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Abstract

Background: Amplifications, regions of focal high-level copy number change, lead to
overexpression of oncogenes or drug resistance genes in tumors. Their presence is often
associated with poor prognosis; however, the use of amplification as a mechanism for
overexpression of a particular gene in tumors varies. To investigate the influence of genome
position on propensity to amplify, we integrated a mutant form of the gene encoding dihydrofolate
reductase into different positions in the human genome, challenged cells with methotrexate and
then studied the genomic alterations arising in drug resistant cells.

Results: We observed site-specific differences in methotrexate sensitivity, amplicon organization
and amplification frequency. One site was uniquely associated with a significantly enhanced
propensity to amplify and recurrent amplicon boundaries, possibly implicating a rare folate-sensitive
fragile site in initiating amplification. Hierarchical clustering of gene expression patterns and
subsequent gene enrichment analysis revealed two clusters differing significantly in expression of
MYC target genes independent of integration site.

Conclusion: These studies suggest that genome context together with the particular challenges
to genome stability experienced during the progression to cancer contribute to the propensity to
amplify a specific oncogene or drug resistance gene, whereas the overall functional response to
drug (or other) challenge may be independent of the genomic location of an oncogene.

Background represent aberrations continuously under selection during
Genetic instability resulting in chromosomal level alterations ~ tumor growth, since amplified DNA is unstable [1-4] and
is frequent in solid tumors, which display a wide variety of = would otherwise disappear. They often harbor known onco-
types and frequencies of these aberrations. Amplifications, genes and thus are useful for identifying genes or pathways
regions of focal high level copy number change, are likely to that foster tumor development. For ERBB2, amplification is
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the predominant method of its up-regulation and is the basis
for FISH-based tests evaluating the ERBB2 status of breast
tumors. On the other hand, change in DNA copy number is
only one way to alter expression of a gene and expression of
other oncogenes is much less tightly linked to DNA copy
number or amplification. Other mechanisms for deregulation
may be post-transcriptional, post-translational or involve
alteration in expression of upstream genes. Tumor subtypes
may also be distinguished by their propensity to amplify
oncogenes, suggesting that the particular types of genomic
instability present in a tumor are important determinants of
how expression of an oncogene might be altered. Moreover,
amplification is often associated with poor prognosis.

Amplification is a reiterative process, in which multiple cop-
ies of a genome region are accumulated. Studies in model sys-
tems indicate that amplification requires a DNA double
strand break and progression through the cell cycle with this
damaged DNA [5-9]. A role for genome context in promoting
amplification has also been suggested, since introduction of a
selectable gene into different genome positions in hamster
and yeast cells resulted in site-dependent frequencies of
resistant colonies following drug challenge [10,11]. Particular
genome sequences prone to breakage have also been shown to
set the boundaries of amplicons in rodent cells [6,12], further
suggesting that genome position influences the propensity to

amplify.

Common chromosomal fragile sites, of which there are
approximately 9o in the human genome, have received the
most attention as sites likely to promote amplification.
Expression of fragile sites can be induced in cells in culture
under conditions of replication stress and are visualized as
gaps on metaphase chromosomes. Fragile sites can be divided
into common sites (CFS), which are seen in all individuals
and rare sites (RFS), which appear only in certain individuals.
The sites are further distinguished by agents used to induce
expression, which include aphidicolin, bromo-deoxyuridine
(BrdU), 5-azacytidine and distamycin A. Folate stress caused
by methotrexate exposure also induces a group of rare fragile
sites. A small number of CFS have been molecularly identified
and found to vary from hundreds of kilobases to over one
megabase in size, to have some unusual sequence properties,
but not to be conserved in sequence. Often they contain very
large genes and are sites of viral integration in certain cancers
[13]. Evidence supporting a role for fragile sites in promoting
amplification in human cancer is provided by the MET onco-
gene, which is amplified in esophageal adenocarcinoma. The
gene lies within FRA7G, and the amplicon boundaries in
tumors also lie within this site [14]. Nevertheless, for many
amplicons there is no obvious involvement of common chro-
mosomal fragile sites.

Gene amplification has been studied in vitro in a variety of
systems by selection for cells capable of growth in the pres-
ence of antimetabolites. To investigate the role of genome
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context on amplification in human cells, we chose methotrex-
ate resistance as the model system, because clinical resistance
to methotrexate targets a number of genes by a variety of
mechanisms [15,16], thereby providing the opportunity to
determine which types of aberration occur more frequently in
different genetic backgrounds. We introduced a mutant copy
of DHFR, which confers greater resistance to methotrexate
than the endogenous wild-type DHFR, into random sites in
the genome of chromosomally stable HCT116+chr3 cells and
precisely determined the site of single copy integrations in the
human genome sequence. We isolated colonies resistant to
folate deprivation caused by methotrexate and characterized
these cells with respect to site specific response to drug chal-
lenge. We used array comparative genomic hybridization
(CGH) to identify and classify the types of genomic alterations
in the drug resistant cells, fluorescent in situ hybridization
(FISH) to study the organization and mechanism of amplicon
formation, and expression profiling to investigate the func-
tional consequences of amplification. These studies found site
specific differences in the sensitivity to methotrexate, organi-
zation of amplicons and propensity to amplify. On the other
hand, gene expression patterns of drug resistant cells were
independent of integration site, with two major clusters
revealed by hierarchical clustering of the expression profiles.
The clusters differed significantly in expression of MYC target
genes. Translated to human disease, these studies suggest
that genome context together with the particular challenges
to genome stability experienced during the progression to
cancer contribute to the propensity to amplify a specific onco-
gene, whereas the overall functional response to drug (or
other) challenge may be independent of the genomic location
of an oncogene.

Results

Characteristics of clones with DHFR* integration

To study formation and structure of amplicons, we took
advantage of the fact that resistance to methotrexate can be
accomplished by a number of mechanisms, including copy
number gain or amplification of DHFR and loss or down reg-
ulation of the folate transporter, SLC19A1 on chromosome 21
[15,16]. We have shown previously that HCT116+chr3 cells
have stable karyotypes and that methotrexate resistant
HCT116+chr3 cells frequently amplify DHFR on chromosome
5q [17]. The HCT116+chr3 cells are a variant of the mismatch
repair deficient colorectal carcinoma cell line, HCT116; how-
ever, they are mismatch repair proficient due to the wild-type
copy of MLH1 provided by an extra copy of chromosome 3p
and proximal 3q [17,18]. Because these cells carry two wild-
type copies of DHFR, we introduced a mutant form of DHFR
(L22F), which confers greater resistance to methotrexate
than the wild-type (endogenous) gene, into HCT116+chr3
cells by retroviral infection. The DHFR (L22F) variant also
was fused to the gene encoding enhanced green fluorescence
protein (EGFP) and is referred to here as DHFR*. We isolated
56 independent clones containing DHFR* at different
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Thirteen DHFR* insertion site clones and their response to methotrexate

