a high consistency in a second
independent set of time-series data. Additional support comes from the finding that a high
percentage of motifs again show a significant correlation in time-series data from stress-response
studies.

Conclusion: Our data strongly support the concept that dynamic cumulative regulation is a major
principle of quantitative transcriptional control. The proposed concept might also apply to other
organisms and could be relevant for a wide range of biotechnological applications in which
quantitative gene regulation plays a role.
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Background
One of the important elements of gene regulation is mediated
by the binding of transcription factors to specific binding sites
of promoters or other gene regulatory control regions. In
eukaryotes, a combinatorial activity of specific transcription
factors is generally responsible for the expression of genes in
certain tissues, at specific times, or under specific environ-
mental conditions [1-4]. Although, in a few model organisms,
many of the transcription factors and their corresponding
binding sites have been identified [5-11], the mechanisms of
the transduction of combinatorial transcription factor activity
into specific quantitative target gene expression are not
understood.

Eukaryotic promoters usually contain several binding motifs
representing multiple-regulator-to-single-target-gene net-
work structure motifs (regulation modes). A multiple-regula-
tor set may control several different target genes (Figure 1),

which are known as convergence network modes [12-14].
Unfortunately, limited correlation exists between the expres-
sion profile of single transcription factors and their target
genes [15,16]. Attempts to strengthen this correlation by inte-
grating time delays [17] between the expression of a regulator
and its target gene have not been successful [15,16]. One of
the reasons for the failure to observe a significant correlation
between the expression of single transcription factors and
their target genes might be that, in most cases of transcription
regulation, more than one transcription factor is responsible
for the activation of a target gene, leading to a combinatorial
mechanism of target gene activation. Furthermore, different
transcription factors not only are transcribed at different
times, but also display different dynamics of translation,
processing, or posttranslational modification and activation.
This leads to different conversion efficiencies from the
transcription of a transcription factor to fully functional reg-
ulatory activity.

Scheme used for quantification study of combinatorial gene regulation in a convergence modeFigure 1
Scheme used for quantification study of combinatorial gene regulation in a convergence mode. In this example, two regulators, R1 and R2, are known to 
control the target genes T1, T2 and T2. Note that any two-regulator motif is not a subset of one three-regulator motif. One two-regulator motif exists if, 
and only if, two regulators are known to exert control on a specific target gene in the available network. At the end of this figure, no matter how 
statistically high or low the coefficient is, all the tests are finished for the target gene when the tests are completed in the specific convergence motif.
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In order to obtain further insight into the potential quantita-
tive mechanisms of target gene activation, use can be made of
gene expression data and knowledge of the available tran-
scriptional gene network of yeast [18-20]. A number of recent
studies have addressed the problem of gene expression. For
example, Greenbaum et al. [21] have studied the correlation
between yeast protein abundance and genome-wide mRNA
expression levels and have observed only a low correlation.
Similar observations have been made by Washburn et al.
[22], Griffin et al. [23], and Ghaemmaghami et al. [24]. In
these studies, comparisons of mRNA and protein levels in
yeast have shown Spearman-rank correlation coefficients of
only 0.45, 0.21, and 0.57, respectively. These low correlation
coefficients might have resulted from measurement errors or
from noise in the protein and/or mRNA levels.

An alternative explanation could be the importance of time
delays between the mRNA expression of genes and the accu-
mulation of their corresponding proteins. Le Roch et al. [25]
have systemically compared transcript and protein levels in
Plasmodium falciparum. In their study, strong time delays
between mRNA and protein accumulation have been found,
indicating the importance of this factor. The difference
among these delays for individual genes encoding regulators,
the difference among the time used for posttranslational
modifications for different proteins, and other unknown dif-
ferences will possibly cause a shift in the time at which the
various regulators function. Therefore, we think another kind
of potential time-shift exists among different transcription
factors themselves, in addition to the well-studied delay from
the time when transcription factors are expressed to the time
when their corresponding target genes are induced or
repressed [15,17,26,27]. Because the time delay is such an
important component of gene regulation, detailed high reso-
lution (short interval) time-series analyses have to be used in
order to understand the quantitative dynamic behavior of
biological systems.

Many steps are involved in the conversion of mRNA from a
transcription factor gene into an activated, fully functional,
binding regulator. The efficiency of each of these steps can be
expected to vary from transcription factor to transcription
factor, although the precise mechanisms are still unknown.
Different transcription factors have different mRNA turnover
rates [28,29]. P-bodies, for example, are involved in the deg-
radation, storage, and transportation of mRNA and appar-
ently also in the direct regulation of protein synthesis [30].
Furthermore, protein turnover [31,32] should also be consid-
ered. Assuming that only a fraction of the mRNA is translated
into functional transcription factor proteins, we have
assigned a conversion efficiency to the mRNA of each regula-
tor in each convergence mode. Of note, this conversion effi-
ciency is a comprehensive factor that integrates not only the
translation from mRNA to protein, and/or posttranslational
modifications, but also the assembling efficiencies of proteins

into a regulator and the binding efficiencies of different regu-
lators to their binding sites.

Complex biological systems often display nonlinear dynamic
behavior. This is probably also the case for the activation of
target genes as a result of the combinatorial activity of differ-
ent transcription factors. Nonlinear systems are computa-
tionally extremely difficult to handle. However,
approximations with linear system analysis can be useful. For
example, Liao's group has developed a linear method [33] to
infer regulator activities. Their analysis is based on available
transcriptional regulatory networks and expression data. In
the work presented here, we have also used a linear approach.

To dissect the mechanisms of quantitative combinatorial
gene regulation, we have considered all the factors mentioned
above. By assuming a combinatorial mode of transcription
factor activity as the principle of gene regulation in cases in
which multiple regulators are known to control one specific
target gene, and by integrating two kinds of time-shifts and
conversion efficiencies, we have developed a strategy to study
combinatorial gene regulation. Not only have we considered
the delays from the time when transcription factors are
expressed to the time when their corresponding target genes
are induced or repressed, but, for the first time, we have also
taken into account time-shifts among the regulators them-
selves. The strategy (Figure 1) is based on a systematic search
for an optimal combination of potential time-shifts and con-
version efficiencies of the transcription factors in the specific
convergence modes. This allows us to identify a combinato-
rial expression profile of regulators that best correlates with
the expression of the target genes. Of note, we have not uti-
lized the theoretically possible combinations of the regulators
in the whole network, but only those regulators within a spe-
cific convergence mode that are known to exist from experi-
mental data. In the available yeast genome-wide regulatory
network, we have discovered that such a combinatorial tran-
scription profile of regulators significantly correlates with the
target gene in 67.1% of 161 three-regulator motifs and in
32.9% of 544 two-regulator motifs. These percentages reach
even much higher levels among the network motifs involved
in the cell-cycle process. To verify the results, we have
employed another set of independent high-resolution time-
series expression data [34]. A high consistency in results has
been obtained. We have further found that a high percentage
of motifs also shows a significant correlation in the other
time-series datasets from studies of stress responses. There-
fore, a shifted cumulative mode of gene regulation is a pre-
dominant principle in cases in which multiple regulators are
known to control one specific target gene.
Genome Biology 2007, 8:R181
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Results
Lack of significant correlation between single regulator 
and target gene expression
In general, one would expect a significant correlation between
the expression profile of a regulator and its corresponding
target gene. In our previous studies, we employed the Pearson
correlation coefficient (PCC) [35], the local clustering (LC)
coefficient [17], and trend correlation (TC) scores [15] sys-
tematically to assess the correlation of time-series transcrip-
tion profiles [36] between individual regulators and their
corresponding target genes among 6,105 transcriptional reg-
ulatory interactions. The specificity of these regulatory inter-
actions was derived from various genetic, biochemical, and
ChIP (chromatin-immunoprecipitation)-chip experiments in
yeast [37] (see Materials and methods). In the LC and TC
methods, the time-shift (time delay) between a regulator and
its target gene and/or inverted relationships are considered.
However, by integrating the results from the three methods
used, TC [15], LC [17], and PCC [35], for only 231 out of the
6,105 (3.8%; Table 1) interactions can a significant correla-
tion with a P value of 2.7E-3 between the single transcription
factor and the target gene be found.

