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Abstract

Background: Obese and lean pig breeds show obvious differences in muscle growth; however,
the molecular mechanism underlying phenotype variation remains unknown. Prenatal muscle
development programs postnatal performance. Here, we describe a genome-wide analysis of
differences in prenatal skeletal muscle between Tongcheng (a typical indigenous Chinese breed)
and Landrace (a leaner Western breed) pigs.

Results: We generated transcriptome profiles of skeletal muscle from Tongcheng and Landrace
pigs at 33, 65 and 90 days post coitus (dpc), using long serial analysis of gene expression
(LongSAGE). We sequenced 317,115 LongSAGE tags and identified 1,400 and 1,201 differentially
expressed transcripts during myogenesis in Tongcheng and Landrace pigs, respectively. From these,
the Gene Ontology processes and expression patterns of these differentially expressed genes were
constructed. Most of the genes showed different expression patterns in the two breeds. We also
identified 532, 653 and 459 transcripts at 33, 65 and 90 dpc, respectively, that were differentially
expressed between the two breeds. Growth factors, anti-apoptotic factors and genes involved in
the regulation of protein synthesis were up-regulated in Landrace pigs. Finally, 12 differentially
expressed genes were validated by quantitative PCR.

Conclusion: Our data show that gene expression phenotypes differ significantly between the two
breeds. In particular, a slower muscle growth rate and more complicated molecular changes were
found in Tongcheng pigs, while genes responsible for increased cellular growth and myoblast
survival were up-regulated in Landrace pigs. Our analyses will assist in the identification of
candidate genes for meat production traits and elucidation of the development of prenatal skeletal
muscle in mammals.
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Background

The pig (Sus scrofa) was domesticated over 7,000 years ago
and has become one of the most important farm animals [1].
Anatomical, physiological, pathological and genomic similar-
ities between pig and human have suggested that the pig
could be considered a model species for human health issues
[1-3]. Moreover, pigs have distinct advantages over other ani-
mals for studying the underlying mechanisms of phenotype
variation within species: highly differentiated phenotypes
resulting from intensive selection, and excellent phenotype
records [4]. Therefore, use of pigs as research animals will
benefit both animal agriculture and biomedical research.

Western pig breeds have been intensively selected over the
past two decades for rapid, large and efficient accretion of
muscle, which is believed to have led to deterioration in meat
quality [5]. Landrace, a typical lean-type western breed, is
now widely used for commercial production throughout the
world. While indigenous Chinese pig breeds have lower
growth rates and a lower lean meat content than conventional
western pig breeds [6,7], they have proved superior in terms
of perceived meat quality [8,9]. The Tongcheng variety is a
typical indigenous Chinese breed of pig, and is one of the
main groups derived from breeds in central China that have a
coat color featuring two black ends. Tongcheng was also listed
as an important breed for resource conservation by the Chi-
nese Ministry of Agriculture in 2000.

In the pig, genotype has a major effect on embryonic growth
rate [10]. Preimplantation embryos from Meishan (an indig-
enous Chinese breed) females have markedly slower growth
rates through day 12 than embryos from Yorkshire (a western
breed) females [10-12]. However, there are no current reports
of the differences between indigenous Chinese and western
pigs in prenatal skeletal muscle development. The lower
potential for postnatal muscle growth in indigenous Chinese
breeds compared with exotic breeds is already evident at birth
in the lower total number of fibers (TNF), which is fixed
before birth [13,14]. Hence, prenatal skeletal muscle develop-
ment is an important determinant of both muscle growth and
meat quality [15]. Myogenesis is a highly ordered process that
can be subdivided into a sequence of temporally separable
events: myogenic progenitor cell determination and prolifer-
ation, myoblast differentiation, and subsequent myotube
modulation. Establishment of the TNF involves two major
waves of fiber generation: a primary generation from 35 to
about 60 days post coitus (dpc), and a secondary generation
from about 54 to 90 dpc [13]. Hence, around 35 dpc, 60 dpc
and 90 dpc are key time points in prenatal skeletal muscle
development. More systematic analyses of these particular
stages are required to elucidate these phenomena further.

Comparative analyses of expression profiles are useful for
identifying the molecular differences between variant muscle
phenotypes [16]. Full-transcriptome analysis of skeletal mus-
cle may be particularly valuable for such studies. In recent
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years, several techniques have been used to elucidate the
molecular basis of prenatal skeletal muscle development [17-
19]. However, the genetic complexity underlying the develop-
ment of skeletal muscle remains only partially understood. In
particular, there have been no reports on the differences in
the global transcription profiles of prenatal skeletal muscle
between indigenous Chinese and western breeds of pig. Con-
sequently, a genome-wide profiling of transcription is needed
as a basis for further understanding of the molecular basis of
prenatal skeletal muscle development by analyzing gene
expression patterns of prenatal skeletal muscle development
at key stages and assembling molecular mechanisms. This
would also help to identify putative candidate genes for meat
production traits. The analysis of gene expression will also
facilitate the study of gene function.

Serial analysis of gene expression (SAGE) is a powerful tool
for the comprehensive and quantitative measurement of gene
expression and for identifying novel genes [20,21]. In addi-
tion, the results from experiments undertaken in different
laboratories can be compared [22]. Long serial analysis of
gene expression (LongSAGE) has a higher specificity for gene
identification than conventional SAGE [23]. In this study,
LongSAGE was used to investigate the molecular basis of the
differences in postnatal development between indigenous
Chinese and western breeds by analyzing and comparing pre-
natal muscle gene expression in Tongcheng and Landrace
pigs. We describe the construction and screening of six Long-
SAGE libraries constructed from Tongcheng (T) and Lan-
drace (L) pigs at 33, 65, 90 dpc, designated T33, T65, T9o,
L33, L65 and Lgo. To delineate the genes that were differen-
tially expressed at these three developmental stages and also
between breeds, the LongSAGE libraries were further sub-
jected to pairwise comparisons. Through Gene Ontology (GO)
annotation and cluster analyses for these differentially
expressed transcripts, we have obtained the first results
showing the gene regulation patterns during prenatal skeletal
muscle development in these two breeds of pig.

Results

LongSAGE libraries

A combined total of 317,115 LongSAGE tags were sequenced
from the six LongSAGE libraries. This translated into 98,437
distinct transcripts. Approximately 75% to 80% (83,754) of
these unique tags were observed only once in each library
(Figure 1a). All the libraries were very similar in the total
number of tags identified (approximately 50,000 per library),
as well as average GC content (44.56% to 50.02%) (Table 1,
also deposited in the NCBI database (GSM125246,
GSM125247, GSM125248, GSM125249, GSM125250, and
GSM125251)). Moreover, the ratio of unique tags to total tags
was reduced in parallel with the development of skeletal mus-
cle for Tongcheng pigs (Table 1). This suggested that more
genes were detected at early stages than at later stages in
Tongcheng pigs. Also, more transcripts were expressed at
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Table |

Summary of data obtained from the LongSAGE libraries

LongSAGE library

T33 Té65 T90 L33 L65 L90
Total tags' 50,450 53,927 53,761 53,104 54,483 51,188
Unique tags? 25,738 24,655 22,035 24,408 24,829 22,464
Unique tags/total 51.0 45.7 41.0 46.0 45.6 43.9
tags (%)3
Tags/clone 234 26.5 317 25.97 248 259
Average GC 45.16 50.02 44.56 47.24 47.15 46.20
content?
Rerr;aining total 32,722 (64.8) 37,058 (68.6) 40,074 (74.5) 37,135 (69.8) 37,948 (69.6) 36,596 (71.4)
tags
Remaining unique 8,081 7,786 8,348 8,439 8,294 7,872
tags®
Unmatched tags’ 2,458 (30.4%) 2,377 (30.5%) 2,621 (31.4%) 2,362 (28.0%) 2,740 (33.0%) 2,513 (31.9%)
Matched tags® 5,623 (69.6%) 5,409 (69.5%) 5,727 (68.6%) 6,077 (72.0%) 5,554 (67%) 5,359 (68.1%)
Single match? 5,437 (96.7%) 5,249 (96.9%) 5,550 (97%) 5,887 (97%) 5,358 (96.8%) 5,163 (96.7%)
Multiple matches!? 188 (3.3%) 169 (3.1%) 174 (3.0%) 185 (3.0%) 175 (3.2%) 176 (3.3%)