Name Chr. Chr.band Sequence! (bp) Exp2 1C-503(nM) MTX#(nM) Expressions (%) No. of colonies¢® Colonies screened’”  DHFR* amplicon® ~ DHFR*

gain®
IM-34 9 q34.3 137,580,684 - 43 120 4,172 26.5 (8.50) 10 4 0
IM-39 I3 q32.1 96,707,451 « 22 65 3,835 0.5 (1.00) 0 0 0
IM-42 8 q22.3 102,162,871 « 21 75 2,660 5.5 (3.25) 15 13 2
IM43 |1 ql3.1 65,526,684 - 22 65 1,828 13 (10.50) 9 0 3
IM-45 |1 q23.3 118,293,388 « 70 200 5,329 2.5 (3.00) 8 | 6
IM-57 3 q27.1 185,207,363 - 15 75 2,047 3.5 (3.75) 12 3 8
IM-67 | p34.3 39,533,783 - 31 90 2,306 0.5 (1.00) 3 | 0
IM-72 2 q35 217,190,120 « 16 65 5,077 1.0 (2.00) 2 | |
IM-73 12 pl32 12,767,229 « 20 65 3,116 0.5 (1.00) | 0 0
IM-75 22 ql2.2 28,977,607 - 32 90 3,307 25.5 (12.75) 3 | |
IM-83 19 ql3.2 45,618,743 - 14 65 756 1.0 (1.75) 6 0 |
IM-84 17 ql2 34,161,068 - 23 75 3,934 11.0 (11.00) 4 0 0
IM-89 19 ql3.33 53,682,371 - 25 75 4,288 2.0 (1.00) 9 3 0

IPosition in the human genome sequence (UCSC Genome Browser, May 2004 freeze). 2Exp., Direction of DHFR* integration in the genome; arrow to the right indicates that
the DHFR* coding sequence is integrated in the direction from the p-arm to the q-arm of the chromosome. 3Methotrexate concentration that causes 50% inhibition of the cell
growth after 6 days. “Methotrexate (MTX) concentration used for selection of resistant colonies. SExpression of DHFR* measured indirectly by quantitative RT-PCR (EGFP
expression normalized to GUSB expression, 249 x 100). éMedian number (and interquartile range in parentheses) of resistant colonies per 10 cm plate after 28 days of
methotrexate treatment. ’Number of independent resistant colonies screened by array CGH. 8Resistant colonies with amplification of the DHFR* integration region. Resistant
colonies with low level copy number gain of the DHFR* integration region. Chr., chromosome.

positions in the genome and identified genome sequences
flanking the integration site of DHFR* using inverse PCR
(Additional data file 1). For further analysis, we selected only
clones that were considered to have a single insertion of
DHFR* by inverse PCR (13 independent insertion sites, Table
1).

The individual insertion site clones were further character-
ized with respect to genome copy number profiles and expres-
sion of DHFR*. All clones with the exception of two (1M-39
and 1M-43) showed the same chromosomal changes by array
CGH as HCT116+chrs cells (Figure 1a). Clone 1M-39 gained
part of the g-arm of chromosome 4 (between RP11-18D7 and
the g-telomere). Clone 1M-43 contained one additional copy
of chromosome 22 and had lost the g-arm of chromosome 18.
We confirmed DHFR* expression in all clones by measuring
the expression level of the fused EGFP portion of the gene
using quantitative RT-PCR. Expression levels, as percentage
of GUSB expression, showed an approximately seven-fold
variation (Table 1).

Frequency of DHFR* amplification at different genomic
sites

Initially we measured the sensitivity of each clone to meth-
otrexate by determining the methotrexate concentration that
causes 50% reduction in cell number after six days exposure
to varying concentrations of the drug (IC-50). The
HCT116+chrg cells showed the greatest sensitivity to the drug
(IC-50 = ~7.6 nM). Clones with DHFR* showed 1.9- to 9.2-
fold increase in methotrexate resistance (IC-50 ranged from
14.1to 70.1 nM; Table 1). To select methotrexate resistant col-
onies, we exposed cells to a concentration of methotrexate
that was three to four times the IC-50 for each integration

site. We note that because DHFR is the target of methotrex-
ate, exposure to the drug should inhibit synthesis of thymi-
dylate and reduce levels of thymidine-based nucleotides.
Such a reduction in nucleotide levels could cause DNA dam-
age; however, the concentrations used here are not expected
to do so [8]. Moreover, we determined that exposure of
HCT116+chr3 cells to the range of concentrations used in
these studies does not result in significant DNA damage as
measured by the alkaline comet assay. The median number of
resistant colonies obtained for each integration site is shown
in Table 1.

Genomic copy number profiles were obtained for isolated
resistant colonies that grew sufficiently well to be expanded to
5 x 10% cells (Figure 1; Additional data file 2). The retention of
DHFR* at the original site of integration was confirmed in all
resistant colonies using inverse PCR, as shown for untreated
clone 1M-89 and its resistant colonies in Additional data file
1. Clones from different integration sites could be separated
into four groups: The first group contained only one clone,
1M-39, which did not form any resistant colonies. The second
group (1M-73 and 1M-84) formed resistant colonies that did
not amplify DHFR*; however, partial gain of chromosome 5
and loss of chromosome 21 were among the copy number
changes, suggesting that increased copies of the endogenous
DHEFR locus and loss of SLC19A1 contributed to resistance.
Clones in the third group (1M-43 and 1M-83) showed low
level copy number changes (partial or whole chromosome
gains) of the region with DHFR* integration in at least one
resistant colony. Finally, clones in the fourth group (1M-34,
1M-42, 1M-45, 1M-57, 1M-67 1M-72, 1M-75 and 1M-89)
formed methotrexate resistant colonies with amplicons
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Figure | (see previous page)

Parental DHFR* integration sites and copy number aberrations in methotrexate resistant colonies. (a) Copy number profile of cell line HCT | 16+chr3 and
positions of |3 DHFR* integrations. This near-diploid cell line is characterized by partial chromosomal gains on chromosomes 3, 8, 10, 12, 16, losses on
chromosomes 4, 16 and 10 and homozygous deletion on chromosome 6. Shown are the log, ratios on BAC clones ordered according to genome
position (UCSC Genome Browser, May 2004 freeze). Arrows indicate the positions of integration of one copy of DHFR* as mapped by inverse PCR to the
human genome sequence. (b) Heatmap representation of copy number changes detected by array CGH in 82 methotrexate resistant colonies from 12
different insertion sites. Each column represents one resistant colony. Resistant colonies from each DHFR* integration site were clustered according to
their copy number changes. Positions of the insertion sites are indicated by the arrowheads. Individual BAC clones are shown as rows and ordered
according to their genome position (UCSC Genome Browser, May 2004 freeze). Copy number losses are indicated in red, gains in green and amplifications

as yellow dots.

around the DHFR* integration site at varying frequencies
(Table 1).