Significant correlation found through shifted 
cumulative regulation
We postulate that this lack of correlation might be a result of
the regulation of individual target genes through the combi-
natorial activity of several regulators. We have addressed this
problem by analyzing the time-series dataset of Cho et al.
[36]. In their work, 745 two-regulator-to-one-target-gene
motifs and 331 three-regulator motifs are represented based
on the known regulatory network of yeast [20]. A two- or
three-regulator set may control several different target genes
in a specific convergence mode. Assuming that the time-shifts
and the conversion efficiencies of transcription factors acting
within a specific convergence mode regulating different tar-
get genes are similar, we constrain the time-shifts and the
conversion efficiencies to the identical value in a given con-
vergence mode. The time-shift here represents the shift
between the time when the mRNA of a given regulator is

expressed and the time when this transcription factor begins
to regulate its target gene. Therefore, we have constrained the
time-shifts among the two or three regulators to the same
value across different target genes in a given convergence
mode. We have only chosen convergence modes in which the
same regulator set has more than one target gene (see Mate-
rials and methods). Hence, 544 out of the 745 two-regulator
and 161 out of the 331 three-regulator motifs are included in
this work.

In all cases to find optimal correlations, we have also inte-
grated the well-known delay from the time when the regula-
tors are expressed to the time when their target genes are
expressed. However, we have not constrained the time when
the target genes are expressed to be the same among different
target genes in a given convergence mode. We have then
included individual conversion efficiencies, limited to the
non-negative range, in which both regulators simultaneously
and cumulatively control the target gene, but without oppo-
site activity between the two regulators. We have systemati-
cally tested the effect of all possible conversion efficiencies of
individual regulators (non-negative) and of all possible time
delays between the regulators and their target genes on the
expression profiles of the regulators. These individual time-
series profiles of the two regulators in the convergence mode
have then been combined into a synthetic combinatorial
time-series profile in an attempt to identify the combinatorial
expression profile that best correlates with the expression of
the target genes (Figure 1).

Using this approach, we have been able to obtain a significant
(LC > 13, corresponding to P < 2.7E-3 between expression
profiles of two genes (see Materials and methods)) correla-
tion between the combinatorial profiles of two regulators and
the profile of their target gene in 35 two-regulator motifs. This
corresponds to 6.43% (Table 1) of all the known two-regulator
motifs.

We have then taken into account a potential opposite regula-
tion between two regulators, that is, by combining negative

Table 1

Effect of different factors on the quantitative expression of target genes

Before considering
multi-regulators

Two-regulator motifs Three-regulator motifs

Possible time delays from regulator(s) to target genes + + + + + +

Conversion efficiency (non-negative) + + + + +

Possible opposite regulation between regulators + + + +

Possible time delays among regulators + +

Number of significantly correlated motifs (interactions) 231 35 48 179 75 272

Number of motifs (interactions) 6,105 544 544 544 161 161

Percentage 3.78% 6.43% 8.82% 32.9% 21.7% 67.1%

Plus signs indicate that the corresponding factor is considered in the corresponding case.
Genome Biology 2007, 8:R181
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regulation into the sign of the conversion efficiency of tran-
scription factors (see Materials and methods). This results in
the detection of a significant correlation in additional (48 of
544 (8.82%)) two-regulator motifs, indicating the existence
of opposite regulation.

However, 48/544 still represents only a small fraction of the
gene regulatory motifs analyzed and indicates that other cru-
cial factors might need to be taken into consideration. So far,
the relative time-shifts among individual regulators have
been neglected. Consequently, we have also considered this
type of time-shift. Surprisingly, the number of gene regula-
tory structural motifs in which the combinatorial expression
profile is now significantly correlated with a target gene
sharply increases from 48 to 179 of 544 (Additional data file
1). The substantial improvement from 8.82% to 32.9% (Table
1) with regard to finding a significant correlation between the
combinatorial expression profile and a target gene indicates
that the time-shift among regulators is highly important.

To evaluate whether the shifted cumulative regulation as
demonstrated above is a general rule for the regulation of sev-
eral-regulator motifs, we have subsequently extended the
same strategy from two-regulator to three-regulator struc-
tural motifs. Without consideration of a time-shift among
three regulators, the combinatorial expression profiles of only
35 out of 161 three-regulator motifs are significantly corre-
lated with the expression profile of the target gene. However,
when we include a time-shift among the regulators, an addi-
tional significant increase in this correlation is observed (108
of 161 (67.1%)). Details of results are provided in Additional
data file 2.

Significant difference between results for the original 
and randomly generated expression data and between 
results for the original network and randomly 
generated networks
To determine whether the distribution of success percentages
at different thresholds is different for the original data [36]
and random data, we calculated the correlation scores of the
two- and three-regulator motifs on randomly shuffled expres-
sion data and subsequently performed both paired Student's
t-test and Wilcoxon matched-pairs signed-ranks test. We
found that the success percentage (Figure 2a,c) at each
threshold in the original expression data is significantly
higher than that in the random data. The paired Student's t-
test rejects the null hypothesis that the mean of success per-
centages at different thresholds in the original expression
data is less than or equal to that in the randomly shuffled
expression data for the two-regulator motifs and the three-
regulator motifs (P = 3.35E-5 and 9.4E-7, respectively).
Because we do not know whether the distributional assump-
tion of normal-theory-based t-tests is satisfied in the distribu-
tion of the success percentage, we applied the Wilcoxon
matched-pairs signed-ranks test (P ≤ 4.88E-4 for both two-
and three-regulator motifs). The results (Figure 2a,c) show

that only about 11.9% of two-regulator motifs exhibit a signif-
icant correlation (LC ≥ 13) in the random expression data
compared with 32.9% in the original expression data. The
false discovery rate (FDR; see Materials and methods) is only
0.168. This is acceptable because only about 16 out of 100
motifs, in which a significant correlation can be found
between the combinatorial expression of regulators and tar-
get gene expression, would be false. In the three-regulator
motifs, the success percentage at threshold 13 is also lower in
the randomly produced data compared with the original data.
In this case the FDR is as low as 0.124.

To obtain more stringent statistical results, we have also gen-
erated random networks by randomly choosing genes as reg-
ulators and target genes. The random networks are generated
by keeping the same structure for each convergence mode
and keeping the expression data intact. Keeping the same
structure of the convergence modes is to make sure the ran-
dom networks are comparable with the real network. In this
way, the statistical results are more reliable since we need to
constrain the time-shift and the conversion efficiency of the
same regulator to the same value for different target genes in
the same convergence mode. Both paired Student's t-test (P =
6.81E-6 and P = 5.15E-6 for two- and three-regulator motifs,
respectively) and Wilcoxon matched-pair signed-ranks test
(P ≤ 4.88E-4 for both two- and three-regulator motifs) show
a significant difference between the success percentages of
the original network and random networks. We have also
found that the success percentage at each threshold in the
original network is higher than that in random networks (Fig-
ure 2b,d). If we compare the original network with random
networks, for two- and three-regulator motifs the FDR is
0.388 and 0.390, respectively, a high value when compared
with criteria of traditional P values but acceptable for FDR. A
relatively higher FDR obtained from random networks may
indicate the incompleteness of the real transcription regula-
tory network.

Therefore, we consider that the results are significant and
meaningful in real biological data. In short, the results would
have been difficult to obtain haphazardly.

