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Abstract

In normalizing two-channel expression arrays, the ANOVA approach explicitly incorporates the
experimental design in its model, and the MA plot-based approach accounts for intensity-
dependent biases. However, both approaches can lead to inaccurate normalization in fairly
common scenarios. We propose a method called efficient Common Array Dye Swap (eCADS) for
normalizing two-channel microarrays that accounts for both experimental design and intensity-
dependent biases. Under reasonable experimental designs, eCADS preserves differential
expression relationships and requires only a single array per sample pair.

Background

The two-channel microarray continues to be an important
platform for characterizing genomewide expression levels.
For example, a two-channel array technology using inkjet
printing techniques was recently introduced by Agilent Labo-
ratories (Palo Alto, California) that combines some of the
favorable properties of single-channel oligonucleotide arrays
and two-channel cDNA arrays. A recent paper compared one-
channel and two-channel platforms, and concluded that the
two approaches are basically equivalent in terms of reproduc-
ibility, sensitivity, and specificity [1]. In comparison with the
single-channel platform, then, the two-channel platform
basically doubles the number of comparisons that can be
made between two groups using a fixed number of arrays,
when the efficient dye-swap design proposed here is
employed.

As with all high throughput array-based technologies, it is
necessary to preprocess two-channel gene expression arrays
to account for systematic biases [2-7]. In particular, there is
evidence of dye bias, or systematic differences between the

incorporation rates of the fluorescent dyes used for labeling
targets. There may also be systematic differences between
expression measurements on the same sample but different
arrays, representing array effects. Other sources of bias
include spatial trends on arrays and so-called batch effects.

In order to make reliable conclusions based on these data, it
is necessary to take into account all sources of signal, both
biological and systematic. Early work carried out preprocess-
ing and statistical inference simultaneously [8]. However, it
has become common practice to carry out 'normalization' as
a preprocessing step, adjusting the raw expression profiles so
that all systematic biases have been removed and carrying out
all subsequent analyses without consideration for the pre-
processing [9,10].

A standard normalization method involves smoothing so-
called MA plots [2-4]. An MA plot compares differential
expression to overall intensity. MA methods such as lowess
smoothing of MA plots remove any observed relationship
between differential expression and overall intensity. An
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Overview of the eCADS model. The left panel summarizes the model of equation 2. The observed fluorescence intensity (y or y¢) for agene with x RNA
is modeled as the sum of the average dye function d, the function corresponding to the dye used for labeling (J; or J;), and an array-specific function a.
Since we do not know the true RNA amounts x, we warp the x-axis so that every x value is replaced with d(x); these 'warped RNA amounts' are essentially
group means adjusted gene-by-gene for bias (see Model formulation). The curves in the right panel are analogously warped versions of the curves in the
left panel, now representing deviations from the group mean (the straight line). The warping enables the estimation of the model without affecting the

relationships of interest.

important property of this approach is that each array is
adjusted separately and the experimental design is not taken
into account when doing so. It has been shown that MA meth-
ods make strong assumptions that are difficult to validate in
practice [11]. When these assumptions are violated, MA
methods introduce errors into subsequent inference. In par-
ticular, MA methods can introduce large-scale spurious dif-
ferential expression while at the same time removing true
differential expression signal [11].

Alternative normalization methods can be derived from anal-
ysis of variance (ANOVA) models [8,9], with dye-swap aver-
aging a simple example. However, it is difficult to incorporate
complex biases (the intensity-dependent biases targeted by
MA methods, for example) using classic ANOVA models. The
classic ANOVA model's use of factor terms to parameterize
biases can lead to underfitting of some bias sources and over-
fitting of others.

With these issues in mind, we developed a general intensity-
dependent model (see equation 2) for the normalization of
two-channel microarrays. The model assumes that, in the
absence of bias, observed log fluorescence intensity is a mon-
otone function of true 'RNA amount', a convenient abstrac-
tion. Intensity-dependent biases result from functions of
RNA amount. Equation 2 includes functions for dye and array
biases, but can include additional terms as warranted by the
experimental design; namely, one would want to include any
variables that may have a widespread effect on expression. An
illustration of the model is given in the left panel of Figure 1.
Normalization is carried out by subtracting off the terms in
the model that represent bias.

While it seems natural to model intensity-dependent rela-
tionships as functions of RNA amount, there is a challenge in
that we can not directly estimate RNA amount. Instead, we
estimate a particular monotone function of RNA amount,
then estimate biases as functions of this plug-in quantity.
Thus, we actually estimate a warped version of the model, as
illustrated in the right panel of Figure 1. Essentially, we center
around the mean observed fluorescence intensities of each
comparison group (the straight line in the right panel of Fig-
ure 1) and treat deviations from this mean as bias. The dis-
tinction between the original and warped versions of the
model is subtle, and we show that inference performed on
data normalized with our model will correctly identify the
presence and direction of differential expression; this is a cru-
cial property not guaranteed by MA-based methods [11]. Also,
as seen in simulations below, this is achieved without under-
or overfitting, as can happen with classic ANOVA-based nor-
malization methods.