Structure of amplicons and mechanisms of formation
Amplified DNA can be present in various forms, including
double minutes, amplified regions on a chromosome, which
may be cytogenetically visible as a homogeneously staining
region (HSR), or distributed across the genome [19]. The
organization of 13 amplicons from five integration sites was
investigated using FISH. All of the DHFR* amplicons in
methotrexate resistant cells were present as amplified DNA
on one or two chromosomes. In only one case (1M-89_6) was
the amplified DNA present as double minutes in some cells
rather than integrated into a chromosome. Hybridization of
differentially labeled FISH probes from the amplicons
revealed that eight of the chromosomal amplicons were
organized as repeated units in inverted orientation (Figures 2
and 3). The organization of the remaining four was not deter-
mined. In five cases there were also copy number losses distal
to DHFR* in the copy number profile. These observations are
consistent with amplification being initiated by a double
strand break distal to DHFR*, followed by breakage-fusion-
bridge cycles. In two independent methotrexate resistant
clones from 1M-57 in which DHFR* is integrated near the
chromosome 3q telomere, we observed amplicons containing
both the DHFR* integration site on 3q as well as amplifica-
tion of 3pter. Cytogenetic analysis revealed the presence of
ring chromosomes and patterns of hybridization of FISH
probes on linear and ring chromosomes consistent with
amplification occurring by a breakage-fusion-bridge process
involving fusion of 3pter and 3qter (Figure 2).

Translocation prior to amplification also appears to have
occurred in four resistant colonies in which the amplicons
were formed from two separate genomic regions that were co-
amplified in inverted repeats. In the two examples shown in
Figures 3a—f, hybridization of FISH probes is consistent with
different regions of chromosome 8 being translocated onto
the chromosome carrying DHFR* followed by co-amplifica-
tion. In both cases distal parts of chromosome 8 were lost.
Amplicons containing two or more separate regions of the
same chromosome organized as inverted repeats were also
observed (Figure 3g,h). On the other hand, the contiguous
genomic region of amplified DNA on 8q in 1M-42_2 was

present on two different chromosomes (Figure 3i,j). In these
cells ring chromosomes were also present.

Fragile sites and the propensity to amplify

The integration sites varied in the frequency with which
resistant clones amplified DHFR*. The 1M-42 integration site
was unique in that DHFR* was amplified in almost all resist-
ant clones (13/15), which was significantly more frequent
than any other site (test for homogeneity of binomial propor-
tion, p = 0.0002). Although the clones varied with respect to
the regions of chromosome 8 that were amplified together
with DHFR*, they all shared similar distal amplicon bounda-
ries mapping between RP11-10G10 and CTD-2013D21.
Higher resolution mapping on the 32K bacterial artificial
chromosome (BAC) genome tiling path array [20] allowed the
boundaries of five amplicons to be mapped more precisely
(Figure 4). Four of the boundaries were positioned in a 1 Mb
region between RP11-375114 and RP11-97D1 (102322735 to
103386096 base-pairs (bp), May 2004 freeze, Additional data
file 3).

The consistent and recurrent location of amplicon boundaries
to a limited region prompted us to investigate the possible
involvement of fragile sites in initiating amplification. The
integration site of DHFR* at 102,162,871 bp on chromosome
8 is close to several fragile sites, including the aphidicolin sen-
sitive sites FRA8B, FRA8C and FRAS8D and the distamycin A
inducible site, FRA8E. A rare folate sensitive site, FRA8A, has
also been localized to 8q22.3 (101,600-106,200 kb). As cells
are being deprived of folates by challenge with methotrexate,
a potential role for the folate sensitive fragile site, FRASA
seemed possible. Therefore, we sought evidence of a meth-
otrexate induced fragile site in the region of the recurrent
boundary of the 1M-42 amplicons in HCT116+chr3 cells. Met-
aphase spreads prepared from cells exposed to methotrexate
for 24 hours were hybridized with FISH probes labeled with
Cy3 (RP11-10G10) and fluoro-isothiocyanate (FITC; CTD-
2013D21). Although rare metaphases were observed in which
hybridization signals from these BACs appeared to bracket a
fragile site, these experiments were inconclusive due to the
very low frequency with which such patterns were seen.

Seven of the 1M-42 amplicons contained more than one peak,
indicating that breakage does not occur exclusively at one site
on chromosome 8. Another frequent site of copy number
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Figure 2

Mechanism of DHFR* amplification involving a ring chromosome
intermediate. (a) Chromosome 3 copy number profile in untreated |M-57
cells. Shown are the log, ratios ordered according to position on the May
2004 freeze of the human genome sequence. The copy number gain
extending from 3pter to RPI1-233L3 reflects the presence of the two
normal copies of chromosome 3 and the additional piece of chromosome
3in HCTI | 6+chr3 cells. The DHFR* insertion site is indicated by the
arrowhead. (b) Chromosome 3 copy number profile in methotrexate
resistant colony IM-57_2. Two regions of amplification are evident at
3pter and near the distal end of 3q. Copy number losses include material
from 3p and 3qter distal to DHFR*. (c) Proposed mechanism leading to
amplification of the region around DHFR*. The ends of chromosome 3 fuse
to create a ring chromosome with loss of material distal to DHFR* on 3q.
Breakage at positions indicated by the arrowheads at anaphase results in
the metacentric chromosome that now carries duplication of juxtaposed
3p and 3q sequences. The process can be repeated to generate additional
copies of the 3p and 3q sequences. (d) FISH with RP11-107D22 (red),
which contains sequences flanking the DHFR* integration site on 3q and
RP11-28P14 (green), which maps to 3p. Shown are pseudocolor images
showing hybridization signals on the chromosomes and the corresponding
DAPI image (gray).
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transition occurred in the 5.8 Mb region between RP11-27115
and RP11-238H10, which is included within the cytogeneti-
cally assigned position of the aphidicolin sensitive site FRA8B
at 8q22.1. Nevertheless, we were unable to obtain evidence
that induction of aphidicolin fragile sites near DHFR* in 1M-
42 cells promotes amplification, since exposure of 1M-42 cells
to aphidicolin for 24 hours prior to methotrexate challenge
did not result in a statistically significant difference in the
number of resistant clones compared to cells without aphidi-
colin pretreatment.