ITotal tags were obtained in each library. LongSAGE tags containing wildcard characters not in {A, C, G, T} were discarded. 2Unique tags were
obtained in each library. 3The differences in accrual rates (the ratio of unique tags to total tags) indicate that the number of genes expressed regularly
changed during myogenesis. 4For an explanation of this value, in the context of the quality of a SAGE library, see Margulies et al. [31]. 5The total tags
remaining in each library after eliminating the unique tags with a frequency <2 in all six libraries. The percentage of non-singleton tags is shown in
parentheses. ¢The unique tags remaining in each library after eliminating the unique tags with a frequency <2 in all six libraries. 7Unique tags
unmatched with any known sequence. The values in parentheses indicate the percentage of unique tags in the total. 8Unique tags that correspond to
UniGene entries. The values in parentheses indicate the percentage of unique tags in the total. *Unique tags matched with a single UniGene
sequence. '%Unique tags matched with more than one UniGene sequence. T, Tongcheng; L, Landrace; 33, 65 and 90 refer to days post coitus.

lower levels during early stages of skeletal muscle develop-  of skeletal muscle development in Tongcheng pigs, but during

ment in this breed. However, we observed the opposite later stages in Landrace pigs.

change in Landrace pigs (Figure 1b). These results suggest

that more intricate molecular events occur during early stages A total of 83,754 unique tags, which were not observed more
than twice in any of the six libraries, were eliminated from the
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Figure |

Genetic complexity of prenatal skeletal muscle of pigs. (a) Distribution of LongSAGE tags in abundance categories. The number of unique transcripts (tags)
for each abundance category is shown. T, Tongcheng; L, Landrace; 33, 65 and 90 refer to days post coitus; |, 2-4, 5-9, 10-100 and >100 indicate tag
abundance categories in our LongSAGE libraries. (b) Genetic complexity of the Tongcheng pigs in comparison with the Landrace variety during skeletal
muscle development.
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Genes differentially expressed in LongSAGE data and validated by QPCR

Gene Method* Fold changes of gene expression in different skeletal muscle samples
T33 T65 T90 L33 L65 L90
MYLPF QPCR 1.002 8.000 16.00< 0.712 10.56> 39.404
SAGE 1.00 4.10 4.63 0.67 2.31 2.34
MyL2 QPCR 1.002 4.92> 2.462> 0.31¢ 4.590 2.64b
SAGE 1.00 1.41 2.56 0.23 2.70 223
MYLI QPCR 1.002 9.85b 13.00< 0.412 12.13bc 34.30d
SAGE 1.00 6.62 11.85 0.38 6.31 5.77
SLN QPCR 1.002 40.500 78.79¢ 0.712 64.000 207.944
SAGE 1.00 16.70 29.30 0.20 14.70 24.00
TNNC2 QPCR 1.002 22.63b 6.50¢ 0.274 6.96¢ 8.57¢
SAGE 1.00 6.74 5.52 0.26 4.03 3.58
TOBI QPCR 1.002 2.302 7.46> |.532 3.73¢ 1.872
SAGE 1.00 3.00 11.00 1.00 3.00 2.00
CRABPI QPCR 1.002 0.07> 0.04b 2.64< 0.05b 0.05b
SAGE 1.00 0.00 0.00 3.36 0.00 0.00
LGALS| QPCR 1.002 0.57b 0.62bc 0.41b 0.74b 0.38v
SAGE 1.00 0.86 0.86 0.88 1.26 0.80
GNB2LI QPCR 1.002 0.01b 0.762 0.762 1.002 0.542
SAGE 1.00 0.30 1.02 0.93 1.02 0.80
TPTI QPCR 1.002 0.00b 2.00< 1.072 2.83¢ |.74ac
SAGE 1.00 0.74 2.69 0.93 1.6l 1.4
RPS28 QPCR 1.002 0.8]2b 1.002 0.62b 0.8]2b 0.8120
SAGE 1.00 0.39 1.02 0.8l 1.06 1.06
TncRNA QPCR 1.002 0812 5.66P 0.27¢ 1.002 1.624
SAGE 1.00 1.50 29.50 0.50 1.00 5.00

*The QPCR row provides the ratio of the 2-AACtvalue for each breed/stage sample to the 2-AACt of T33. For the T33 sample, the fold change in gene
expression relative to the T33 equals one, by definition. For each row, different superscript letters (a, b or c) indicate a statistically significant
difference in gene expression between skeletal muscles at p < 0.05 in the QPCR experiment; the same superscript letters indicate no statistically
significant difference (p > 0.05). For values with two superscript letters, gene expression in that sample was not significantly different from the
expression in the other two samples compared, but the other two samples were significantly different in gene expression; for example, for the MYL2
gene, the value 2.462" indicates that the expression in T90 was not statistically significantly different from that of both T33 and T65, but there was a
significant difference between the expression of T33 (1.002) and T65 (4.92b). The SAGE row provides the frequency of each breeds/stage sample
relative to T33 frequency in the LongSAGE data. T, Tongcheng; L, Landrace; 33, 65 and 90 refer to days post coitus.

analysis to compensate for possible sequencing errors [24].
The remaining 14,683 valid unique tags were then selected for
further comparative analysis. As shown in Table 1, the per-
centage of unique tags assigned to UniGene entries ranged
from 67% to 72%. Of these, about 97% corresponded to single
UniGene entries, whereas approximately 3% matched more
than one UniGene cluster because they contained a 3' region
conserved between different genes. In addition, these unique
tags matched at the punctuation mark (CATG) in all the Uni-
Gene clusters. A total of 5,953 unique tags were unmatched by
any known sequence in the combined LongSAGE libraries,
while the occurrence of unknown tags was probably due to the
incompleteness of pig genome sequencing [2,25].

Validation of LongSAGE data by quantitative PCR
To confirm that the genes identified were differentially
expressed, we selected 12 genes for validation by quantitative

PCR (QPCR) on the basis of their functional roles in skeletal
muscle development and expression patterns in these librar-
ies. Among these genes, five encoding myofibrillar proteins
(fast skeletal myosin light chain 2 (MYLPF); myosin, light
chain 2, regulatory, cardiac, slow (MYL2); myosin, light chain
1, alkali, skeletal, fast (MYL1); sarcolipin (SLN); and troponin
C type 2, fast, (TNNC?2)), and two encoding proteins involved
in regulation of myoblast proliferation and differentiation
(lectin, galactoside-binding, soluble, 1 (galectin 1; LGALS1);
and transducer of ERBB2, 1 (TOB1)) were selected for valida-
tion. Three genes, RPS28 (ribosomal protein S28), GNB2L1
(guanine nucleotide binding protein (G protein), beta
polypeptide 2-like 1), and TPT: (tumor protein,
translationally controlled 1), which are associated with pro-
tein synthesis, were selected because their expression levels
differed significantly between the two breeds at 65 dpc. Vali-
dation was also performed for the cellular retinoic acid bind-
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ing protein 1 (CRABP1) gene, which was expressed
specifically at 33 dpc in both breeds. Finally, a noncoding
RNA, named trophoblast-derived noncoding RNA (TncRNA),
which was up-regulated during myogenesis in both breeds,
was identified and selected for validation by QPCR. House-
keeping genes such as those encoding B-actin (ACTB) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), com-
monly used as internal controls for such analysis, were not
suitable for normalization in these experiments because their
transcription was altered during myogenesis [18,26]. Histone
3 mRNA (H3 histone, family 3A (H3F3A)), which was con-
sistently expressed in our study, was therefore used as an
internal control. The results for a panel of the 12 genes were
in good agreement with the LongSAGE data (Table 2) and
there was a highly significant correlation (r = 0.79, p = 8.52E-
17) between the two techniques. For example, genes encoding
myofibrillar proteins, such as MYLi, SLN, MYLPF and
TNNC2, were shown to be up-regulated during myogenesis in
both the LongSAGE and QPCR experiments, while QPCR also
showed a significant difference between the two breeds in the
expression of GNB2L1 and TPT1 at 65 dpc. For CRABP1,
although LongSAGE tags were not detected in skeletal muscle
from either breed at 65 or 9o dpc, QPCR indicated that it was
expressed at low levels. This correlation indicated that our
LongSAGE results reliably reveal the differences in gene
expression profiles in skeletal muscle.