A consequence of this work is the statistical justification for a
more efficient dye-swap design. Specifically, we show that dye
bias can be removed without technical replication of sample
pairs as is required in a traditional dye-swap experiment, as
long as there is a simple balance in the experimental design.
One example has half of the arrays under one dye configura-
tion and the other half under the swapped configuration. In
[11], we proposed the Common Array Dye Swap (CADS), an
analogous method for a direct comparison experiment utiliz-
ing the usual dye-swap design by technical replicates. Since
the present method targets an 'efficient dye-swap design', we
call it the efficient Common Array Dye Swap (eCADS). eCADS
is also an extension of CADS to general experimental designs.

Genome Biology 2007, 8:R44
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Functions used in simulation. Functions used in simulated example for dye (left) and array (right) effects. The actual dye 'effect’ functions (the s in equation
2) are the dye-specific deviations from the average curve. The array functions sum to zero at any point on the x-axis.

Functional ANOVA (fANOVA) models are not new, and
extensive results have been provided as to their features [12].
Our major contribution is the formulation of the two-channel
microarray experiment in terms of the fANOVA model and
the consideration of estimation in the absence of its func-
tional arguments.

Results and discussion

Simulated example

We begin by applying the proposed eCADS normalization
method to a simulated example, generated according to the
eCADS model (equation 2). The model requires RNA
amounts x; for each gene i and comparison group /, as well as
dye- and array-specific functions that translate RNA amount
into fluorescence intensity. In each of 100 simulations, 14
arrays were formed making direct comparisons of two
groups. There are seven arrays under one dye configuration
(with group 1 labeled red and group 2 labeled green) and
seven arrays under the reverse dye configuration. This bal-
anced (in dye configuration) aspect of the design is key to the
operating characteristics of eCADS that we present below.
This is an example of an 'efficient dye-swap', in that no
technical replicates were used (see the section "The efficient
Common Array Dye Swap").

RNA amounts x;,, i = 1,2,...,5000, for group 2 were randomly
generated uniformly between 0 and 10; as described in the
'Model formulation' section below, these are merely concep-
tual quantities. Of the 5,000 genes, 70% were randomly
selected to be null, with x;, = x;,. For the remaining 30% of dif-
ferentially expressed genes, RNA amounts for group 1 were
set equal to RNA amounts for group 2, plus random deviates
uniformly distributed between -1/2 and 5. The dye and array
functions used in one of the simulations are shown in Figure

2. The same dye functions and mean values were used for
each of the simulations, while the array functions were ran-
domly selected in each simulation.

Note that there is asymmetric differential expression in this
example. One of the assumptions behind MA methods is sym-
metric differential expression [11]. In this example, then, MA
methods will artificially reshape the data. Meanwhile, a clas-
sic ANOVA-based normalization model [8,9,13] (see equation
1) will underfit the dye functions, since only a constant shift is
allowed, and overfit the array functions, since no intensity-
dependent relationships are acknowledged (see the section
'Model formulation' for details).

We normalized the data using each of MA smoothing,
ANOVA, and eCADS. Figure 3 compares the average t-statis-
tics across simulations to true RNA differences after each nor-
malization method. Since t-statistics are just mean difference
estimates divided by standard errors, we expect the t-statis-
tics to share the same sign as the true mean differences; we
see a scatter instead of a straight line because of the random
variability in the simulation. Black dots indicate genes for
which the sign of differential expression relationships was not
preserved. There is a systematic deviation away from the ori-
gin in the figure for MA smoothing, indicating that this
normalization method results in biased inference. No sub-
stantial bias is apparent after normalizing with the ANOVA
model. It is clear from this figure that eCADS is unbiased. We
provide a general result below that states that inference after
eCADS normalization will correctly identify the presence and
direction of differential expression.

Figure 4 shows representative (from a single simulation) his-
tograms of p-values for the null genes, after normalization by
the three methods. One check on the validity of a
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Summary of simulated t-statistics. Comparison of t-statistics (averaged across 100 simulations) and true mean differences after MA (left), ANOVA
(middle), and eCADS (right) normalization. Black points represent genes for which the sign of differential expression has not been preserved. Plots for MA

show systematic shift, indicating bias.

normalization method is its effect on null p-values. In partic-
ular, a normalization method should preserve the uniform
distribution of null p-values [14]. The null p-values in this
simulation after MA normalization are not uniformly distrib-
uted, with Kolmogorov-Smirnoff (KS) significance approxi-
mately zero. The histogram shape suggests that signal has
been artificially created in the null genes. The ANOVA model
likewise does not produce uniformly distributed null p-val-
ues, with KS significance again approximately zero. The his-
togram shape suggests overfitting. eCADS, on the other hand,
preserves the uniformity of the null p-values (KS p = 0.86).
These results persisted across simulations. The KS test for
uniformity of null p-values rejected its null hypothesis at the

5% level in 100, 100, and 8 simulations for the MA, ANOVA,
and eCADS methods, respectively, where 5 rejections were
expected by chance. We note also potential issues with
dependence across genes that could arise due either to
ANOVA approaches modeling array effects as factors instead
of functions or to MA methods confounding biological effects
with array effects.