Amplification and gene expression

A primary reason for amplification of a gene under perma-
nent selection pressure is its increased expression resulting
from the copy number increase. A question frequently asked
about amplified genes is whether they are the driver gene for
amplification or are they simply passengers. In our model
system, the presence of DHFR* significantly increases the IC-
50 for cells challenged with methotrexate, suggesting that it is
the driver gene for its amplicons. Moreover, expression of
DHFR* as measured by quantitative RT-PCR is positively
correlated with copy number determined by array CGH (p <
0.05), providing further support for DHFR* as the driver
gene for amplification, regardless of site of integration. On
the other hand, the amplicons always span regions much
larger than DHFR* and include other genes (Figure 5); there-
fore, we asked which neighboring genes in the amplicons are
also up-regulated by copy number. Twelve methotrexate
resistant colonies (four different integration sites) were
selected for microarray analysis of gene expression at the
mRNA level (Additional data file 4). All of the resistant clones
contained amplification of the region containing DHFR* and
some also co-amplified additional regions. Considering only
genes located within the 12 regions of amplification and with
measured expression levels in both amplified and non-ampli-
fied samples (n = 370; Additional data file 5), we found that
the mean expression levels of 139 were up-regulated when
amplified compared to mean expression levels in samples
without amplification (log, fold change > 0.8), with the likeli-
hood of up-regulation appearing to be independent of prox-
imity to DHFR*. An additional 13 genes were highly
expressed in methotrexate resistant samples without amplifi-
cation (log, ratio > 0.8) and 9/13 also showed additional
modest increases in expression in samples with amplification.
Although these genes could contribute to methotrexate resist-
ance when amplified, we were unable to demonstrate any
increase in IC-50 for methotrexate or growth advantage when
two randomly selected amplified genes with positive correla-
tion of expression with copy number (POLR2K and
LOC157567) were overexpressed in HCT116+chr3 cells. Simi-
larly, overexpression of MYC, which was co-amplified with
DHFR* in a number of resistant cells from different integra-
tion sites, did not significantly alter the IC-50 for methotrex-
ate or provide a proliferative advantage (data not shown).
Thus, DHFR* appears to be the major driver gene for ampli-
fication, although we cannot rule out that one or more of the
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Figure 3

Amplicons formed by two genomic regions, initially located on the different chromosomes. Chromosome 8 and 9 copy number profiles showing
amplification on (a) 9q and (b) 8q. (c) Organization of the amplicon. CTD-3145B15 (red) maps to the 9q telomere near the DHFR* insertion site and
RP11-237F24 (green) to the region of amplification on chromosome 8 shown in (b). The chromosome 9 signals appear to flank the chromosome 8
material on this chromosome. Amplification of the region around DHFR* is indicated by the large hybridization signal from CTD-3145B15. The amplified
DNA was determined to be located on chromosome 9 by hybridization of RP11-62H18 to 9pter (not shown). Thus, material from 9qter appears to be
amplified in situ on chromosome 9 and additional copies of material from the chromosome 9 amplicon are present on a separate chromosome together
with amplified DNA from chromosome 8. (d, €) Copy number profiles of chromosomes 19 (d) and 8 (e). (f) Organization of the amplicon. RPI1-69H23
(red) maps near the DHFR* integration site on chromosome 19 and RPI I-175H20 (green) is one of the clones from the amplicon on chromosome 8
shown in (e). The chromosome |9 signals appear to flank a number of copies of chromosome 8, which could be as many as eight copies, since the CGH
log, ratio = ~2. Two additional copies of RP|1-691H23, mapping near DHFR* on chromosome |9, were also present on chromosome |9 (data not
shown). Thus, amplified DNA near the DHFR* integration site is present and independently amplified on two chromosomes. (g, h) IM-42_9 CGH profile
(chromosome 8) showing the DHFR* amplicon and its organization as determined by FISH. BAC clone RP11-91O1 | (red) maps near the DHFR* integration
site and is co-amplified with the distal part of chromosome 8 (RPI1-237F24, green). The chromosomal region between the two co-amplified regions was
lost. (i, j) IM-42_2 CGH profile (chromosome 8) and FISH analysis showing that the two regions of chromosome 8 were amplified as two independent
amplicons on different chromosomes.
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genes included in the amplicon could also provide a signifi-
cant contribution to methotrexate resistance.

Response to methotrexate is independent of site of
integration and amplification

To investigate further the question of the contribution of co-
amplified genes to the overall response of cells to methotrex-
ate, we asked whether expression profiles of methotrexate
resistant colonies varied with respect to integration site.
Unsupervised hierarchical clustering of the 12 samples with
amplification revealed two major clusters, indicating at least
two responses to methotrexate. Samples did not separate

Genome Biol

according to integration site, however, further suggesting that
co-amplified genes do not contribute significantly to the over-
all response to methotrexate.

One notable difference between clusters was the presence of
two samples with focal amplification of MYC in the right clus-
ter (1M-34_c5 and 1M-42_9; Figure 6a,b). In general, sam-
ples in the right cluster with or without amplification of MYC
showed higher MYC expression than those in the left cluster
(log, ratio change between clusters = 1.42). Using the MYC
target gene database [21], we identified 380 human MYC tar-
get genes among the 3,931 variably expressed genes used for
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Recurrent amplicon boundaries in 1M-42 methotrexate resistant clones and fragile sites. (@) Chromosome 8 copy number profiles at approximately |.4
Mb resolution. The vertical lines indicate the region from 99 to 105 Mb on chromosome 8 shown for (b) hybridization of these same DNAs to the 32K

genome tiling array.

clustering. The median absolute log, ratio change in expres-
sion of these target genes in the right cluster compared to the
left cluster was significantly higher than a similar comparison
using 1,000 sets of 380 randomly selected genes (p = 2.2e-
16). Thus, differential expression of MYC and MYC target
genes is one of the distinguishing features of the overall
response of cells with amplified DHFR* to challenge with
methotrexate, irrespective of integration site.

Discussion

In order to investigate the effect of genome position on the
propensity to amplify, we integrated a single copy of a mutant
form of DHFR fused to the gene encoding EGFP (DHFR*)
into different positions in the genome of HCT116+chr3 cells
by retroviral transfer, challenged cells with methotrexate and
then studied the genomic alterations arising in drug resistant
cells. Since DHFR* confers greater resistance to methotrexate
than the endogenous wild-type DHFR, we expected that
increased copy number of this gene would be found in the
methotrexate resistant cells, rather than the endogenous
gene. This expectation was met, as the majority of the resist-
ant colonies contained either gains or amplifications of the
locus. Furthermore, DHFR* appeared to be the driver gene
for the copy number change, since DHFR* mRNA levels were
positively correlated with DHFR* copy number. Neverthe-
less, in this simple model system, we observed that at four dif-

ferent DHFR* insertion sites, approximately one-third of
neighboring genes were also up-regulated when amplified
along with DHFR*. Tt is unlikely that so many of these genes
mapping to four different random locations would also be
driver genes for amplification. Moreover, expression profiling
divided methotrexate resistant cells into two groups inde-
pendent of integration site, suggesting that neighboring genes
in the amplicons, even though up-regulated by copy number
increases, did not play a major role in the drug resistant phe-
notype. Taken together, these observations suggest that about
one-third of genes can be regulated by copy number, which is
consistent with global expression array profiling of tumors. If
these four regions are representative of the genome as a
whole, then a significant proportion of the amplified genes in
tumors are also likely to be passengers. These observations
have implications for studies of amplicons in tumors. Passen-
ger genes will confound efforts to identify candidate onco-
genes by expression analyses alone. For example, several
candidate driver genes for amplification are thought to be
present in amplicons in human cancers, including 8p11-p12
and 17q12 in breast cancer [22-24], 7p11.2 in glioblastoma
[25] or 6p22 in bladder cancer [26], because gene expression
is correlated with copy number. Further functional studies
will be necessary to determine which overexpressed genes in
the amplicons contribute to tumor development. On the other
hand, BIRC2 and YAP1, two genes present in a narrow ampli-
con in oral squamous cell carcinomas [27], esophageal squa-
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Figure 5