Cluster analysis

To gain insight into transcriptome-scale similarities among
all six skeletal muscle libraries, we performed systematic
cluster analysis using two different methods (Cluster 3.0 and
TreeBuild 3D software) independently. Both sets of results
indicated that the six different transcription profiles could be
divided into three distinct classes (Figure 2). L65 and Lgo
were initially clustered together because their expression pro-
files were most similar, and T9o was then grouped into this
class by similarity to both of them. T33 and L33 were clus-
tered to form another class. Interestingly, T65 differed from
the other five samples in transcriptional profiling and was
clustered into a single class. Also, the gene expression pat-
terns in Landrace pigs at 65 and 90 dpc were more similar
than those in Tongcheng pigs.

Comparisons of the gene expression profiles between
Landrace and Tongcheng pigs during skeletal muscle
development

Table 3 shows the comparison of differentially expressed tags
between the libraries. A total of 1,400 and 1,201 unique tags
were differentially expressed during skeletal muscle develop-
ment in Tongcheng and Landrace pigs, respectively. Among
these tags, 234 (corresponding to 182 annotated transcripts)
and 203 (corresponding to 153 annotated transcripts)
matched annotated genes in the Tongcheng and Landrace
breeds, respectively. Figure 3 shows the distribution of differ-
entially expressed tags at each stage. It reveals that most of
these transcripts were expressed in all the skeletal muscle
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samples at each of the three selected stages. Only a few were
restricted in regulation of expression to a single stage.

Gene Ontology analysis

To gain further insight into the biological importance of the
differentially expressed transcripts identified, we further ana-
lyzed the functional categories of the annotated genes by que-
rying their associated Gene Ontologies. In general, the
categories of biological processes involved in myogenesis
were similar in Tongcheng and Landrace pigs. Mainly, they
included cellular physiological pathways, metabolism, locali-
zation processes, cell communication, responses to stimuli
and development (Figure 4) (at level 3). However, the num-
bers of differentially expressed genes involved in certain bio-
logical processes (at level 5) were quite different in
Tongcheng and Landrace pigs. For instance, more genes
involved in cellular biosynthesis (T versus L = 21.32% versus
9.77%, p = 0.00646), regulation of cell proliferation (T versus
L = 3.55% versus 0%, p = 0.04446), organic acid metabolism
(T versus L = 6.70% versus 0.79%, p = 0.07322), macromole-
cule biosynthesis (T versus L = 14.21% versus 7.52%, p =
0.07818), and regulation of cell size (T versus L = 3.05% ver-
sus 0%, p = 0.08482) were differentially expressed in
Tongcheng pigs. In contrast, there was a tendency for more
differentially expressed genes involved in biopolymer metab-
olism (L versus T = 30.83% versus 22.34%, p = 0.09562) to
be identified in Landrace pigs.

Expression patterns

In order to determine whether the temporal pattern of
expression of a gene during prenatal skeletal muscle develop-
ment might predict its molecular function, clusters of differ-
ential expression tags were assembled. The differentially
expressed genes identified in our screening were found to
exhibit eight types of pattern in both Tongcheng and Lan-
drace pigs (Additional data files 1 and 2 list all the LongSAGE
tags used in this analysis and their corresponding cluster
assignments for Tongcheng and Landrace pigs, respectively).
These patterns are shown graphically for each breed in Addi-
tional data file 6. Table 4 lists the genes that had previously
been confirmed (Additional data file 7) to be either highly or
specifically expressed in developing skeletal muscle and for
which the specific GO category assignments were enriched in
each expression pattern cluster for both pig breeds.

Most of the genes previously reported to be regulated in por-
cine prenatal skeletal muscle were detected in our analysis
and shared similar expression patterns [17,18]. For instance,
expression of desmin (DES) and GAPDH was increased dur-
ing myogenesis in both breeds, but both vimentin (VIM) and
eukaryotic translation elongation factor 1 alpha 1 (EEF1A1)
showed lower expression levels. These data are consistent
with previous reports [17,18]. Some genes that have been
shown to play important roles in the development of skeletal
muscle in humans and model animals [27,28], but had not
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Figure 2

Similarity of transcriptome profiles between six muscle tissues using cluster analysis. (a) Clustering dendrogram of LongSAGE libraries generated by
Cluster 3.0 and TreeView software. (b) Hypothetical tree-like diagram generated by TreeBuild 3.0 software, indicating the relatedness of these six
libraries.
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Number of differentially expressed genes and node distance between six skeletal muscle samples

T33 T65 T90 L33 Lé5
Té5 701 (2.24)
T90 751 (1.96) 781 (1.99)
L33 532 (1.38) 988 (2.51) 1,008 (2.42)
Lé5 645 (1.51) 653 (1.52) 577 (1.43) 741 (1.76)
L90 684 (1.83) 697 (1.76) 459 (1.3) 812 (2.11) 341 (1.26)

The values in parentheses indicate the node distance between skeletal muscles in cluster analysis using TreeBuild 3.0. T, Tongcheng; L, Landrace; 33,

65 and 90 refer to days post coitus.

been identified in pig, were also detected in our analysis.
These included SUMO2 (SMT3 suppressor of mif two 3
homolog 2 (Saccharomyces cerevisiae) and LGALS1, which
have essential functions during myotube formation [27,28].
SUMOz2, a member of the SUMO gene family, and LGALS1
were the only differentially expressed genes of this type found
in Landrace pigs.

Certain functional categories of genes were over-represented
in a number of LongSAGE tag clusters (Table 4). In
Tongcheng pigs, muscle development genes, which are typi-
cally up-regulated in development, were enriched in cluster 1.
Cluster 2 was enriched in mitochondrial proteins and carbo-
hydrate metabolism. Tricarboxylic acid cycle genes were con-
centrated in cluster 4. Ribosomal proteins, which showed
lower expression in the later stages of development, were

highly enriched in cluster 5. Genes representing a number of
other functional categories were also enriched in specific
clusters; for example, genes involved in signal transduction,
obsolete molecular function and protein binding in clusters 3,
7 and 8, respectively. In Landrace pigs, by contrast, muscle
development and muscle contraction genes were enriched in
clusters 1 and 3, respectively. Mitochondrial proteins were
concentrated in cluster 2. Ribosomal proteins were obviously
enriched in cluster 4. In addition, genes involved in cytoskel-
eton organization and biogenesis, cell cycle and protein com-
plex assembly, which were concentrated in clusters 5, 6 and 8,
respectively, were not enriched in the Tongcheng clusters. On
the other hand, genes for signal transduction, the tricarboxy-
lic acid cycle and obsolete molecular function were not over-
represented in Landrace pigs.

(a) T33

38 210 62

T65 T90

(b) L33

17 194 1)

L6e5 L90

Figure 3

Venn diagrams of genes differentially expressed at different stages. There were 1,400 and 1,201 differentially expressed tags for (a) Tongcheng and (b)
Landrace pigs, respectively. This figure is not drawn to scale. T, Tongcheng; L, Landrace; 33, 65 and 90 refer to days post coitus.
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Figure 4

GO classifications of biological processes of genes differentially expressed during skeletal muscle development. On the basis of the annotated genes that
matched our unique tags, GO analysis was carried out using the Blast2GO program [66]. The numbers shown indicate the exact number of genes for each
GO classification. (a) GO categories for Tongcheng pigs. (b) GO categories for Landrace pigs.