Investigation of network structural motifs involved in 
the cell cycle
Since time control is so important in combinatorial gene reg-
ulation, if the principle of shifted cumulative regulation
exists, then this mode should be more enriched in the biolog-
ical processes in which time control is more essential. We
thus checked the cell-cycle process to determine if this is the
case. Among all of the 544 two-regulator motifs known, the
target genes of 60 have been previously assigned to certain
specific phases of the cell cycle of yeast [36] and/or annotated
as being related to cell-cycle processes in the Gene Ontology
database [38] (Additional data files 1 and 7). We found that,
for 36 of these 60 motifs (60.0%), the combinatorial profile of
the two regulators is significantly correlated with the expres-
Genome Biology 2007, 8:R181
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sion of the target gene. In most of these 36 motifs, at least one
regulator has been assigned to certain phases of the cell cycle
or annotated to the cell-cycle process. Among the 161 three-
regulator motifs, the target gene of 34 motifs has been
assigned to the cell cycle. Remarkably, 30 out of the 34 three-
regulator motifs (88.2%) show a significant correlation
between the combinatorial expression profile of the three reg-
ulators and their target gene. Consistent with this expecta-
tion, such high percentages have further strengthened the
idea that shifted cumulative regulation is one of major princi-
ples in quantitative expression control.

Shifted cumulative regulation can be nicely demonstrated in
the following example. In yeast, the transcription factors
YML027W (YOX1) and YMR016C (SOK2) have been
described to regulate the transcription expression of
YOR039W (CKB2) [20]. The latter is reported as a G1/S tran-
sition gene and as a G2/M transition gene [39]. YOX1 is
reported to be one of the G1/S-specific transcriptional genes
[37]. Cho et al. [36] have also observed that YOX1 belongs to
the late G1 phase. We therefore expect a significant correla-
tion between YOX1 or SOK2 and the target gene CKB2. How-
ever, using the PCC, LC, and TC methods, a significant
correlation between YOX1 and CKB2 could not be detected, as
indicated by the corresponding parameters (scores of 0.32 for
PCC, 7.41 for LC, and sc 12 and cc 0.71, respectively, for TC).
Similarly, a significant correlation cannot be detected

between SOK2 and CKB2. By the mode of shifted cumulative
gene regulation, these results can now be explained. As shown
in Figure 3, the combinatorial profile of the two regulators
(YOX1 and SOX2) correlates highly significantly (13.1, corre-
sponding to P = 2.7E-3 between expression profiles of two
genes) with that of the target gene (CKB2). We also show the
time-shifts and the conversion coefficients of the regulators
derived for the regulation of CKB2 in Figure 3. Based on our
analysis, there is a delay of three time points (about half an
hour) for SOK2 compared with YOX1, and only 70% and 10%
of the mRNAs of SOK2 and YOX1, respectively, seem to be
converted to functional activated binding regulators activat-
ing CKB2. These results strongly suggest that shifted cumula-
tive regulation exists.

Consistency of time-shifts and conversion efficiencies 
of a given regulator with different target genes
A given regulator might display some similarities in quantita-
tively controlling its different target genes. Therefore, we
examined whether these similarities occur in our results. In
our algorithm, the time when a given transcription factor
begins to function is already constrained to an identically
shifted time point among different target genes in the same
convergence mode. Hence, the time-shifts among the two or
three transcription factors are kept constant for different tar-
get genes in the same convergence mode. The algorithm itself
first guarantees the consistency of time-shifts for a given reg-

A high percentage of motifs showing a significant correlation in the real data; significantly different distribution of success percentages between real and random expression data (network)Figure 2
A high percentage of motifs showing a significant correlation in the real data; significantly different distribution of success percentages between real and 
random expression data (network). (a) Significantly different distribution of success percentages at different thresholds in the two-regulator motifs 
between the studied real expression data and randomized (shuffled between different time points) data. (b) Significantly different distribution of success 
percentages at different thresholds in the two-regulator motifs between the studied real network and random networks. (c) Significantly different 
distribution of success percentages in the three-regulator motifs between the original expression data and the randomized data. (d) Significantly different 
distribution of success percentages in the three-regulator motifs between the studied real network and random networks.
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ulator across different target genes within the same conver-
gence mode. Within the entire transcription network known
so far, there are a total of 78 regulators contributing to two-
regulator motifs (Additional data file 1). Out of the 78 regula-

tors, 34 regulators are involved in only one convergence
mode. So, the time-shifts of these 34 regulators are com-
pletely consistent among different target genes.

Shifted cumulative regulationFigure 3
Shifted cumulative regulation. Illustration of the concept that transcription expression profiles (non-normalized) of regulator YML027W (YOX1, red line) 
and regulator YMR016C (SOK2, blue line) are dynamically combined. This demonstrates a significant match between the combinatorial expression profile 
and the expression of the target gene YOR039W (CKB2) in the studied dataset. The conversion efficiency, which indicates the ratio between the number 
of functional activated binding regulators and the number of available transcription factor transcripts, is presented as a percentage (10% and 70% here).
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Next, we asked whether the time-shifts of a given regulator in
different convergence modes are concordant among different
target genes since one of the two regulators in a convergence
mode might also be a regulator in other convergence modes.
Because of computational explosion, we cannot constrain the
time-shifts of a given regulator for all different target genes in
the whole regulatory network to one shifted time point.
Therefore, if an enriched distribution of shifted time points
occurs in a short contiguous time window for a given regula-
tor, the shifted time points of that regulator are consistent
among different convergence modes.

Among 44 regulators that are involved in more than one con-
vergence mode, there are 6 regulators, each of which shifts to
an identical time point in different modes. Therefore, the six
regulators show a perfect consistency among different target
genes in the whole regulatory network in terms of shifted time
point. For each of 27 out of the other 38 regulators, the shifted
time points of different convergence modes mainly concen-
trate in one or two areas (P < 5E-2; Additional data file 1).
Each area comprises a short (one to three time points) contig-
uous time window (Figure 4). For example, the regulator
YML027W (YOX1) is the regulator of 25 two-regulator con-
vergence modes (including 92 two-regulator-to-single-target
motifs). In 14 out of the 25 modes, the time when the regula-
tor YOX1 begins to function relative to the first time point is
zero. In 8 out of the 25 modes, the time when YOX1 begins to
control its target genes shifts to time point 8 or 9 in a concen-
trative pattern (Figure 4). The binomial distribution test
shows that it is very difficult to obtain 8 out of the 25 modes
distributing in two contiguous time points from the 10 possi-
ble time points by chance (P = 1.25E-2; see Materials and
methods). The distribution pattern of shifted time points of a
given regulator appears to be concentrative (Additional data
file 1 and Figure 4). This concentrative pattern demonstrates
a good consistency of the shifted time points among different
convergence modes and, consequently, across different target
genes in the entire transcription network analyzed.

Our algorithm also constrains the conversion efficiencies of a
specific transcription factor among different target genes to
an identical value in a given convergence mode. Therefore, to
further assess the consistency of the conversion efficiencies of
given regulators in the whole transcription network, we only
need to check whether the conversion efficiencies of those
regulators in different convergence modes distribute in a con-
centrative manner. Forty-four regulators are involved in
more than one convergence mode. One regulator has the
same time-shift among different convergence modes. For
each of 29 out of the 43 regulators, the shifted time points in
different convergence modes mainly concentrate in one or
two areas (Additional data file 1). Each area comprises a short
(one to five points - only one regulator distributes in five
points) contiguous conversion efficiency window. For exam-
ple, in 22 out of the 25 modes, the conversion efficiencies of
YOX1 only distribute in the short range 0-0.4 (Figure 4). The

binomial distribution test shows that 22 out of the 25 modes
distribute in 5 contiguous conversion efficiencies of the 21
possible conversion efficiencies. This cannot be randomly
obtained (P = 1.65E-14). Therefore, the conversion efficiency
of a given regulator is also quite consistent among different
convergence modes and, hence, consistent among different
target genes in the whole available transcription regulatory
network analyzed.

In addition, the analysis of variance of time-shifts and conver-
sion efficiencies for each regulator across different conver-
gence modes has also shown a similar outcome as the above
analysis of the short contiguous distribution. The variance of
time-shifts (conversion efficiencies) of a given regulator is
measured by the standard deviation of time-shifts (conver-
sion efficiencies) among different convergence modes that
the given regulator controls. We take the standard deviation
of time-shifts (conversion efficiencies) of all the regulators
across all the different convergence modes as background
deviation. It turns out that 25 out of the 38 regulators show a
smaller standard deviation of time-shifts than the back-
ground deviation (Additional data file 1). We have observed
that 29 out of the 43 transcription factors have a smaller
standard deviation of conversion efficiencies than the back-
ground deviation (Additional data file 1).