Expression of genes mapping to the amplicon from methotrexate resistant colony 1M-89_6. (a) Chromosome 19 copy number profile at approximately
1.4 Mb resolution (HumArray3.0) shows four discrete regions of amplification. (b) Chromosome |9 copy number profile from the 32K BAC genome tiling
path array in the amplified region showing the four regions of amplification detected on the lower resolution array and an additional small region distal to
the others. The regions, ranging in size from 0.2 to 1.2 Mb, were amplified together in some cells as double minutes, while in others the amplified DNA
was integrated into different chromosomes and present as a homogeneously staining region. Both copies of chromosome |9 were retained without
rearrangement. As all regions are included together on the double minutes, their formation may have occurred by joining of broken pieces of DNA
subsequent to resolution of stalled replication forks [63]. (c) Expression levels of genes mapping to the five amplified regions plotted according to position
on the human genome sequence. Expression levels are shown as the log, ratios of the signal intensities after hybridization of Cy3 labeled cDNA from the
methotrexate resistant colony and Cy5 labeled cDNA from the untreated parent | M-89 as reference. Shown is the list of genes in genomic order that map
to the amplified regions according to the RefSeq database [64]. Genes that are expressed in this cell line with or without exposure to methotrexate are
labeled in black and expression levels denoted by black dots. Genes present on the array, but not expressed in untreated or resistant cells, are colored by
dark gray and represented by dots of the same color with zero change in expression. Genes not present on the array are listed in the upper line in light

gray. Genes with log, fold change >0.8 are indicated with an asterisk.

mous cell carcinoma [28], and lung [29], pancreatic [30], and
hepatocellular carcinomas, have recently been shown to col-
laboratively promote tumor formation in mice [31], indicat-
ing that the extent of some tumor amplicons may be
determined by selection for multiple neighboring collaborat-
ing oncogenes.

A distinguishing feature of the expression profiles of meth-
otrexate resistant cells was the expression of MYC target
genes. Co-amplification of MYC irrespective of integration
site also suggests that it played a role in the response to meth-
otrexate; however, the exact mechanism whereby MYC con-
tributes to resistance is not known. It does not appear that
overexpression of MYC contributes to resistance simply by
promoting progression through the cell cycle or genome
instability, since overexpression of MYC prior to methotrex-
ate challenge did not enhance drug resistance or prolifera-

tion. On the other hand, up-regulation of MYC expression
may contribute to drug resistance by enhancing the capability
of cells to evade checkpoints. For example, overexpression of
MYC abrogates a p53-dependent cell cycle arrest in REF52
cells exposed to N-(phosphonacetyl)-L-aspartate (PALA), an
inhibitor of pyrimidine nucleotide synthesis, allowing resist-
ant cells to arise from these normally non-permissive cells

[5].

The numbers or types of genomic alterations in resistant cells
varied among the integration sites; however, they were not
related to either expression levels or sensitivity to methotrex-
ate (Table 1). Previous studies in hamster cells, yeast and pro-
tozoa have highlighted the association of genome position
with the frequency of methotrexate resistant cells and
repeated sequences have been implicated in promoting
amplification in response to methotrexate challenge in yeast
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Expression profiling of 12 methotrexate resistant colonies with
amplification of DHFR*. (a) Unsupervised hierarchical clustering (Pearson)
of genes with variable expression across the data set (SD > 0.3) and
present in >75% of samples (3,931 genes). Methotrexate resistant colonies
represent four different integration sites, indicated by the shaded boxes
below the dendrogram. (b) Comparison of expression of MYC target
genes in the two clusters. The median absolute log, ratio change in
expression of MYC target genes in the right cluster compared to the left
cluster is significantly higher than a similar comparison using 1,000 sets of
380 randomly selected genes (b = 2.2e-16).

and Leishmania [10,32,33]. Moreover, in Leishmania the
response to methotrexate differs among species and it was
possible to show that not only was position important, but
also the nature of the gene under selection; that is, amplifica-
tion of the gene conferring the higher level of resistance was
observed more frequently in resistant cells regardless of posi-
tion [34] as observed here in human cells for DHFR*.

In spite of the fact that DHFR* confers greater resistance to
methotrexate, DHFR* was not altered in copy number in
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resistant colonies from two integration sites, while no resist-
ant colonies were recovered from a third integration site.
Expression levels of DHFR* in these integrants, measured
indirectly as EGFP expression, were in the middle of the
range of expression levels for all integration sites as was sen-
sitivity measured as IC-50. Furthermore, no variations in
DHFR* were detected by sequencing DNA amplified from
genomic DNA of the three clones. Thus, it appears that failure
to observe copy number changes of DHFR* in these
integration sites is related to genome position. We hypothe-
size that these regions harbor genes that, if amplified, would
cause cell cycle arrest or cell death. The 1M-73 integration site
is within <700 bp of CDKN1B (p27Kip1), a negative regulator
of the cell cycle [35]. Overexpression of CDKN1B due to copy
number increase of the locus could suppress growth and
abrogate any advantage that might have been conferred by
increased copy number and expression of DHFR*. Similarly,
in 1M-84, DHFR* is integrated between PCGF2 (Mel-18) and
PSMB3, approximately 1 Mb proximal to ERBB2, a gene fre-
quently amplified in cancer. Nevertheless, PCGF2 and
PSMB3 are rarely amplified with ERBB2 [36] in tumors, and
PCGF2 has been reported to be a tumor suppressor [37,38].
Moreover, a recent report indicates that overexpression of
PCGF2 leads to down regulation of MYC and senescence in
human fibroblasts [39]. Thus, it is likely that amplification of
DHFR* at the 1M-84 insertion site would be deleterious to
cells exposed to methotrexate due to proximity to, and thus
co-amplification with, PCGF2. These considerations suggest
that there may be selection pressure from neighboring growth
inhibitory genes on the positions of amplicon boundaries.