Differential expression of genes between Tongcheng
and Landrace pigs at the same stage of skeletal muscle
development

T33 versus L33

We identified 532 tags that were differentially expressed
between the T33 and L33 samples, including 327 known
genes or expressed sequence tags (ESTs) and 105 novel tags.
Among these genes, 221 were expressed more abundantly in
T33, while 311 were expressed at higher levels in 1.33. Analy-
sis of the GO annotations indicates that more genes encoding
proteins associated with muscle development (18.03% versus
1.69% for T33 versus L33, p = 0.00423) were up-regulated in
Tongcheng pigs, whereas more genes related to cellular bio-
synthesis (16.39% versus 32.20% for T33 versus L33, p =
0.05927) and cofactor metabolism (1.64% versus 10.17% for
T33 versus L33, p = 0.05532) were up-regulated in Landrace
pigs (Figure 5a). We further focused on 67 transcripts that
showed significant fold differences >2.0 (p < 0.01) and tag
counts >10 in any of our SAGE libraries (Additional data file
3). Among these genes, the following were more highly
expressed in T33: PDLIM7 (PDZ and LIM domain 7
(enigma)), CAPNS1 (calpain, small subunit 1), ACTC (actin,
alpha, cardiac muscle), TNNC2, FSCN1 (fascin homolog 1,
actin-bundling protein (Strongylocentrotus purpuratus)),
COL1A1 (collagen, type I, alpha 1), MYL2, ACTG1 (actin,
gamma 1), and MYH3 (myosin, heavy polypeptide 3, skeletal

muscle, embryonic). It is obvious that most of these genes are
related to muscle fiber formation. In contrast, the following
were more highly expressed in L33: MARCKS (myristoylated
alanine-rich protein kinase C substrate), TSC22D1 (TSC22
domain family, member 1), CRABP1, PTMA (prothymosin,
alpha (gene sequence 28)), GSTP1 (glutathione S-transferase
pi), FAU (Finkel-Biskis-Reilly murine sarcoma virus (FBR-
MuSV) ubiquitously expressed (fox derived)), UCHL1 (ubiq-
uitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)),
MDK (midkine (neurite growth-promoting factor 2)), and
GNAS (GNAS complex locus). Interestingly, we also detected
several genes in one breed only. For example, DNAJC5 (DnaJ
(Hsp40) homolog, subfamily C, member 5) and RPL9 (ribos-
omal protein Lg) were not detectable in L33, whereas RPL29
(ribosomal protein L29), PSMB2 (proteasome (prosome,
macropain) subunit, beta type, 2), RPS4X (ribosomal protein
S4), and SLC25A6 (solute carrier family 25 (mitochondrial
carrier; adenine nucleotide translocator), member 6) were
absent from T33.

Té5 versus L65

A total of 653 transcripts were differentially expressed
between T65 and L65, including 497 annotated genes or EST
sequences and 156 novel tags. Of these, 342 were up-regu-
lated in T65 and 311 were more highly expressed in L65. Anal-
ysis of the biological processes associated with these factors

Genome Biology 2007, 8:R115
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Table 4

Summary of LongSAGE tag cluster data according to breed type

Cluster* Tags per clustert  Previously characterized genest GO categories enriched in the cluster§

Tongcheng

191

APOBEC2, BINI, BTBD I, CACNBI, MYBPCI, MYLI, MYOZI, RRAS, RTN4,
SH3BGR, SLN, TCAP, TMOD I, TNNC2, TNNT3, TPMI

Muscle development (0.0007806)

2 245 ACTN2, AMPD I, ATP2A1, CKM, DES, ENO3, MYH2, RYRI, TMOD4, TPM2, Carbohydrate metabolism (0.001492) Mitochondrion
GAPDH, IGF2 (0.016297)

3 204 LASS2 Signal transduction (0.008368)

4 160 SPARC, HSPB2, ATF4, MYL2 Tricarboxylic acid cycle (0.021523489)

5 152 MYH3, SI00AT | Ribosomal (1.25E-06)

6 77

7 218 PSMD2, RTN2, SERFIA, THBS4, TIMM[3, TNNCI, TNNII, TNNTI, FAU, Obsolete molecular function (0.048234)
HSPA8, FHLIC, HDAC5, MYOT

8 153 DGKZ, GNB2LI Binding (0.023903)

Total 1,400

Landrace

| 158 APOBEC2, CFL2, HSPB2, ITGBI, MYH3, PGM5, RTN4, TNNTI, TPM2, FHLIC  Muscle development (0.003181)

2 94 SPARC, TIMM 3 Mitochondrion (0.002539)

3 126 ?Aﬁ?’fgl CKM, DES, MYBPCI, MYLI, MYOZI, PFDN5, RYRI, SLN, TNNT3, Muscle contraction (0.035242)

4 160 LGALSI, SERFIAI, FAU, HSPA8 Ribosomal (4.83E-07)

5 84 Cytoskeleton organization and biogenesis (0.012664)

6 301 GSN, TPM3, TPM4, TRIO, SI00A[ |, NACA, SUMO2 Cell cycle (0.002587)

7 95 CACNBI, MYLPF, TMOD, TNNII, IGF2 Development (0.014224)

8 183 ACTN2, ATP2A1, BINI, CCNGI, ENO3, MYH2, RTN2, SH3BGR, TCAP, TPMI,  Protein complex assembly (0.035886)
GAPDH, SDHD, HDAC5

Total 1,201

*The expression patterns in each cluster for Tongcheng and Landrace pigs are shown as (A) and (B) in Additional data file 6, respectively. TTags in cluster value corresponds to
the number of LongSAGE tags in each cluster. fSelected genes previously detected during myogenesis are indicated (references for these are given in Additional data file 7). SAll
significant (p < 0.05) GO categories over-represented in individual clusters were determined by EASE scores [68]; raw EASE scores (Jackknife one-sided Fisher exact p values)

for the categories in question are given in parentheses.

suggests that more genes related to programmed cell death
(0% versus 5.88% for T65 versus L65, p = 0.03521), lipid
biosynthesis (0% versus 4.41% for T65 versus L65, p =
0.08233), response to heat (0% versus 4.41% for T65 versus
L65, p = 0.08233) and responses to abiotic stimuli (0% versus
4.41% for T65 versus L65, p = 0.08233) were up-regulated in
Landrace pigs (Figure 5b). One hundred and nineteen unique
tags were differentially expressed with >2.0-fold difference (p
< 0.01) between the two breeds at 65 dpc (Additional data file
4). Among these transcripts, ribosome families were the most
variable. Most of these genes were more highly expressed in
Landrace pigs, for example, those encoding ribosomal pro-
teins L36 (RPL36), L38(RPL38), S26 (RPS26) and S28
(RPS28). The following were also more highly expressed in
L65: IGF2 (insulin-like growth factor 2 (somatomedin A)),
GNBz2L1, DES (desmin), ALDOA (aldolase A, fructose-
bisphosphatase),CD63 (CD63 molecule), TTN (titin), TPT1,
and RYR1 (ryanodine receptor 1). On the other hand, the fol-
lowing were more highly expressed in T65: Cox6¢ (cyto-
chrome c¢ oxidase subunit Vic), FAU, PCBP4 (poly(rC)
binding protein 4), PPP1R14B (protein phosphatase 1, regula-
tory (inhibitor) subunit 14B), FHL1C (four and a half LIM
domains 1 protein, isoform C), THBS4 (thrombospondin 4),
TMOD1 (tropomodulin 1), and YWHAQ (tyrosine 3-monoox-
ygenase/tryptophan 5-monooxygenase activation protein,

theta polypeptide). Interestingly, four genes were found to be
absent from T65: VCP (valosin-containing protein), RPL29,
SULT1E1 (sulfotransferase family 1E, estrogen-preferring,
member 1), and RPLPo (ribosomal protein, large, Po). More-
over, six transcripts were detectable in T65 only, including
PRDX3 (peroxiredoxin 3), BCAP31 (B-cell receptor-associ-
ated protein 31) and THi1L (THi-like).