Validation in another independent dataset
If, for the same multi-regulator transcriptional regulatory
network motifs, the shifted cumulative regulation can also be
found in another independent dataset, these results would
corroborate our discoveries. For this purpose, we have uti-
lized the high-resolution time-series yeast expression dataset
of Spellman et al. [34]. In their data, which was also originally
used for analyzing genes involved in the cell-cycle process, the
same time interval (ten minutes) was employed for
microarray measurements. Therefore, it represents a good
opportunity for the confirmation or refutation of our results.
Because of the values missing at some time points in this
microarray dataset (see Materials and methods), we have
been able to find only 208 common two-regulator motifs that
exist in both the Cho and the Spellman time-series datasets
[36]. In 59 out of the 208 two-regulator motifs, a significant
correlation between the combinatorial expression of the reg-
ulators and the target gene expression has been found in the
Cho time-series dataset. Of the 208 two-regulator motifs, 67
show a significant correlation in the Spellman dataset.
Among them, 21 two-regulator motifs show a significant cor-
relation in both the Spellman dataset and the Cho time-series
dataset (Additional data file 3). For the three-regulator
motifs, the intersection of the motifs between the Spellman
data and the Cho data is only 32 (Additional data file 4). Up to
25 out of the 32 motifs show a significant correlation in the
Cho data and 20 are significant in the Spellman data. The
overlapping number of significant correlated motifs in both
the Spellman and the Cho data is 16.
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We then examined whether these overlapping numbers of 21
and 16 could be obtained by chance. If we assume there are
only 59 motifs showing a significant correlation in the whole
population of 208 two-regulator motifs, the possibility to
obtain 21 or more significant motifs by randomly taking 67
motifs is 0.31 (hypergeometric test). The possibility to obtain
16 or more significant three-regulator motifs can also be cal-
culated by hypergeometric test (P < 0.53). These possibilities
alone are not significant in terms of the chance to obtain these
overlapping numbers. However, these tests alone cannot jus-
tify whether these overlapping significant motifs could be
easily obtained by chance. We need to further evaluate
whether the other aspects of these common significant motifs
are consistent between the two experiments. One could
expect that sometimes these overlapping numbers could be

obtained by chance, although one could not also expect that
the accordance of the time-shift and the conversion efficiency
between the two experiments could be obtained in the com-
mon significant motifs by chance. Note that the consistency of
the time-shift and the conversion efficiency between the two
experiments is independent of the consistency in significance
of correlated scores of the motifs.

We therefore examined whether the time-shift and the con-
version efficiency are significantly consistent between the two
experiments. Among the 42 regulators of the common signif-
icant two-regulator motifs, the difference in the time-shifts
between the two experiments for 25 regulators is less than or
equal to 2 time points (Additional data file 3). The binomial
distribution test shows that the possibility to have a difference

Significant consistency among different target genes in shifted time points and conversion efficiencies of the same regulator in different convergence modesFigure 4
Significant consistency among different target genes in shifted time points and conversion efficiencies of the same regulator in different convergence 
modes. This figure shows only the top five regulators that are involved in the largest number of convergence modes. Note that one convergence mode 
includes more than one two- or three-regulator motif in this work. The overall percentage among all the convergence modes that the given regulator 
controls is indicated above the corresponding contiguous columns of shifted time points or conversion efficiency. The possibility to obtain this kind of 
contiguous concentrative distribution was examined by binomial distribution test. These statistics results are very significant (Additional data file 1).
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less than or equal to 2 time points in a concentrative way for
25 regulators among a total of 42 regulators is 3.35E-6.
Therefore, even if one could obtain these 21 common signifi-
cant motifs by chance, it is still very difficult to obtain a differ-
ence in time-shift less than or equal to 2 time points for 25
regulators between 2 experiments by chance. Furthermore,
we tested whether the consistency of the conversion efficiency
could be obtained by chance. Among the 42 regulators of the
common significant motifs, the difference in the conversion
efficiency between the 2 experiments for 19 regulators is less
than or equal to 0.3. The binomial distribution test was used
to examine the possibility that the difference between the two
experiments in the conversion efficiency concentrates in the
short contiguous window less than or equal to 0.3 for 19 reg-
ulators among 42 regulators (P < 2.52E-7). The total P value
to obtain this number of overlapping significant motifs with a
significant consistency in both time-shift and conversion effi-
ciency is 2.61E-13.

Analogously, the possibilities to have consistency in both
time-shift and conversion efficiency for the three-regulator
motifs are significant (P < 4.3E-3 and P < 1.8E-4, respec-
tively). Taken together, even if one could obtain the overlap-
ping numbers of significant motifs by chance, it is also very
difficult to obtain a highly significant consistency between the
two experiments in both time-shift and conversion efficiency
by chance.

Because the Spellman dataset is an independent dataset, the
highly consistent results have confirmed the findings
obtained for the Cho dataset. Additionally, compared with
data in the Cho dataset, similar results were obtained, that is,
in 72 of 219 (32.9%) two-regulator motifs and 25 out of 38
(65.8%) three-regulator motifs, a significant correlation can
be found in the Spellman dataset; these similarities indicate
that shifted cumulative regulation is a major principle for
multi-regulator transcriptional network structure motifs.

In short, for both two- and three-regulator convergence
motifs, it is very difficult to obtain this kind of observed over-
lap between the Spellman and Cho datasets by chance. These
results have excluded the risk of overfitting.

Shifted cumulative regulation is also dominant in feed-
forward loops
The feed-forward loop (FFL) has been found to be over-rep-
resented in various biological systems [16,40-43]. A FFL is
composed of three nodes. A transcription factor regulates a
second transcription factor, and both regulators also regulate
the target gene. Therefore, a FFL has two parallel regulation
paths: a direct path from the first regulator to the target gene
and an indirect path that goes through the second regulator.
Because of the structural characteristics of FFLs, a two-regu-
lator-to-single-target-gene structure might actually be a FFL.
Since the first regulator can directly and indirectly regulate
the target gene, this additional functional characteristic

might affect the quantitative regulation mechanism of the tar-
get gene. Similarly, an FFL may also be involved in a three-
regulator-to-single-target structure.

Hence, we have evaluated whether there is a significant dif-
ference between the FFL and non-FFL groups in terms of the
frequency of shifted cumulative regulation. Among all of the
544 two-regulator motifs from the Cho dataset, 73 motifs are
also FFLs (Additional data file 1). Of these 73 motifs, 27
(37.0%) show a significant correlation between the combina-
torial expression profile of the regulators and the expression
of the target gene. Among the 471 non-FFL two-regulator
motifs, a significant correlation is found in 152 motifs. The
Yates chi-square test has been used to determine the differ-
ence between the success frequencies of the FFL and non-FFL
groups. The results (chi-square = 0.44, df = 1, P = 0.507) show
that there is no significant difference in the two-regulator
motifs in the Cho dataset. FFLs are also involved in 29 three-
regulator motifs. A high percentage (21 out of 29 (72.4%);
Additional data file 2) shows a significant correlation between
the combinatorial expression of the regulators and the target
gene expression. In 87 out of the 132 non-FFL three-regulator
motifs (65.9%), a significant correlation has also been
detected in the Cho dataset. The difference (Fisher's exact
test, P = 0.329; see Materials and methods; Additional data
file 3) between the FFL and non-FFL groups in the three-reg-
ulator motifs is also not significant in the Cho dataset. Simi-
larly, there is no significant difference between the FFL and
non-FFL groups for the two-regulator motifs (Fisher's exact
test, P = 0.558) and three-regulator motifs (Fisher's exact
test, P = 0.429; Additional data file 4) from the Spellman
dataset. Thus, even in the FFLs, shifted cumulative regulation
is also a major principle. Although the first transcription fac-
tor can regulate the target gene twice, by a direct path and an
indirect path, only the second regulator directly regulates the
expression of the target gene in the indirect path. Therefore,
the first regulator and the second regulator directly regulate
the target gene only once per se. This is the reason that the
frequency of shifted cumulative regulation is similar in the
groups of FFLs and non-FFLs.