Copy number changes involving DHFR* encompassed
regions much larger than the integrated DNA and, in most
cases, the boundaries of the copy number changes were not
recurrent as we had found previously for the endogenous
locus on 5q13 [17]. At the 1M-42 integration site, however, we
did observe a high frequency of amplification and recurrent
copy number transitions or amplicon boundaries at RP11-
238H10 and CTD-2013D21, which occurred in 50-70% of
resistant colonies. A role for expression of fragile sites in
promoting amplification and setting boundaries to the ampli-
cons in tumor genomes was suggested more than 20 years ago
[40,41]. Although several fragile sites, including the folate
sensitive fragile site FRA8A, map near the 1M-42 integration
site on 8q22 (Figure 7), we did not find that FRASA was
expressed at sufficiently high frequency in HCT116 cells for it
to be mapped by FISH. Nevertheless, even low frequency
expression of fragile sites in cells exposed to methotrexate
leading to an increased rate of breakage in close proximity to
a DHFR* integration site could be sufficient to enhance the
probability of amplification and selection for cells with recur-
rent amplicon boundaries. Thus, in the 1M-42 resistant colo-
nies, induction of FRA8A by exposure to methotrexate could
have provided a double-strand DNA break in close proximity
to DHFR*, which initiated amplification of this locus and sub-
sequent survival advantage of these cells in the presence of

Genome Biology 2007, 8:R120
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Positions of DHFR* integration sites and fragile sites. The DHFR* integration sites were mapped onto the genome using BLAT [46] and are shown as a red
bar on the chromosome ideogram from the UCSC genome browser [45]. Common fragile sites are shown under the chromosome and are mapped
according to positions reported in NCBI Entrez and the literature [65-77]. Rare folate sensitive fragile sites are shown above the chromosome. Note that
the IM-45DHFR* integration site mapped just proximal to FRAI I B, another folate sensitive fragile site; however, no copy number transitions or amplicon
boundaries mapped to this region. Since FRAIIB is a RFS, it may not be expressed in HCT1 1 6.

methotrexate. Similarly, the association of folate deficiency
with breast cancer suggests that in individuals who express
folate sensitive fragile sites, breakage may occur at higher fre-
quency at these loci, leading to chromosomal rearrangements
promoting tumor development. We have, however, been una-
ble to find evidence that fragile sites play a more general role
in setting aberration boundaries in breast cancer (that is,
using 1.5 Mb resolution array CGH data and looking over 5
Mb windows on chromosome arms, we found no evidence
that fragile sites are associated with amplicon boundaries in
breast tumors). We note that these analyses are currently
hampered by the relatively low resolution mapping of both
copy number aberration breakpoints and fragile sites. On the
other hand, it is noteworthy that amplification was signifi-
cantly more frequent at the 1M-42 integration site, suggesting
that, if not fragile sites, then some, as yet undefined genomic
features may have influenced the propensity to amplify. Sim-
ilar genomic characteristics may also play a role in setting
boundaries for amplicons in human tumors.

Conclusion

Altered expression of genes can occur by a number of mecha-
nisms, of which copy number change is only one. In the sim-
ple system we have used to study genome position effects,
cells are being challenged by a single agent and also offered a
gene that can provide resistance, unlike the development of
human tumors in which, as normal cells evolve to cancer cells,
many barriers must be breached. There are many ways to
alter signaling or checkpoint pathways, resulting in evasion of
apoptosis and enhanced proliferation. Increasing expression
of appropriate genes in these pathways by copy number
changes is only one mechanism. The observations reported
here on a model system translated to tumor development sug-
gest that the nature of the gene under selection for growth
advantage and genome context are, together, factors influenc-
ing the propensity to amplify. In addition, it is likely that the
nature of the challenges experienced by the nascent cancer
cell (for example, folate deprivation), individual variation (for
example, frequency of expression of various fragile sites), and
the types of genomic instability that may be present also
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influence which genes will be altered in expression by copy
number changes.

Materials and methods

Cloning, cell culture, infection

The human colorectal HCT116+chr3 cell line (gift from Dr CR
Boland) was maintained in DME H-21 media supplemented
with 10% fetal bovine serum, 1 x non-essential amino acids,
100 U/ml penicillin and 100 ug/ml Streptomycin, and 400
ug/ml G418 (Invitrogen, Carlsbad, CA, USA). The MMLYV vec-
tor containing the double mutant dihydrofolate reductase
gene (L22F, F31S) fused to the gene encoding EGFP was a
generous gift from Dr J Bertino, Cancer Institute, New Jersey.
Using this vector, we prepared a DHFR variant with a single
mutation (L22F) fused to the EGFP gene, which we refer to as
DHFR*.

HCT116+chr3 genomic DNA was used as a template for
amplifying the DHFR promoter and 5' segment of the gene
(from -461 to +23 relative to the ATG translation initiation
codon [42]) with primers containing Esp3] restriction sites at
the 5' end. The 3'sequence of DHFR* (from +20 relative to the
ATG translation initiation codon) was PCR amplified from
the vector (primers also contained Esp3l restriction sites at
the 5' end). Both PCR products were cleaved with Esp3l
restriction enzyme, ligated together and cloned into pLPCX
retroviral vector (Clontech, Mountain View, CA, USA), which
had been linearized by digestion with Nco and HindIII
restriction enzymes, resulting in removal of the CMV pro-
moter from the vector.

To deliver DHFR* into HCT116+chr3 cells, we used the Phoe-
nix retroviral system (Orbigen, San Diego, CA, USA).
HCT116+chr3 cells were sparsely seeded into 6-well plates
(103 cells per well) and infected with diluted viral particles the
following day (MOI < 0.1). Two days after infection, resistant
colonies were selected with puromycin (0.3 pg/ml media) for
seven days. Individual colonies were expanded as separate
integration site clones (1M-XX) without puromycin.

To express POLR2K and LOC157567 in HCT116+chr3, cDNA
clones (MSH1010-74358 and MHS1010-9205152, respec-
tively) were purchased from Open Biosystems (Huntsville,
AL, USA). The coding sequence was amplified with primers
containing Esp3] restriction sites and cloned into the HindIII
site of the pLHCX vector (Clontech). To overexpress MYC, the
cDNA was cloned into the pBABE-hygro vector. The integrity
of the constructs was verified by sequencing and the Phoenix
retroviral system was used to deliver the genes into
HCT116+chr3 cells. Two days after infection, cells were
exposed to hygromycin (400 ng/ml media) for 7 days to select
pools of cells with stable insertion.
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Methotrexate sensitivity

Each clone was seeded into one 96-well plate (400 cells per
well) leaving outer wells without cells, only with media. The
next day different concentrations of methotrexate were added
and cells were cultured for 72 hours. After three days, half of
the media was replaced with fresh media with the same meth-
otrexate concentration and cells cultured for another three
days. Cells were washing gently with 1 x phosphate-buffered
saline and plates were stored at 80°C prior to measuring cell
proliferation using the CyQUANT Cell Proliferation Assay
(Invitrogen, Carlsbad, CA, USA). The inhibition concentra-
tion (IC-50) was calculated for each integration site clone.