T90 versus L90

We found that 459 transcripts, including 330 annotated
genes and ESTs and 129 novel tags, were differentially
expressed between T9o and Lgo. Of these transcripts, 273
were up-regulated in T9o. More genes related to the regula-
tion of cellular metabolism (2.08% versus 18.52% for T9o
versus L9o, p = 0.02071), macromolecule biosynthesis
(12.50% versus 33.33% for T9o versus L9o, p = 0.03901), and
cellular biosynthesis (16.67% versus 37.04% for T9o versus
L9o, p = 0.05552) were up-regulated in Landrace pigs, and
more genes encoding proteins associated with cellular catab-
olism (12.50% versus 0% for T9o versus L9o, p = 0.08166)
and carbohydrate metabolism (12.50% versus 0% for T9o
versus L9o, p = 0.08166) were up-regulated in Tongcheng
pigs (Figure 5¢). We found that 48 unique tags had an abun-
dance of at least 10 copies in one of the libraries and there was
at least a 2.0-fold difference in expression (p < 0.01) between
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Figure 5

GO annotations for 'biological process' for differentially expressed genes between breeds at specific stages. These categories include only Gene

Ontologies with significant difference in gene numbers between breeds (p < 0.10). Numbers of up-regulated genes in Tongcheng pigs were compared with
those in Landrace pigs by the FatiGO tool and p values <0.10 were considered significant. Gene Ontologies are listed on the vertical axis. The score on the

horizontal axis is the percentage of up-regulated genes. T, Tongcheng; L, Landrace; 33, 65 and 90 refer to days post coitus.

Tgo and Lgo (Additional data file 5). Within this group, genes
related to muscle contraction were up-regulated in T9o:
FKBP1A (FK506 binding protein 1A, 12 kDa), VDAC3 (volt-
age-dependent anion channel 3), TNNT1 (troponin T type 1
(skeletal, slow)), RTN4 (reticulon 4), TPM2 (tropomyosin 2
(beta)), MYH2 (myosin, heavy polypeptide 2, skeletal muscle,
adult), ACTN2 (actinin, alpha 2), RYR1 and TNNT3 (troponin
T type 3). The expression of SDHD (succinate dehydrogenase
complex, subunit D, integral membrane protein), FMOD
(fibromodulin), GNAS and CD63 was higher in Lgo. Most
conspicuously, the transcript for noncoding RNA, TncRNA,

was also upregulated in T9o. The transcript for RPL29 and a
novel transcript corresponding to LongSAGE tag 'GGCGCAG-
GCGTGGGGGC', which fitted the criteria selected for both
T33 versus L33 and T65 versus L65, were also up-regulated in

Loo.

Longer cDNA sequences obtained from the novel

SAGE tags

On average, 30% of the unique tags that we screened did not
match any known sequence, particularly tags with lower copy
numbers. These novel tags might, therefore, represent

Genome Biology 2007, 8:R115




http://genomebiology.com/2007/8/6/R115

uncharacterized genes or transcripts. To convert novel tags
into their corresponding ¢cDNA fragments, the generation of
longer cDNA fragments from serial analysis of gene expres-
sion tags for gene identification (GLGI) was carried out. A
total of 113 longer cDNA sequences were experimentally
obtained from 67 novel unique tags (Table 5). These ESTs
ranged from 35-382 base-pairs (bp; mean 121 bp) in length.
However, 100 sequences still matched no known sequence in
the NCBI database. Six polyadenylation signals are frequently
found in human transcripts [29]. Of these, 'AATAAA' and
'ATTAAA' had the highest frequencies among the unidenti-
fied genes (AATAAA, 50; ATTAAA, 24; AATAAT, 6; AATTA,
11; CATAAA, 5; AGTAAA, 5). Moreover, a total of 12 cDNA
ends among these sequences contained two or three CATG
sites, perhaps because of incomplete digestion at the 3'-most
CATG consensus site by the anchor enzyme 'NlalII'.

Discussion

To our knowledge, the present study is the first full-transcrip-
tome analysis of skeletal muscle from porcine fetuses of
Tongcheng and Landrace pigs at different stages (33, 65 and
90 dpc). In the clones that we identified in our LongSAGE
libraries, the GC content was about 44.56% to 50.02%, indi-
cating that AT-rich tags were retained during library con-
struction [30] and that our experiments produced no
inherent GC bias [31]. Among the 14,683 unique tags that we
analyzed further, 225 (1.53%) matched more than one Uni-
Gene sequence. Hence, the LongSAGE unique tags are also
more representative of the corresponding gene information.
In addition, the differential expression patterns of 12 selected
genes at the mRNA level identified by QPCR and LongSAGE
(r=0.79, p = 8.52E-17) agreed well, suggesting that our Long-
SAGE data can be reliably utilized for a comprehensive study
of gene expression profiles in skeletal muscle. Unfortunately,
however, many of our LongSAGE tags did not match any of
the currently known sequences in pig. This limitation in the
cDNA resources that have been deposited for this animal
restricted the amount of useful mining information obtaina-
ble from our LongSAGE data. At the same time, this indicates
that many porcine genes have yet to be identified. Chen et al.
[32] reported, using the GLGI method, that about 70% of the
unmatched SAGE tags in human were derived from novel
transcripts. Our GLGI experiment also suggested that most of
the novel tags had come from unknown transcripts. The com-
bined GLGI/LongSAGE approach therefore has the potential
to provide an effective strategy for identifying novel genes and
transcripts in the pig.

We first analyzed such differences in prenatal skeletal muscle
development between indigenous and exotic breed pigs on
the basis of gene expression profiling using LongSAGE. Dif-
ferences in the developmental features of Landrace and
Tongcheng pigs were indicated by transcriptome clustering
and gene expression patterns during skeletal muscle develop-
ment. The transcription profiles at 65 and 9o dpc were more

Genome Biology 2007, Volume 8, Issue 6, Article R115

similar in Landrace than Tongcheng pigs. Analysis of biolog-
ical function suggested that the LongSAGE tag clusters dif-
fered significantly between the two breeds in certain
functional categories of genes and expression patterns. Mus-
cle development, mitochondrial and ribosomal proteins were
enriched in both Tongcheng and Landrace pigs, but the genes
in these functional categories exhibited different expression
patterns in the two breeds. These results indicate differences
between Tongcheng and Landrace pigs in the synchroniza-
tion of events during skeletal muscle development, and show
that skeletal muscle grows more rapidly in Landrace pigs at
the stages selected. Differences in embryo growth between
indigenous Chinese and western breeds have been observed
as early as 12 dpc [10-12]. The lack of synchronicity of skeletal
muscle development between these two breeds will need to be
further investigated in future studies.

Primary myotube formation occurs at 35 dpc in the pig. Our
results show that genes encoding proteins involved in muscle
fiber construction and contraction were up-regulated in the
T33 samples, but some growth factors that promote myoblast
differentiation, such as IGF2 and MDK, were significantly
more abundant in L33 than in T33. IGF2 is an autocrine sur-
vival factor for differentiating myoblasts [33]. The regulatory
mutation is important for increasing meat production, and its
expression levels have been shown to differ between obese
and lean genotypes in postnatal pigs [34]. However, the dif-
ferences between genotypes in IGF2 mRNA expression in
embryonic skeletal muscle remain poorly understood. In the
present study, muscle IGF2 expression was observed to
increase to a peak at 9o dpc in both breeds. Also, IGF2 was
more highly expressed in Landrace than Tongcheng pigs at
both 33 dpc and 65 dpc, but no significant differences
between the breeds were found for this gene at 9o dpc. Midk-
ine, a heparin-binding growth factor, is expressed in both
proliferating and differentiated cells, but is more highly
expressed in less differentiated cells [35]. We found that MDK
was decreased in both Tongcheng and Landrace pigs as myo-
genesis progressed, which is consistent with previous studies
[36]. Comparison of the two breeds at the same gestational
stages further revealed that MDK expression was higher in
L33 (p < 0.01), and decreased more rapidly in Landrace pigs
with the onset of myogenesis.