Shifted cumulative regulation is also applicable to 
stress-response conditions
To examine whether the principle of shifted cumulative regu-
lation only prevails in the synchronized yeast cell cultures, we
next performed a similar analysis under other conditions,
such as stress responses. Because the high-resolution time-
series expression data with equal sampling interval were
required for this analysis, we chose only two conditions from
the available data. The first one was originally used for study-
ing the transcriptional response of steady-state yeast cultures
with a low-level glucose pulse perturbation [44]. The second
one was utilized for an analysis of expression in the response
of yeast cells to constant 0.32 mM hydrogen peroxide (H2O2)
stress [45].
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Under the condition of low-level glucose pulse perturbation,
557 two-regulator motifs are included on the available regula-
tory network (see Materials and methods). If we choose the
same P value cutoff (2.7E-3; see Materials and methods), 141
out of the 557 two-regulator motifs (25.3%; Additional data
file 5) show a significant correlation between the combinato-
rial expression of the regulators and the target gene expres-
sion. The data obtained under H2O2 stress include 453 two-
regulator motifs. Among them, a significant correlation can
be detected in 114 two-regulator motifs (25.2%; Additional
data file 6). These success percentages are higher in three-
regulator motifs under both conditions (45.2% of 168 motifs
and 47.5% of 120 motifs for glucose pulse perturbation and
H2O2 stress, respectively; Additional data files 5 and 6). These
success percentages are relatively lower than those in the data
used to study cell-cycle regulation. However, percentages of
approximately 45% and 25% are still considered to be high at
the systems level. Consequently, we can conclude that shifted
cumulative regulation is also applicable to other conditions,
rather than only being constrained to the synchronized yeast
cell cultures, which were originally used to study cell-cycle
regulation.

Discussion
Major efforts are currently directed toward the identification
of the components of biological systems. These include the
sequencing of whole genomes and the analysis of genome-
wide expression profiles of transcripts or proteins in specific
physiological or pathophysiological states. However, mere
knowledge of the components is not sufficient to reveal the
complexity of biological systems. We also need to understand
the dynamics of the interactions between the individual
components.

In the work presented here, we have used genome-wide high-
resolution (short interval) time-series expression data from
yeast [36] in order to understand some of the basic principles
that underlie quantitative gene regulation. The relationship
between transcription factors and their target genes can be
analyzed by a correlation analysis between the regulator(s)
and the induction of the corresponding target gene(s). Unfor-
tunately, the attainment of significant correlations between
one single transcription factor and a specific target gene has
not been straightforward.

A number of groups have tried to carry out genome-wide cor-
relation analyses, for example, by using the PCC [35] to iden-
tify relationships between regulators and target genes [15-17].
In these studies and also in the present work, only a small per-
centage of significant relationships has been found between
the expression of single transcription factors and their target
genes, even when time-shifts [15-17] are included in the anal-
ysis (Table 1).

We have hypothesized that this might be attributable to the
finding that most genes are regulated through the combinato-
rial activity of more than one transcription factor. We have
also considered potential differences in the conversion effi-
ciencies between the transcription of individual regulators
and their functional activity. Because many factors contribute
to the conversion of a transcription factor transcript into a
functional binding regulator, a coefficient representing this
conversion efficiency has been integrated into our analysis.
Such a conversion efficiency factor needs to be looked at as a
comprehensive parameter, integrating factors such as differ-
ences in the translation efficiency from mRNA to protein, in
the assembly efficiency from protein to regulator, in post-
translational activation (inhibition), and in the binding effi-
ciency of the regulators to their binding motifs. We derive
these conversion efficiencies by testing all possible conver-
sion efficiencies of the transcription factors of the conver-
gence mode in order to find the specific combination of
conversion efficiencies to form a combinatorial expression
profile of the transcription factors that best correlates with
the expression of the target gene. A specific regulator can dis-
play different conversion efficiencies dependent on the spe-
cific convergence modes.

As shown in Table 1, we obtained a significant correlation
between regulators and target genes of yeast by considering a
multi-regulator mode of gene regulation and by integrating a
conversion efficiency factor for the various regulators. After
combining the time-series profiles of the two individual regu-
lators into the combinatorial time-series profiles, the combi-
natorial profiles of two regulators is significantly correlated in
6.4% of cases with the induction of their target gene com-
pared with only 3.8% when single regulators are considered
(Table 1). Allowing for the potential opposite regulation of the
individual regulators, this percentage increases to 8.8%. For
those target genes that are known to be regulated by three
regulators, a significant correlation between the expression of
regulators and target genes is found in as many as 21.7% of
cases.

The influence of time delays between regulators and target
genes is a well-known phenomenon and is considered in all
our calculations. In addition to time delays between regula-
tors and target genes, time delays among regulators them-
selves might also be important. When we incorporate the
influence of this second type of time delay, a further signifi-
cant increase from 8.8% to 32.9% in identifying a significant
correlation of regulators and target genes is obtained for the
two-regulator motifs. For the three-regulator motifs, this per-
centage even increases to 67.1%. This dramatic increase dem-
onstrates the extreme importance of the time-shift when
different transcription factors begin to regulate the transcrip-
tional expression of target genes. The time-shift among regu-
lators is mainly attributed to the intrinsic asynchronous
characteristics of activation/inhibition of genes or proteins.
Possibly, these built-in characteristics of genes or proteins are
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also required for the delicate dynamic regulation of the genes
or proteins. In fact, exquisite quantitative expression, rather
than simple on-off expression, is also reported to be biologi-
cally functionally required in a recent study by Wan and Fla-
vell [46]. Therefore, our proposed shifted cumulative
regulation mechanism might possibly have evolved to meet
the complicated spatial and temporal dynamics of gene func-
tion in organisms.

The proposed shifted cumulative model here assumes that
the regulators control the target expression independently.
However, in some cases, the regulators may form a het-
erodimer and then act on the promoter or other regulatory
regions of the target gene, for example, SBF (SWI4-SWI6)
and MBF (MBP1-SWI6) [47,48]. If the regulators are depend-
ent, the whole complex of regulators is only active if both pro-
teins are present. In such a model, the total activity should
correspond to the minimum concentration of MBP1 and
SWI6 (or SWI4 and SWI6, respectively). Hence, the cumula-
tive (additive) mode that is assumed in equation 2 (see Mate-
rials and methods) is not fulfilled in such cases.

Given regulators might exhibit some similarities in quantita-
tively regulating the transcription expression of their differ-
ent target genes. We determined the consistency of the time-
shifts and the conversion efficiencies of given regulators
among different target genes in the same convergence modes
by integrating a direct constraint in our algorithm. Our
results also demonstrate that the time-shifts and the conver-
sion efficiencies of given regulators are significantly consist-
ent among their different target genes in different
convergence modes.

As discussed above, conversion efficiency is a comprehensive
parameter, integrating factors such as differences in the
translation efficiencies from mRNA to protein, in the assem-
bly efficiencies from protein to regulator, in posttranslational
activation (inhibition), and in the binding efficiencies of the
regulators to their binding motifs. In general, for a given reg-
ulator, the translation efficiency from mRNA to protein is
assumed to be independent of its target genes. However,
other factors, such as assembly efficiencies from protein to
regulator and posttranslational processes, may still be dis-
similar because several different signaling pathways or mech-
anisms might possibly be involved in those processes for a
given regulator. For example, MYC responds differently to
different inputs from other factors and/or signals [49].
Another well-known example is represented by transcription
factors activated by mitogen-activated protein kinase
(MAPK) cascades [50]. The binding efficiencies of a given reg-
ulator for different target genes might also be distinct. For
instance, the particular arrangement of sites at target pro-
moters is also an important influence on MYC activity; dock-
ing MYC at different distances from the transcription start
site modulates its activity [51]. At different promoters, MYC
may act through different mechanisms and at different stages

of the transcription cycle [52]. The detailed mechanisms that
lead to a specific conversion efficiency of individual transcrip-
tion factors are generally not known. A given regulator can be
activated through different pathways and, subsequently,
induce different target genes. This is supported by a recent
report [53] that shows that the strengths of a given regulator
on different target genes are different because of the different
binding positions in the gene promoter, when considering
expression data under independent conditions. Therefore, it
is not surprising to observe some divergences in the conver-
sion efficiencies of given regulators for different target genes.