Selection of methotrexate resistant colonies
Individual clones were seeded into 6-well plates (103 cells per
well) and grown until the population reached approximately
5 x 105 cells in each well. Then the cells from each well were
counted and seeded into 100 mm dishes (4 x 105 cells per
dish). The next day different concentrations of methotrexate
(3-4 x IC-50, depending on clone sensitivity to methotrexate)
were added to the cells. The medium was replaced every third
day and after four weeks one colony from each dish was
picked into a 12-well plate and then expanded into T75
culture flasks. DNA was isolated from a quarter of the cells
from each T75 flask, and another quarter of the cells was
expanded for isolation of RNA, proteins and metaphase
spreads. The remaining half of the cells was frozen in liquid
nitrogen. In other experiments, colonies were selected as
above and then fixed and stained with crystal violet after four
weeks to determine the number of resistant colonies.

Induction of fragile sites

Individual clones were seeded into 6-well plates (103 cells per
well) and grown until the population reached approximately
10 cells in each well. Then the cells from each well were
counted and seeded into two 100 mm dishes (4 x 105 cells per
dish). After six hours, fragile site expression was induced in
one of the two dishes by adding aphidicolin (at a final concen-
tration of 0.15 uM). After 24 hours, aphidicolin was removed
and methotrexate was added to all dishes (same concentra-
tion as used for selection of methotrexate resistant colonies).
Colonies were fixed and stained with crystal violet after four
weeks. Folate sensitive fragile sites were induced by adding
methotrexate to HCT116+chr3 cells (25 nM) or the 1M-42
clone (75 nM). After 24 hours, metaphase spreads were pre-
pared according to standard protocols.

Inverse PCR

Inverse PCR was performed as described previously [43,44]
with slight modification as described in Additional data file 1.
To map the integration sites on the genome sequence, the
PCR products amplified in a second nested PCR were
sequenced and mapped onto the human genome sequence
using BLAT (UCSC Genome Browser, May 2004 freeze
[45,46]). Methodological details and sequences obtained by
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inversion PCR for each insertion site are provided in Addi-
tional data file 1.

Array CGH

Array CGH was carried out as described previously [17].
Briefly, genomic DNA was isolated from one quarter of the
cells from a Ty5 flask by incubation overnight at 55°C in 3 ml
of 1 x TE buffer (pH 7.5) supplemented with 0.5 % SDS and
0.1 ug/ul proteinase K (Roche Diagnostics Corporation,
Roche Applied Science, Indianapolis, IN, USA), followed by
ethanol precipitation after 24 hours. The DNA was dissolved
in 100 pl of H,0. Genomic DNA (600 ng) was labeled by ran-
dom priming to incorporate Cy3 or Cy5 dCTP in a 50 pl reac-
tion and the labeled test and reference DNAs together with
100 pg human Cot-1 DNA were hybridized for approximately
48 hours at 37°C to arrays of 2,464 BAC clones, each printed
in triplicate (HumArray2.0, 3.1, UCSF Comprehensive Can-
cer Center Microarray Core). Whole genome tiling path
arrays containing 32,145 BAC clones [20] from the UCSF
Comprehensive Cancer Center Microarray Core were used for
more detailed analysis of some amplicons. A custom built
CCD camera system was used to acquire 16 bit 1,024 x 1,024
pixel DAPI, Cy3 and Cys images [47,48]. Array data are avail-
able in Additional data files 2 and 3 and at NCBI Gene Expres-
sion Omnibus [49]. GSE6262 contains 95 CGH profiles of
methotrexate resistant colonies and also untreated controls
(HumArray2.0, 3.1). GSE6360 contains six CGH profiles
(32K BAC tiling path array).

Expression microarrays

Test (20 pg) and reference (20 pg) RNA were reverse tran-
scribed in the presence of aminoallyl-dUTP followed by cou-
pling with Cy3 or Cy5 dyes. The untreated integration site
clone was used as the reference (Cys labeled cDNA) for each
of the hybridizations with its respective resistant colonies
(Cy3 labeled cDNA). Hybridizations were carried out on
arrays of printed long oligonucleotides (70 mers) containing
21,000 elements (Operon V2.0 [50]). Array images were ana-
lyzed using UCSF SPOT software [51]. Expression data were
filtered to exclude all spots with foreground intensity below
500 units in the Cy3 or Cys channel and were subsequently
median normalized and log, transformed. Data are available
in Additional data file 4 and at NCBI GEO (GSE6262).

Copy number analysis

Image and data analyses were carried out using UCSF SPOT
[51] and SPROC software, as described previously [17]. We
also made corrections for two well recognized sources of
variation in ratios; the observed dependence on location of
clones on the array (spatial or geometric variation) [52], and
the dependence of ratios on GC content [53]. To correct for
geometrical dependence of the log, ratios over the array, we
took advantage of the fact that neighboring loci in the genome
are, for the most part, likely to have the same copy number
[54]. We used backfitting [55] to iteratively obtain an esti-
mate of the systematic spatial variation of the log, ratios over
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the array, which was then subtracted from the original log,
ratios (Additional data file 6). The log, ratios were corrected
for GC content using a loess method [56]. That these proce-
dures result in a reduction in the apparent 'noise' in the ratio
profiles, but do not alter the ratios, is clearly seen by a side-
by-side comparison with the array data prior to correction
(Figures B and C in Additional data file 6).