The expression levels of PMTA, GSTP1 and CRABP1, which
are associated with the anti-apoptotic pathway, were signifi-
cantly higher in L33 than T33. PTMA, which is localized in the
mitotic spindle during mitosis, plays a role in cell prolifera-
tion and anti-apoptosis [37,38]. MARCKS, which is involved
in myoblast fusion, was also more highly expressed in L33.
Calpain-mediated proteolysis of phosphorylated MARCKS is
a prerequisite for myoblast fusion, but over-expression of
MARCKS significantly abrogates the fusion process [39]. In
contrast, CAPNS1, which is associated with the endoplasmic
reticulum (ER) stress-induced apoptotic response, was more
highly expressed in T33 than L33. Furthermore, caspase 3,
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cDNA sequence isolated by GLGI from novel LongSAGE tags

LongSAGE tag Product size (bp)* No. of UniGene matches Abundance

T33 Té5 T90 L33 L65 L90
CCCCATTGTACTTGAAC 116,81,92 10 0 8 5 5 6
CCCATTGTACTCGAACT 117,214 [ 0 2 | 4 3
CCCATTGTACCTGAACT 134,402,116,151,73 3 0 2 0 | 3
CCCATTGTACTGGAACT 106,74 2 0 0 0 0 0
CCCATTGTACTTGAGCT 74,92,114 2 0 | 0 3 2
CCCATTGTACCTTGAAC 121 | 0 | | 0 0
CCCATTGTACTTGACTT 115 | 0 | 0 | |
CCCATTGTACTTGAACC 136,116 5 | 4 12 4 il
CCCATTGTACTTGGACT 102,128 3 0 3 0 8 2
CCCATTGTACTTGCACT 118 [ 0 0 0 0 0
ACAGGAACTCCTTGCCT 104 | 0 0 0 0 0
TCTGGAGAAGTGGGGAG 77 5 0 | 0 0 0
CAGTTCTCCCACCTTAT 96 6 0 2 14 | 0
GGGCGTCTAAATGTGAA 89,115,121 | 14 | | | 0
TTCTTGATCTCTTCCTG 119,127 | 12 12 | 8 13
GCCACATCCTTTCTCCC 189,161,116,98,145 | 10 I 0 6 3
GACGAGATGGAGTTCAC 94,107,100 | 7 0 | 0 0
GATCGGGACATTGGGGC 8781 | 8 5 | 6 3
GAGAAAACGAAGACAAG 136,65 2 12 12 0 6 5
GAAAATTGCCCCCCCCC 113,77 | 7 2 0 0 0
GACTAGCAATTTCGGTT 55,68 [ 6 2 4 10 9
GGGCTGCTTTTTGTCAC 58,156 [ 7 2 | | 2
TGCTAGATTGGAGTGGG 93,124,150 [ 6 | 2 8 4
AAGCTGTGGTTTGATCC 82 13 5 13 10 6 8
AGACAGACAGTTGCTGG 97,161 9 2 3 5 5 3
AGCATCCCAAACAAACA 79,116 27 13 46 15 26 49
ATGGGCCGTTAATAAAG 73 28 il 15 36 34 35
CAAACTCTTGCCCCGAT 73 1,458 7 | 3 | | 0
CAGCAGGTGCTCAATAA 106 32,297 14 5 2 9 10 3
CCAACACTCATAGCAAT 71,161,100 16 6 16 22 16 27
CCCATTGGACTTGAACT 247 1 3 0 2 0 0
CCCATTGTACTTGAACT 134 448 130 577 501 448 515
GAACGCCTAATAAAGCA 106 32,126 9 2 5 7 I 8

Genome Biology 2007, 8:R115



http://genomebiology.com/2007/8/6/R115

Table 5 (Continued)

Genome Biology 2007,

Volume 8, Issue 6, Article R115

Tangetal. RI15.13

cDNA sequence isolated by GLGI from novel LongSAGE tags

CCTGACCCCACACGCCT

AGTAAACGGGCTGCTCC

TAGAGGTGCTGTCTATG

CTACTTTAGCACCTGCT

TCAAGCCTAGCAGTCTA

TGAATTTTGCATTCCAT

GTAGGGGAAGGAGGAGG

GGCTTCGGCTTGTTTGC

TGCCCTTTCCCCAAAGC

ATCTGCCGTTAATAAAG

CTGATTGGAACTGTATT

GGCTTCGGCTTGTTTGA

GCCCTGGGGCCTCAATA

GATTCCGTGAAGGAACA

AGGTTGCGGGTTCGGTC

GTTCGTGCCAAATTCCG

AAGATCAAGATTATTGC

CAGGGGCTTCAGTTGAT

ATTAAGAGGGACGGCCG

CACGCTTTCTTCAAAGC

GCGTGAATGTGAGCAGG

CGTGGGCAAAGCTGAAG

CTCGTTCTGAAATAAAG

AGGATGCCGGTACGATC

TCTCAGAATTAGCTTTG

GTTTTGCTGCTTCCCAA

CCTGCCCTGCCCTATTC

AGCTATGGCTTAGGCCA

TTTACTCAACCTTTGGT

TGGGCAGCCTTCCCTTC

CCAGAAGTAAGGCTTTC

AATCCAGGATGCGGCTG

GCATCTAGCTCCTCATT

TCGGACGTACATCGTTA

69
134
189,142
218
142
122 27,615
109,96
170,89
94
89 947
152 31,595
240 791
92 37,210
73 19,414
13 23,946
228 6,701
159 10316
364,239
146
302
127,149
122,147
68,168,186
189,170,107
89 22,100
132
77,68
161,126
96,169 13,955
221
123
70,173
151

145

207

200

199

54

54

51

22

8l

8l

254

158

56

65

82

47

151

173

96

67

35

29

36

167

212

290

118

78

83

39

29

24

220

181

237

123

68

86

36

41

23

22

22

37

219

152

186

75

57

62

44

20

32

34

All cDNA sequences obtained from GLGI analysis were deposited in the NCBI database (Additional data file 8). *Multiple values indicate that more than one sequence was

obtained from a tag in the GLGI experiment, and these sequences were of different lengths.
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apoptosis-related cysteine peptidase (CASP3), an ER stress-
specific caspase, was detectable in T33 but not in L33 (3 ver-
sus o for T33 versus L33 in expression abundance). Prolifer-
ating myoblasts are far more susceptible to apoptotic cell
death than terminally differentiated myotubes [40]. Nakani-
shi et al. [41] reported that about 15% of C2C12 cells die dur-
ing the first 24 hours of incubation in differentiation medium.
This phenomenon, induced by ER stress factors, has also
been detected in vivo [41]. Hence, the survival of myoblasts is
important for controlling the deposition of muscle mass dur-
ing embryonic development [40] and this is regulated by
growth factors and anti-apoptotic factors. In this regard, our
current data show that IGF2 and MDK are important for
maintaining the survival of myoblasts and also indicate that
myoblast growth status differs between the Tongcheng and
Landrace breeds at 33 dpc.

Primary muscle fiber formation ceases and secondary muscle
fibers are assembled in pigs at 65 dpc. The myoblasts are ter-
minally differentiated and the shape of the myofibers is very
clear at this stage [13]. But electron microscopy indicated dif-
ferences in sarcomere length and myofilament thickness
between the two breeds (data not shown). As myoblasts cease
to proliferate, the continuing development of muscle involves
growth without cell division [42]. Cell growth requires
increased protein synthesis, which can be assayed by ribos-
ome synthesis [43]; about 50% of nuclear transcription is
associated with ribosome synthesis in growing mammalian
cells [44]. In our current SAGE libraries, we detected 59 genes
that encode ribosome proteins, accounting for 7.6% (24,135/
317,115) of the total number of LongSAGE tags. Of these
ribosome protein transcripts, 39 were significantly different
between the two pig breeds at 65 dpc. Among these, 17 were
more highly expressed in Tongcheng pigs and 22 in the Lan-
drace variety. However, there were far more transcripts with
>2.0-fold differences in expression between T65 and L65 in
Landrace than in Tongcheng pigs (15/5). Elongation factors
were also more highly expressed in L65 than T65.