The time-shift among the two or three regulators is the same
for their different target genes in the same convergence mode.
It is also reasonable that different target genes in different
convergence modes show some differences in the time-shifts
when a given regulator begins to function to control its target
genes relative to the time when the mRNA of that regulator is
expressed. One reason for this could be that the regulator may
activate its different target genes at different times
[49,54,55]. Since a given regulator may be activated through
different mechanisms or pathways and subsequently induce
different target genes even within the same cell [49,50,56],
some temporal difference might exist among the different
pathways. We cannot exclude that such different mechanisms
or different pathways exist, for example, in synchronized
yeast cell cultures. Hence, it is possible that differences in
time-shifts among given regulators occur in different motifs.

The lower percentage of two-regulatory motifs compared
with three-regulatory motifs showing a significant correlation
between combinatorial expression profiles of regulators and
the expression of target genes might be the result of incom-
plete knowledge concerning the structure of the underlying
gene regulatory network. Among both two-regulator- and
three-regulator motifs, some parts cannot be well explained
by our proposed cumulative regulation modes. One alterna-
tive possibility is that the utilization of promoter regulatory
modes are condition- or environment-dependent [57].
Another explanation is that, although the microarray quality
control project has shown inter- and intra-platform repro-
ducibility of gene expression measurements [58], the
expression data used here can be affected by many artifacts
and/or experimental errors [59,60]. The cell-cycle expression
data also suffer from the synchronization loss problem. To
address this problem, Bar-Joseph et al. [61] once proposed an
approach to deconvolve cell-cycle expression data by utilizing
some complementary information, such as fluorescence-acti-
vated cell sorting analysis and budding index. The decon-
volved values can be used to improve the synchronization loss
problem. However, we prefer to use observed values here,
because deconvolved values are only applicable to genes that
are involved in the cell cycle. In this work, we have also been
interested in other genes that are involved in other pathways
but that might also be regulated in the synchronized yeast cell
cultures, which were originally used to study cell-cycle regu-
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lation. In addition, de Lichtenberg et al. [62] once proposed
an approach in which the timescales are first transformed
from minutes to percentages of the cell cycle in different
experiments in order to obtain one integrated global peak
time. This method was demonstrated to be useful to identify
periodically expressed cell-cycle genes. However, in this
work, we want to know whether the mechanism of shifted
cumulative regulation is a general principle of quantitative
gene regulation under different conditions and/or in different
experiments. We are interested in not only the peak expres-
sions but also all the other quantitative expression values over
time. Because of the exponential increase in computer time
needed (for the number of combinations in two- or three-reg-
ulator motifs, see Additional data file 8), we have not ana-
lyzed motifs with more than three regulators.

Stringent time control is an intrinsic property of the cell-cycle
process. Therefore, the mechanism of shifted cumulative
transcription factor activity might be a particularly promi-
nent feature of regulatory motifs in the target genes involved
in the cell cycle. Remarkably, out of 60 two-regulator motifs,
in which at least the target gene has been assigned to certain
phases of the cell cycle [36] and/or annotated to be related to
cell-cycle process [38], our analysis reveals that 60% of these
motifs show a significant correlation between the combinato-
rial expression profile of regulators and their target gene
expression. For three-regulator motifs, the target gene of 34
motifs has been assigned to and/or annotated to the cell cycle.
In 88.2% of the 34 motifs, a significant correlation can be
detected between the combinatorial profile of three regula-
tors and the expression of their target genes.

To validate the principle of shifted cumulative regulation in
multi-regulator transcriptional regulatory network motifs, we
have utilized another independent set of high-resolution
time-series expression data [34]. We have found a considera-
ble intersection of the two- or three-regulator motifs showing
a significant correlation in both the Spellman and the Cho
data. There is a significant consistency between the two data-
sets with regard to time-shifts and conversion efficiencies for
given regulators. But some differences in the time-shifts and
the conversion efficiencies of given regulators between the
two datasets might originate from the innate differences
between the two experiments. Cho et al. [36] published their
data using the temperature-sensitive mutant strain cdc28-13
but the Spellman dataset is based on the cdc15 temperature-
sensitive mutant. The cdc28-13 mutant can arrest the yeast
cell in late G1 phase, whereas the cdc15 mutant is arrested in
late G2 phase.

We have further found that shifted cumulative regulation is
also dominant in FFLs. Many two-regulator motifs are actu-
ally FFLs. FFLs are also involved in some three-regulator
motifs. Because, in FFLs, the first regulator can directly and
indirectly regulate the target gene, this additional function
characteristic may affect the quantitative regulation mecha-

nism of the target gene. However, the results show that the
frequencies of identifying a significant correlation in FFL and
non-FFL groups are not significantly different. This is readily
understandable because, although the first regulator can
directly and indirectly regulate the target gene twice, the
indirect pathway functions via the second regulator. Eventu-
ally, the first regulator and the second regulator directly reg-
ulate the target only once. Therefore, no matter what form the
middle processes take, the final results of FFL regulation are
similar to that of normal convergence mode regulation.

We want to note that the shifted cumulative regulation mode
is also applicable in other conditions and not only in synchro-
nized yeast cell cultures. The results demonstrate that a con-
siderable fraction of two- and three-regulator motifs also
shows a significant correlation under stress conditions, such
as H2O2 stress and glucose pulse perturbation. The success
percentages in the two studies under stress conditions are rel-
atively lower than those in the data used to study the cell
cycle. This may stem from the fact that some of the transcrip-
tion factors are not regulated at the transcriptional level in
response to stress.

Conclusion
In this work, we provide a strategy to dissect the basic regula-
tory principles of multi-regulator transcriptional regulatory
networks. Our results point to a dynamic quantitative linear
combinatorial model of gene regulation. We confirm the
results with high consistency in two independent high-resolu-
tion time-series datasets. In addition, a significant difference
that exists between results obtained for real and randomly
generated data strengthens the biological relevance of this
observation. The success percentages of finding a significant
correlation between the combinatorial expression profiles of
regulators and their target gene expression among the stud-
ied motifs are even higher among regulatory network motifs
involved in the cell-cycle process. We further demonstrate
that the success frequencies of the shifted cumulative regula-
tion mode are similar between the FFL and non-FFL groups.
We also found that the shifted cumulative regulation mode is
dominant under other stress conditions, rather than being
restricted to datasets from cell-cycle studies. Taken together,
our data strongly indicate that shifted cumulative regulation
is a predominant principle underlying the quantitative gene
regulatory mechanism of multi-regulator transcriptional reg-
ulatory network motifs. The model presented here provides
evidence, for the first time, regarding the mechanism of the
quantitative regulation of target genes by multiple transcrip-
tion factors.

In order to understand the mechanism of gene regulation,
therefore, not only is it important to follow the expression
profile of single transcription factors over time, but the
expression of quantitative combinations of regulators over
time should also be considered. This can be achieved only
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through high-resolution time-series measurements. We
believe that the proposed strategy can also be utilized for
understanding quantitative gene regulation in other
organisms.