Elucidation of copy number changes specific to
methotrexate resistant cells

Although the copy number differences between a methotrex-
ate resistant and untreated HCT116 cell line are easily distin-
guished by visible inspection of the copy number profiles, we
developed an objective method to identify the copy number
changes acquired by the drug resistant cells. Since the
HCT116 cells have a small number of low level copy number
changes (Figure 1a), it is necessary to exclude them from the
analysis by 'subtracting out' aberrations that were present in
the cell population prior to exposure to methotrexate. There-
fore, to identify the copy number changes specific to meth-
otrexate resistant cells, aberrations in the copy number
profile of the untreated cells for each DHFR* insertion site
(called 'parent’) were subtracted from the resistant cell
profiles for each colony from that insertion site (called 'col-
ony'). However, since the amplitudes of the ratio changes in
array CGH may vary among different measurements of
related samples due, for example, to incomplete suppression
of repeated sequences (Figure 1 in Additional data file 7), we
implemented a correction procedure that took into account
the differences in amplitude between the array CGH profile of
a resistant colony relative to the parent. The correction was
based on the assumption that when biases equally affect test
and reference signals, a copy number change and the
observed copy number linear ratio are linearly related, but the
slope may be reduced as the bias increases [57]. Taking into
account the known homozygous deletion on chromosome 16p
in HCT116, a robust linear model was fit to the linear ratio of
the colony and the parent with the colony as the response
(Figure 2a in Additional data file 7). A weight of 500 was given
to the homozygous deletion (using a cutoff of linear ratio
<0.25). The large weight was necessary because of the small
number of arrayed BACs reporting homozygous deletion
(mean four BACs per sample) compared to the total number
of arrayed BACs used for the analysis (2,056-2,282, before
parent subtraction). The fitted value gave the parental ratio
after correcting for bias. Thus, the ratio of the colony to the
fitted parent ratio was considered the colony specific copy
number change (Figure 2b in Additional data file 7). A com-
parison of this procedure with and without using the spatial
correction procedure described in the previous section is
shown in the upper panels in part (b) of Additional data file 6.
Since we considered each insertion site separately and
required that ratios on arrayed BACs be present in both the
parent and the colony for each insertion site, the number of
BACs remaining after this analysis varied among the different
insertion site parents and their colonies (1705-2099).
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After subtraction of the linear parent ratios, the array CGH
data were converted to log, and analyzed as reported previ-
ously [58] using circular binary segmentation (CBS) [59] with
default parameters to translate experimental intensity meas-
urements into regions of equal copy number as implemented
in the DNAcopy R/Bioconductor package [60]. Missing val-
ues for BACs mapping within segmented regions of equal
copy number were imputed by using the value of the corre-
sponding segment. A few clones with missing values were
located between segmented regions and their values were
imputed using the maximum value of the two flanking seg-
ments. Thus, each array clone was assigned a segment value
referred to as its 'smoothed’ value. The scaled median abso-
lute deviation (MAD) of the difference between the observed
and smoothed values was used to estimate the sample-spe-
cific experimental variation. All the samples had MAD less
than 0.15. Due to additional random noise introduced when
subtracting the parent from the resistant colonies, the
smoothed values from CBS were further 'merged’ using the
MergeLevels procedure [61]. In this process, segmental val-
ues across the genome were merged to create a common set of
copy number levels for each sample. The minimum and max-
imum criteria used in MergeLevels were 0.05 and 0.5,
respectively.

To identify single technical or biological outliers, such as high
level amplifications, the presence of the outliers within a seg-
ment was allowed by assigning the original observed log, ratio
to the clones for which the observed values were more than
four tumor-specific MAD away from the smoothed values.
The amplification status for a clone was then determined as
described previously [58] by considering the width of the seg-
ment to which that clone belonged (0, if an outlier) and a min-
imum difference between the smoothed value of the clone
(observed value, if an outlier) and the segment means of the
neighboring segments. The clone was declared amplified if it
belonged to the segment spanning less than 20 Mb and the
minimum difference was greater than exp(-x3) where x is the
final merged value for the clone.

Expression of genes in amplicons

For 12 samples the borders of the regions determined to have
been amplified by array CGH were further refined by manu-
ally incorporating additional data from the whole genome til-
ing path arrays and FISH experiments. The border of each
amplicon was set between the last not amplified BAC clone
and the first amplified BAC clone. Expression probes were
first filtered for ones with missing annotation, resulting in
19,777 probes, which were then mapped to the genome
sequence. From these mapped probes, a list of expression
probes included in all the amplicons within the samples was
compiled manually, resulting in 685 expression probes, of
which 370 provided measured expression in both amplified
and non-amplified samples. To assess whether a gene was up-
regulated when amplified, the mean expression levels were
calculated in samples with and without amplification of the

Gajduskova et al.

http://genomebiology.com/2007/8/6/R120

gene. Mean expression levels with and without amplification
were compared and those with log, fold change >0.8 were
considered to be up-regulated when amplified.

Anadlysis of clustering of gene expression driven by MYC target genes
Genes with variable expression across the data set (standard
deviation (SD) > 0.3) and present in >75% of samples were
identified and filtered for those with missing annotation. The
samples were clustered based on the remaining clones (3,931)
using the Pearson correlation distance metric and complete
linkage. Human 'MYC target' genes (1,287) were identified by
reference to the MYC database [21], and 380 were included in
the set of 3,931 variably expressed genes. The fold change in
expression of 380 MYC genes between the two sample clus-
ters was computed and compared to the median log, fold
change for 1,000 selections of 380 random genes.

Quantitative RT-PCR

Real-time quantitative RT-PCR was performed on RNA iso-
lated from methotrexate resistant colonies and untreated
insertion site clones using Trizol reagent (Invitrogen) and
treatment with DNase (Promega, Madison, WI, USA) as
previously described [62] in the UCSF Comprehensive Cancer
Center Genome Analysis Shared Resource Facility. Primers
(forward, 5'CGTAAACGGCCACAAGTTCAG, reverse,
5'GGGTCAGCTTGCCGTAGGT) and probe (5'6FAM-
CGCCCTCGCCCTCGC-BHQ_1) for EGFP were designed
using GenScript Primer Design (GenScript Corp., Piscataway,
NJ, USA). The ABI Assays-on-Demand were used to confirm
overexpression of MYC, POLR2K and LOC157567 genes (ABI,
Foster City, CA, USA).

Fluorescent in situ hybridization

Metaphase spreads were prepared from untreated insertion
site clones and methotrexate resistant colonies at the time of
RNA and protein isolation. Before hybridization slides were
aged in 2 x SSC at 37°C for 30 minutes, dehydrated in an eth-
anol series (70%, 80% and 96%) and incubated in 70% forma-
mide, 2 x SSC at 72°C for 4 minutes to denature the DNA.
Fluorescent probes were prepared by labeling 20 ng of BAC
DNA by random priming to incorporate Cy3- or FITC-cou-
pled dCTP. The labeled DNA was precipitated, pre-annealed
with 30 pg Cot-1 DNA and hybridized to metaphase spreads
for 48 hours at 37°C in a humid chamber. Slides were washed
three times with 50% formamide, 2 x SSC at 45°C for 15 min-
utes, 2 x SSC for 15 minutes, 0.1 x SSC for 5 minutes, coun-
terstained with DAPI and mounted in Vectashield (Vector
Labs, Burlingame, CA, USA).

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 shows the map-
ping and sequencing of DHFR* integration sites. Additional
data file 2 lists array CGH log, ratio data on clones for meth-
otrexate resistant colonies and untreated DHFR* integrants.
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Additional data file 3 lists the Chromosome 8 array CGH
dataset for five 1M-42 methotrexate resistant colonies
hybridized on the 32K genome tiling path BAC array. DHFR*
was integrated on chromosome 8 at 102,162,871 bp and this
position is highlighted in red. All five colonies formed ampli-
cons around the DHFR* integration site. Amplified regions
are highlighted in yellow. Additional data file 4 lists Expres-
sion array data. Additional data file 5 shows the expression of
genes mapping in amplicons in 12 methotrexate resistant cell
lines. Additional data file 6 provides a Comparison of analysis
of array data with and without spatial and GC correction.
Additional data file 7 is an Example of elucidation of copy
number changes specific to methotrexate resistant cells
(results of the analyses for the 1M-34_c5a colony).
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