TTN was up-regulated in L65, while FHL1C and YWHAQ
were under-expressed in L65 compared with T65. TTN not
only encodes a protein that forms part of the muscle fibers but
also acts as a signaling complex, promoting skeletal muscle
development [45]. FHL1C is an alternatively spliced isoform
of FHL1, with a specific expression profile in testis, skeletal
muscle and heart that differs from the more widely expressed
FHL1 gene [46]. YWHAQ is the theta isomer of the 14-3-3
family of proteins that function as both cell cycle- and apop-
tosis-related regulators [47]. Interestingly, GNB2L1 and
TPT1, which are involved in regulating translation, were also
up-regulated in L65. GNB2L1, a member of the receptor fam-
ily for activated C-kinase 1, has a role in the regulation of cell
cycle arrest, cell movement and cell growth [48]. Over-
expression or down-regulation of this gene can result in
reduced cell growth [49]. Also, ribosome activation is regu-
lated by GNB2L1 via the integrin beta-GNB2L1-PKC complex

http://genomebiology.com/2007/8/6/R115

[48,50]. This gene was highly expressed in both Landrace and
Tongcheng pigs at 33 dpc (128 versus 137 for L33 versus T33
in expression abundance) and 9o dpc (109 versus 140 for Lgo
versus T9o in expression abundance), but its expression was
significantly higher in L65 than T65 (140 versus 41 for L65
versus T65 in expression abundance). On the other hand,
integrin beta 1 (ITGB1), a member of the integrin beta family,
was also up-regulated in L65. TPT1 encodes a ubiquitously
expressed protein that plays a role in the cell growth and anti-
apoptotic pathways. It regulates the efficiency of protein syn-
thesis by stabilizing the GDP form of EEF1A [51]. TPT1 was
highly expressed in all six libraries, but significant differences
were detected between the two pig breeds at 65 dpc (220 ver-
sus 101 for L65 versus T65 in expression abundance, p <
0.01). These results suggest that the growth rate of muscle
cells was more rapid in Landrace than in Tongcheng pigs at 65
dpc.

The myosin heavy chain genes comprise MYH3, MYHS8
(myosin, heavy chain 8, skeletal muscle, perinatal), MYH2,
MYH1 (myosin, heavy chain 1, skeletal muscle, adult), and
MYH4 (myosin, heavy chain 4, skeletal muscle). The MYH3
and MYHS8 isoforms are expressed during development and
the other three genes are expressed in trunk skeletal muscle
[52]. In the present study, expression of MYH3 and MYL4
peaked at 65 dpc, whereas MYH2 was undetectable at 33 dpc
and maximally expressed at 9o dpc. Genes encoding proteins
involved in muscle fiber contraction were also up-regulated in
T9o samples: TNNT1, TPM2, MYH2, ACTN2, RYR1 and
TNNT3. In contrast, genes involved in signal transduction
were up-regulated in Lgo: SYNJ2BP (synaptojanin 2 binding
protein) and FMOD. SYNJ2BP, also termed Arip2, is a factor
regulating activin A receptor type IIA (ACVR2A) expression
and activin function, which plays an important role in the
transforming growth factor (TGF)B signal pathway [53].
FMOD encodes a member of a family of small interstitial pro-
teoglycans that regulate TGF activity by sequestering it in
the extracellular matrix [54]. Intriguingly, we found that one
differentially expressed tag represented a noncoding RNA
and showed homology to human TncRNA, a trophoblast-
derived noncoding RNA. The expression of this product
increased with the progression of myogenesis in both pig
breeds and significant differences could be detected at only
90 dpc (60 versus 18 for T9o versus L9o in expression abun-
dance). Recently, Timmons et al. [55] reported that TncRNA
is down-regulated in Duchenne muscular dystrophy but is
up-regulated during exercise. Geirsson et al. [56] also
reported that TncRNA inhibits class II major histocompati-
bility complex transactivator-mediated transcription. These
findings suggest that noncoding RNA species could well be
functional during muscle formation.

Conclusion
The present study provides a rich new information resource
that increases our understanding of the molecular mecha-
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nisms underlying porcine skeletal muscle development via
comparative analyses of indigenous Chinese and exotic
breeds. Our comparative analysis of the prenatal skeletal
muscle transcriptomes of obese and lean type pig breeds sug-
gests that skeletal muscle grows more slowly and undergoes
more complicated changes in molecular events in Tongcheng
than in Landrace pigs at the stages selected. This finding
could contribute to explaining the superior perceived meat
quality of Tongcheng pigs. The cellular functions of the differ-
entially expressed transcripts that matched annotated genes
revealed that each stage in development showed characteris-
tic differences between the two breeds in various functional
categories: muscle development, apoptosis, protein synthe-
sis, signaling transduction, and so on. The up-regulation of
genes associated with increased cellular growth and myoblast
survival in Landrace pigs was responsible for faster muscle
growth. More generally, our data are likely to be helpful in
uncovering the pathways that mediate prenatal skeletal
muscle development in vertebrates. A number of differen-
tially expressed genes were identified between stages and
breeds, including candidate genes associated with meat pro-
duction traits, which may be commercially valuable. In addi-
tion, several thousand novel tags derived from unknown
genes were screened, indicating that many porcine genes
remain to be characterized. Our combined GLGI/LongSAGE
method also provides a new strategy for annotating the por-
cine genome. Finally, our data are also likely to help in iden-
tifying genes underlying some human diseases. However,
although most biological activities are carried out by proteins,
we have focused only on mRNA expression levels in prenatal
skeletal muscle. Therefore, details about protein levels would
be more helpful for understanding these issues.

Materials and methods

Animals and tissue preparation

All animal procedures were performed according to protocols
approved by Hubei Province, PR China for Biological Studies
Animal Care and Use Committee. Tongcheng and Swedish
Landrace sows (15 sows for each breed) were mated with the
boar of the corresponding breed. The sows were then sacri-
ficed at a commercial slaughterhouse at 33, 65 and 90 dpc
(five sows at each stage for each breed). The uteri containing
the fetuses were collected immediately, and the longissimus
muscle tissues were rapidly and manually dissected from
each fetus. These samples were snap-frozen in liquid nitrogen
and stored at -80°C until further use. Four fetuses (two males
and two females) from one sow were used for constructing
each LongSAGE library. Subsequently, skeletal muscles from
72 fetuses were used for QPCR validation.

RNA extraction and LongSAGE library construction

Total RNA was prepared from the frozen longissimus muscle
using TRIZOL Reagent® (Invitrogen, California, USA) and
digested by RNase-free DNase 1. The quality of the RNA was
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evaluated by spectrophotometry and agarose gel
electrophoresis.

For the skeletal muscles from the six different samples, T33,
T65 and T9o from Tongcheng pigs and L33, L65 and Lgo
from Landrace pigs, equal quantities of total RNA from four
individuals (n = 4) obtained from one sow were pooled. About
30 ug purified total RNA was used for the construction of each
library. Six LongSAGE libraries were generated using I-
SAGE™ Long kits (Invitrogen) according to the manufac-
turer's instructions. Transforming clones were sequenced
with the help of an ABI PRIZM 3730 DNA sequencer. Phred
software was used to determine the confidence of base call-
ing; sequences with Phred score >20 were considered reliable

[57,58].

SAGE data analysis

The SAGE 2000 software version 4.5 (Invitrogen) was used to
extract LongSAGE tags and eliminate duplicate ditags. All
unique tags that were observed no less than twice in at least
one library were selected for further comparison. Differential
expression was determined by analyzing the significance of
tag frequency differences between any of the LongSAGE
libraries using chi-square analysis and Monte-Carlo simula-
tion [59]. A P value <0.05 was considered significant. A refer-
ence database (SAGEmap_tag_ug-rel.zip for Sus scrofa) was
downloaded from the National Center for Biotechnology
Information (NCBI) [60] to identify the genes represented by
the LongSAGE tags (17 bp).