Our strategy allows us to estimate the relative time when each
of the different regulators in a specific motif begins to func-
tion. We can also estimate how much mRNA transcribed by a
transcription factor gene is translated into a fully functional
binding regulator. This strategy will become even more pow-
erful with future improvements in our knowledge concerning
the components of regulatory network structure and expres-
sion measurement technology. The proposed concept might
be relevant for a wide range of biotechnological and biomed-
ical applications in which quantitative gene regulation plays a
role. It also provides a new perspective for experimental biol-
ogists to reveal the real quantitative multi-dimensional mech-
anisms of complex regulatory systems.

Materials and methods
Quantification of shifted cumulative regulation of gene 
expression: principle of the approach
To study the basic quantitative principles of gene regulation,
we carried out a correlation analysis between combinatorial
profiles of regulators and their target genes within regulatory
network structure modes in which multiple regulators are
known to control a specific target gene. For this purpose, we
propose a shifted cumulative mode (Figure 1) of gene regula-
tion that takes into account the following factors: the cumula-
tive combinatorial activity of transcription factors in network
structure motifs; potential time delays (time-shift) 'among'
regulators; potential time delays 'from' regulators 'to' their
target genes; and conversion efficiencies of transcription fac-
tor mRNAs into functional binding regulators. The nature of
positive or negative regulation is combined into the sign of
the conversion efficiency of the transcription factor. By sys-
tematically testing all possible conversion efficiencies and
shifting all potential time delays among regulators within the
specific convergence mode and time delays from regulators to
their target genes, a combination of two kinds of time-shifts
and conversion efficiencies can be identified (Figure 1).
Through this combination, a combinatorial expression profile
of the regulators that best correlates with the expression of
the target genes can be obtained.

Conversion efficiency and time delay among regulators
A conversion efficiency C for the mRNA of each regulator
gene is assigned for a given convergence mode. Numerically,
for each regulator Ri in each motif, a constrained conversion
efficiency Ci(-1 ≤ Ci ≤ 1) is chosen. This is based upon the
assumption that the probability that all the expressed mRNA
of one regulator gene can be finally converted into the fully
activated binding regulator is low, as discussed above. A neg-
ative Ci value for a regulator means it has a regulation func-

tion (activation or suppression) opposite to that (suppression
or activation) of a regulator with a positive value.

The approach is implemented in computer programs (pro-
grams are available on request) for quantifying the shifted
cumulative regulation of genes in large-scale high-resolution
time-series gene-expression profiling data. The major origi-
nal aspect of our method is the combination of expression
profiles of the regulators by considering time delays among
regulators and conversion efficiencies of regulators in net-
work structure motifs. This is illustrated below for a two-reg-
ulator-to-single-target-gene motif with n successive time
points. The subscripts i1 and i2 are used to represent the reg-
ulators 1 and 2, respectively. Assuming sh for the relative
time-shift between the two regulators and Ri,j for the expres-
sion level of the regulator i at time point j, the expression level
Ak,j of the combinatorial profile of the two regulators at time
point j in the given motif k can be calculated as follows:

If -n <sh < 0

For j = 1 to abs(sh)

Ak,j = abs(Ri2,j × Ci2) (equation 1)

Next

For j = abs(sh) +1 to n

Ak,j = abs(Ri1,j-abs(sh) × Ci1 + Ri2,j × Ci2) (equation 2)

Next

End

For a positive time-shift (0 <sh <n, for example, the sh is pos-
itive 3 in Figure 3), the combining (assembling) process can
be performed in a similar way. For the extreme situation in
which the time-shift equals -n or n, that is, only one regulator
actually functions to control the target gene in the measured
time period, the combinatorial profile can be easily obtained
by choosing one regulator; for simultaneous regulation (sh is
zero), Ak,j at each time point of the combinatorial profile can
be calculated by equation 2.

If a third regulator exists, after the profiles of two regulators
are combined, the profile of the third regulator will be com-
bined with the combinatorial profile in a similar way as out-
lined above for the two-regulator motif. More regulators, if
they exist, can be subsequently combined in a similar
manner.

We want to emphasize that the time when a given regulator
begins to function to control its target genes is constrained to
an identically shifted time point among different target genes
in a given convergence mode. Therefore, the time-shifts
Genome Biology 2007, 8:R181
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among the two or three regulators are kept the same for their
different target genes in a specific convergence mode. The
same applies to the conversion efficiency of the regulators
within a given convergence mode.

To make the results more biologically reasonable, we have
also constrained the maximum potential shift from the time
when the mRNA of a given regulator is expressed to the time
when the regulator begins to function to one cell cycle
(approximately ten time points) in the data used for the cell-
cycle study.

Time delay from regulators to target genes
We then calculate the maximum local alignment (match),
called the LC coefficient [17], between the combinatorial pro-
file of the regulators and the expression profile of the target
gene. In our approach, we consider the time-shift between the
combinatorial regulator and the target gene. This kind of
time-shift is calculated by a dynamic programming-based
method [63] as detailed elsewhere [15,17]. We should point
out that the time-shift 'from' the combinatorial regulator pro-
file 'to' the target gene profile is different from that 'among'
the regulators themselves.

All the possible values of Ci from -1 to 1 with a step length of
0.1 for each regulator are repeatedly tested in the constrained
network structure motif in which the target gene is controlled.
There are 2n + 1 possible values of time-shift (-n ≤ sh ≤ n)
between two regulators. Finally, we choose the optimal local
clustering coefficient to infer the potential holistic correlation
between all the regulators and the target gene in the corre-
sponding motif. Several criteria can be used to determine
optimal correlation. The first one is to find the maximal mean
value of the local clustering coefficients across all the target
genes in a given convergence mode. The second criterion is to
find the maximum number of target genes showing a signifi-
cant correlation between the combinatorial expression profile
and the target expression according to the given threshold in
a given convergence mode. If there are several different pos-
sible combinations of time-shifts and conversion efficiencies,
through which the same number of target genes showing a
significant correlation with the combinatorial expression pro-
files in the given mode is obtained, then order different com-
binations by the mean values of the local clustering
coefficients. We use the latter in this work. As it is biologically
more reasonable that the target gene should be simultane-
ously activated or delayed in its expression accumulation
compared with the regulators, we have also set this restrictive
condition in the algorithm.

Expression data and transcription network
As previously reported [15], we used the high-resolution
(short interval) time-series microarray data (17 time points
with uniform interval of 10 minutes) originally generated for
yeast cell-cycle analysis with whole-genome yeast oligonucle-
otide chips that included over 6,000 open reading frames

[36]. After removal of all the negative expression levels in the
scaled measurements and all the dubious genes and the genes
now deleted in the Saccharomyces Genome Database [38],
5,680 genes were included in our analysis. We directly uti-
lized the original expression values normalized by Cho et al.
[36], rather than the log-transformed values, for further cal-
culation. With the same procedures, we included 5,138 genes
from the Spellman time-series dataset [34]. To make them
comparable, we extracted the data with a 170 minute meas-
urement (90-250 minutes, cdc15-based data; the percentage
of dumbbells reached 100% at 90 minutes in the work of
Spellman et al. [34]). Note that not only those genes consid-
ered to be involved in cell-cycle process were included,
because many other biological processes or pathways may
also be regulated in the synchronized yeast cell cultures. From
the study of transcriptional response of steady-state yeast cul-
tures with a low-level (0.2 g/l) glucose pulse perturbation
[44], we chose 5 time points from 2 to 10 minutes (with an
interval of 2 minutes). We included 6,656 probe sets in this
glucose perturbation data. We also included 6,049 probe sets
from the data originally used for the analysis of expression in
yeast cells in response to constant 0.32 mM H2O2 stress [45].
We also chose 5 time points from 10 to 50 minutes (with an
interval of 10 minutes; most values are missed at 60 minutes).

The yeast transcriptional regulatory network used was previ-
ously established [20] by integrating results of genetic [37],
biochemical [64], and ChIP-chip experiments [65]. In the
established network [20], there were 7,074 interactions and
1,110 FFLs. From the Cho dataset of this work, we included
6,105 of these interactions after projecting the 5,680 genes
and removing the auto-regulatory interactions. For a given
gene, providing that only two (or only three) regulators are
known to control this target gene, and providing that the
expression profiles of the two- (or three-) regulator genes also
exist in the dataset, the two- (or three-) regulator-to-one-tar-
get-gene network structure motif is identified from the regu-
latory network. Note that according to this definition, two-
regulator-to-one-target-gene motifs are not subsets of three-
or more regulator motifs.