Quantitative PCR

First-strand cDNA was synthesized using a RevertAid™ First
Strand ¢cDNA Synthesis kit (MBI Fermentas, Vilnius, Lithua-
nia) and oligo(dT) with 4 ug RNA, and subsequently diluted
with nuclease-free water (Sigma, Saint Louis Mo, USA) to
12.5 ng/ul cDNA. Twelve differentially expressed genes
(MYLPF, MYL2, MYL1, SLN, TNNC2, TOBi, CRABP1,
LGALS1, GNB2L1, TPT1, RPS28 and TncRNA) identified in
the SAGE experiment were selected and analyzed by QPCR.
Histone mRNA (H3F3A), which was consistently expressed
in all LongSAGE libraries, was used as an internal control for
normalization purposes. Each QPCR reaction (in 20 pl)
contained 1 x PCR buffer (TaKaRa, Dalian, China), 3.0 mM
MgCl,, 100 uM of each dANTP, 0.3 uM primers (Table 6), 0.3
x SYBR Green I, 2 U Taq DNA polymerase (TaKaRa) and 2 ul
of normalized template ¢cDNA. The cycling conditions con-
sisted of an initial, single cycle of 30 s at 95°C followed by 45
cycles of 5 s at 95°C, 15 s at annealing temperature (Table 6)
and 20 s at 72°C. All PCR amplifications were performed in
triplicate for each RNA sample and gene expression levels
were quantified relative to H3F3A expression using Gene
Expression Macro software (Bio-Rad, Richmond, CA, USA).
The results were analyzed using the 2-2ACt method described
previously [61]. Data are presented as fold changes in gene
expression normalized to the H3F3A gene and relative to the
T33 sample. For the T33 sample, AACt equaled zero and 2°
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Primer sequences and PCR product sizes of genes selected for validation by QPCR

Gene GenBank ID Primer sequence Annealing Tm (°C) Product size (bp)

H3F3A NM 213930.1 Forward 5'-GCAAGAGTGCGCCCTCTACT-3' 60 288
Reverse 5-TTGGCATAATTGTTACACGTTTGG-3'

TNNC2 NM_001001862.1 Forward 5'-AAGGAGTTGGGCACCGTGAT-3' 60 326
Reverse 5-CGGCCTTCGTTGTTCTTGTC-3'

MYL2 NM 213791.1 Forward 5'-GGGTGCTCAGGGCTGATTAT-3' 60 326
Reverse 5'-AGGCTGCAAAGAAGATGAAGGT-3'

MYLI NM_214374.1 Forward 5-GACTTTGTTGAGGGTCTGCG-3' 60 452
Reverse 5-GAGTGGTGCTTGGATTTGAG-3'

SLN 798820.2 Forward 5'-AGAATGGAGCGATCCACCCG-3' 60 300
Reverse 5-AAACACTTGGCAGCCCTTGA-3'

MYLPF NM_001006592. 1 Forward 5'-GAGAAGGGCAGCGGCAGAAG-3' 60 466
Reverse 5-GTGCGTGATGACGTAGCAGATGTT-3'

TOBI EF486515 Forward 5-TTACCACTGCCACTTTCGCT-3' 6l 129
Reverse 5-TTCTGCTTCAAGAGGTCATTCAC-3'

CRABP| EF397416 Forward 5-GTGTGAACGCCATGCTGAG-3' 55 169
Reverse 5-CGTCCGTCCACTGTCTCC-3'

LGALS| AY604429 Forward 5'-GGTCGCCAGCAACCTGAATCTC-3' 58 151
Reverse 5-GTCTCCGTGCATGTCGAAGCG-3'

GNB2LI  NM 214332 Forward 5'-GCTGGGACAAGCTGGTCAAGG-3' 58 245
Reverse 5'-~AGCACAGAGCCAGTAGCGATTG-3'

TPTI NM_214373 Forward 5-GGCTGTTGGGATCGGATCTATC-3' 55 150
Reverse 5'-AACAATGCCTCCGCTCCAAAG-3'

RPS28 NM_ 001001587 Forward 5'-GGCAGGACAGGTTCGCAGG-3' 56 179
Reverse 5'-ATATCCAGGACCCAGCCACAAC-3'

TncRNA EF397601 Forward 5'-GACCGCTGTCGTCACTGTATG-3' 55 189

Reverse 5-AGCACTTGCCCAGCCCTAG-3'

equals one, so that the fold change in gene expression relative
to the T33 sample equals one, by definition. For the other
samples, evaluation of 2-2ACtindicated the fold change in gene
expression relative to the T33 sample. Dissociation curves
were generated to ensure that a single amplicon had been
produced. Differences in gene expression between groups
were evaluated using Student's t-test and were considered
statistically significant at p < 0.05.

Cluster analysis

To characterize the gene expression profiles in selected long-
issimus muscle samples further, an expression profile cluster
analysis was performed utilizing Cluster 3.0 and TreeView
software [62]. The normalization process included logarith-
mic transformation of the data, which was carried out as
described by Nacht et al. [63]. A hypothetical tree-like dia-
gram, which describes 'evolutionary' relationships between
different datasets, was constructed using the TreeBuild 3D
viewer with all the tags represented in our SAGE libraries. In
addition, SAGE Data Analysis 2.0 software developed by Cai
et al. [64] was used to identify differentially expressed genes
that behaved similarly throughout skeletal muscle develop-
ment in both pig breeds.

Gene Ontology annotation

To link tag identity with putative gene function, UniGene
clusters of reliably annotated tags, which were significantly
differentially expressed during development in each pig
breed, were retrieved using GO annotation for the category
'biological process' [65]. For known genes in each catalog, the
number of occurrences of a GO term in any given GO category
(biological process) was searched using the Blast2GO pro-
gram that was used for GO annotation [66]. On the basis of
the differentially expressed genes, the functional catalogs in
different muscles were compared using FatiGO software with
reference to the functions of these genes in human [67]. P val-
ues <0.05 were considered significant, and 0.05 <p < 0.1
indicated a tendency. Expression Analysis Systematic
Explorer (EASE) software was used for functional analysis of
genes over-represented in the expression pattern cluster [68].
An EASE score (Jackknife one-sided Fisher exact p values)
<0.05 was considered significant.

Generation of longer cDNA fragments from serial

analysis of gene expression tags for gene identification
To analyze novel LongSAGE tags further, GLGI was carried
out using the 3' cDNA sample that had been used previously
for LongSAGE analysis [32]. GLGI amplification, with slight
modifications, was then performed for each tag. The sense
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primers (5'-CATGXXXXXXXXXXXXXXXxX-3', where x represents
a 17 bp sequence of the tag), were designed on the basis of
each LongSAGE tag instead of the sense primers (5'-GGATC-
CCATGxxxxxxxxxx-3', where x represents a 10 bp sequence of
the tag from the original SAGE), as in the original GLGI. The
anti-sense primer used was 5'-ACTATCTAGAGCGGCCGCTT-
3', which corresponds to the 3' end of all of the cDNAs gener-
ated by GLGI reverse transcription primers. The PCR condi-
tions and amplified products were then treated as previously
described by Chen et al. [32]. All the sequences generated
from the clones were subjected to a basic local alignment
search tool (BLAST) search. Those containing the LongSAGE
tags did not match any known sequence with more than 85%
homology in the same orientation, and were defined as genu-
ine novel sequences.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing
longSAGE tags expressed differentially in Tongcheng pigs.
Additional data file 2 is a table listing longSAGE tags
expressed differentially in Landrace pigs. Additional data file
3 is a table listing genes expressed differentially between
breeds at 33 dpc. Additional data file 4 is a table listing genes
expressed differentially between breeds at 65 dpc. Additional
data file 5 is a table listing genes expressed differentially
between breeds at 90 dpc. Additional data file 6 provides clus-
ter-analysis results of differentially expressed LongSAGE tags
separated by breed. Cluster analysis was based on 1,400 and
1,201 transcripts differentially expressed during skeletal mus-
cle development in Tongcheng and Landrace pigs, respec-
tively. SAGE libraries are plotted on the x-axis, and tag
abundance, plotted as a fraction of the total tags for a gene in
the library in question, is shown on the y-axis. T = Tongcheng;
L = Landrace; numbers 33, 65, and 9o indicate days post coi-
tus. Eight clusters for Tongcheng pig are shown in (A1-A8).
Landrace clusters are shown in (B1-B8). Additional data file 7
lists the references for the genes listed in Table 4. Additional
data file 8 lists the GenBank accession numbers of the cDNA
sequences obtained from GLGI experiments.
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