Through this approach, we obtained 745 two- and 331 three-
regulator motifs from the Cho dataset. In order to constrain
the time-shift and the conversion efficiency of a given regula-
tor to the same value among different target genes in a given
convergence mode, we chose only the convergence modes in
which the two or three regulators have more than one target
gene. Therefore, 544 two- and 161 three-regulator motifs were
eventually included from the Cho dataset. By the same
approach, we obtained 219 two- and 38 three-regulator net-
work structure motifs from the Spellman dataset. From the
glucose pulse dataset, 557 two- and 168 three-regulator net-
work motifs were included. We obtained 453 two- and 120
three-regulator motifs from the data of the H2O2 stress study.
Genome Biology 2007, 8:R181
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Statistical analysis
The P value of the LC coefficient between the expressions of a
single regulator and its target gene presented in this work is
identical to that between two genes at the genome scale. Con-
sequently, the P value distribution table (Additional data file
8) can be directly obtained from previously published works
[15,17] in which the correlation score has been calculated
between two genes of a pair based on randomly shuffled data
between different time points of the original data. In this
work, for multi-regulator motifs, the LC coefficient was calcu-
lated between the combinatorial profile of the regulators and
the expression profile of the target gene, that is, the LC coef-
ficient is eventually calculated between expression profiles of
two genes.

Multiple hypothesis testing
In biology, a high correlation coefficient represents a high
chance of having a good correlation, for example, between the
expression of the studied genes or proteins. However, when
the LC coefficient is directly compared among the single reg-
ulator, two-regulator, and three-regulator transcription net-
work structure motifs, the relationship might not be rigorous,
since, strictly speaking, the significance of a single variable
model cannot be compared directly with multi-variable mod-
els in mathematics. In any specific convergence mode, there
are a large number of possible combinations of time-shifts
and conversion efficiencies. We thus asked whether similar
results would be obtained by chance in randomly shuffled
data.

To determine whether the distribution of success percentages
at different thresholds is different for the original data and
randomized data, we calculated the correlation scores of the
two- and three-regulator motifs in randomly shuffled expres-
sion data and have subsequently performed both the one-tail
paired Student's t-test and the Wilcoxon matched-pairs
signed-ranks test. For easy comparison, all significant corre-
lations in the cell-cycle datasets of this work are based on the
LC coefficient threshold of 13, corresponding to a P value of
2.7E-3 between two genes of a pair. The range of LC coeffi-
cients between expression profiles with 17 time points is from
0-17 (Additional data file 8). The LC coefficients between
expression profiles with 5 time points are distributed from 0-
5 (Additional data file 8). In these data, a threshold of 4.93
corresponds to a P value of 2.7E-3 between two genes of a
pair.

We also generated random networks by randomly choosing
genes as regulators and target genes. The random networks
are generated by keeping the same structure for each conver-
gence mode in the original network and keeping the expres-
sion data intact. Keeping the same structure of the
convergence modes is to make sure the random networks are
comparable with the real network. In this way, the statistical
results are more reliable since we need to constrain the time-
shift and the conversion efficiency of a given regulator to the

same value for different target genes in a given convergence
mode.

Comparisons of success frequencies between the FFL and
non-FFL groups have been performed by Yates chi-square
statistics. However, the chi-square test is not suitable when
the 'expected values' in any of the cells of the contingency
table are below 10. In these cases, a two-tail Fisher's exact test
has been employed.

To determine whether a given number of convergence modes
have a contiguous short concentrative distribution area (time
points or conversion efficiencies) among a certain total
number of modes can be obtained by chance, we used the
binomial distribution test. Of note, the possibility of a contig-
uous distribution was also calculated. The final P values in
these cases are the product of the P value of the binomial dis-
tribution test and the possibility to obtain a contiguous
distribution.

False discovery rate
The FDR is a more direct measure of the overall accuracy of a
set of significant features. To estimate the accuracy of identi-
fying a significant correlation in the two-regulator and three-
regulator motifs, we also performed an FDR calculation at
given thresholds. The estimation of FDR follows the algo-
rithm proposed by Storey and Tibshirani [66]. The FDR at a
given threshold can be calculated by:

where π0 is the proportion of features that are truly null (π0 is
calculated by the method as described elsewhere [66]); m
represents the whole number of the two- or three-regulator
motifs; th represents the success percentage at the given
threshold obtained in random expression data or in random
networks; and num_success_th is the number of the motifs
that succeed at the given threshold. Additional information
related to FDR is provided in Additional data file 8.

Abbreviations
FDR = false discovery rate; FFL, feed-forward loop; LC, local
clustering coefficient; PCC, Pearson correlation coefficient;
TC, trend correlation method.
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Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing
detailed results of all the two-regulator motifs in the Cho data
and the distribution of the time-shift and conversion efficien-
cies of given regulators among different convergence modes.
Additional data file 2 is a table listing detailed results of all the
three-regulator motifs in the Cho data. Additional data file 3
is a table listing detailed results of all the two-regulator motifs
in the Spellman data and comparison with the results from
the Cho data. Additional data file 4 is a table listing detailed
results of all the three-regulator motifs in the Spellman data
and comparison with the results from the Cho data. Addi-
tional data file 5 is a table listing detailed results of all the two-
and three-regulator motifs in the glucose pulse perturbation
data. Additional data file 6 is a table listing detailed results of
all the two- and three-regulator motifs in the H2O2 stress
data. Additional data file 7 includes a summary and refer-
ences for genes in the present work involved in the cell-cycle
process as annotated by the Gene Ontology database. Addi-
tional data file 8 includes results for convergence modes from
the randomized expression data with 17 time points, for ran-
dom networks, and details of FDRs, as well as the number of
combinations in all the cases listed in Table 1, and the P value
distribution figures for time-series datasets with 17 time
points and 5 time points.
Additional data file 1Detailed results of all the two-regulator motifs in the Cho data and the distribution of the time-shift and conversion efficiencies of given regulators among different convergence modesDetailed results of all the two-regulator motifs in the Cho data and the distribution of the time-shift and conversion efficiencies of given regulators among different convergence modes.Click here for fileAdditional data file 2Detailed results of all the three-regulator motifs in the Cho dataDetailed results of all the three-regulator motifs in the Cho data.Click here for fileAdditional data file 3Detailed results of all the two-regulator motifs in the Spellman data and comparison with the results from the Cho dataDetailed results of all the two-regulator motifs in the Spellman data and comparison with the results from the Cho data.Click here for fileAdditional data file 4Detailed results of all the three-regulator motifs in the Spellman data and comparison with the results from the Cho dataDetailed results of all the three-regulator motifs in the Spellman data and comparison with the results from the Cho data.Click here for fileAdditional data file 5Detailed results of all the two- and three-regulator motifs in the glucose pulse perturbation dataDetailed results of all the two- and three-regulator motifs in the glucose pulse perturbation data.Click here for fileAdditional data file 6Detailed results of all the two- and three-regulator motifs in the H2O2 stress dataDetailed results of all the two- and three-regulator motifs in the H2O2 stress data.Click here for fileAdditional data file 7Summary and references for genes in the present work involved in the cell-cycle process as annotated by the Gene Ontology databaseSummary and references for genes in the present work involved in the cell-cycle process as annotated by the Gene Ontology database.Click here for fileAdditional data file 8Results for convergence modes from the randomized expression data with 17 time points, for random networks, and details of FDRs, as well as the number of combinations in all the cases listed in Table 1, and the P value distribution figures for time-series datasets with 17 time points and 5 time pointsResults for convergence modes from the randomized expression data with 17 time points, for random networks, and details of FDRs, as well as the number of combinations in all the cases listed in Table 1, and the P value distribution figures for time-series datasets with 17 time points and 5 time points.Click here for file
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