Minor imbalances do not create bias

As detailed below, eCADS preserves differential expression
relationships under a certain kind of balance in experimental
design. The simulated examples satisfy this balance, with half

MA

ANOVA

eCADS

Figure 4

Summary of simulated null histograms. Histograms of null p-values after MA (left), ANOVA (middle), and eCADS (right) normalization in one simulation.
Neither the MA nor ANOVA null p-values are uniformly distributed (KS significance approximately zero), while eCADS null p-values are (KS p = 0.86).
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MA plots for mouse prostate development study. The three arrays from one dye configuration are in the top row, while those from the reversed
configuration are in the second row. There is apparently asymmetric, intensity-dependent differential expression in this example.

of the arrays under one dye configuration and half under the
reversed configuration. In certain situations, it may not be
possible to have exact balance; for example, there may be an
odd number of samples available. To investigate the effect of
minor imbalances, we repeated the above simulation for the
case where there are seven arrays in one configuration and six
in the other, with all other parameters held constant. No addi-
tional bias was apparent, as the plot corresponding to that in
Figure 3 was qualitatively indistinguishable from Figure 3.
Also, the KS tests indicated null p-values for eCADS. This
serves as informal support for eCADS in situations where per-
fect balance is not possible.

Prostate development example

As a real example, we illustrate eCADS on a study of prostate
development in mice. The data were kindly provided by the
Peter S Nelson laboratory at the Fred Hutchinson Cancer
Research Center (data available in Additional Data File 2). Six
two-channel microarrays were formed, each comparing the
prostate of a separate thirty-day-old mouse to fourteen-day
post-conception embryonic controls; thus, twelve mice in
total were involved. Three of the arrays labeled thirty-day
samples red and controls green, and three arrays labeled 30-
day samples green and controls red, making this an 'efficient
dye-swap' experiment.

Figure 5 shows MA plots for the raw data. The three arrays
from one dye configuration are shown in the top row, and the

three arrays from the reversed configuration are in the bot-
tom row. There is a pronounced nonlinear trend in the first
configuration (top row). If this were due exclusively to dye
bias, then this trend would be reversed when the dyes were
swapped. This would result in a nonlinear trend in the second
configuration (bottom row) that is a symmetric reflection of
the configuration-one trend about the horizontal zero line.
This is clearly not the case here. Hence, the persistent asym-
metry in Figure 5 suggests asymmetric and intensity-depend-
ent differential expression. MA methods will treat the
asymmetry as bias [11]. Assuming the asymmetry is 'real’, MA
methods will, therefore, artificially reshape the data, causing
large-scale erroneous modifications of the biological signal.

Figure 6 summarizes the results of applying eCADS to these
data. The left panel is an MA plot comparing the estimated
warped RNA amounts, equivalent to means within the two
comparison groups after normalization. As suggested above,
the model identifies substantial asymmetric differential
expression, with the bulk of the scatterplot centered below
zero; this corresponds to underexpression in 30-day mice rel-
ative to 14-day embryos. Widespread differences in
expression would not be unexpected when comparing such
disparate stages of development. The estimated dye functions
are shown in the middle panel and the estimated array func-
tions in the right panel. In terms of Figure 1, the dye functions
are the &. They thus represent deviation from the group
means due to dye and sum to zero at any point on the x-axis.
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Figure 6

Estimated group means and bias functions for mouse data. The left panel is an MA plot comparing the 'warped RNA' (group means adjusted gene-by-gene
for bias) for the two comparison groups. The middle panel shows the estimated dye effect functions, and the right panel shows the estimated array effect

functions.

Note that the asymmetry is taken into account through the
group means themselves, corresponding to the 'average dye
function' d in Figure 1. The array functions are the a in Figure
1 and also sum to zero at any point on the x-axis.

Microarray Quality Control project example

Our second example comes from the Microarray Quality Con-
trol (MAQC) project [15]. The MAQC project compared two
RNA samples, a total human reference and a human brain
reference. We obtained data for direct comparisons on 30
Agilent two-color microarrays, where 10 arrays each were
processed at 3 different sites. At each site, five arrays were
formed in each dye configuration. We used eCADS with
model terms for each of dye, site, and array to analyze 7,622

genes after filtering for single-probe, unreplicated genes with
no quality issues.

Figures 7 and 8 are analogous to Figure 6 for the prostate
data. It can be seen that the intensity-dependent trends,
including intensity-dependent differential expression, hold
here as well. Therefore, the assumptions of the ANOVA and
MA approaches again appear to be violated in this example.
Meanwhile, eCADS appears to capture intensity-dependent
trends with no obvious numerical issues.

The examples that we have considered are similar in that they
exhibit nontrivial levels of differential expression. The advan-
tages of eCADS over existing methods are especially notable
in such situations, since it is able to distinguish between bio-

6 0.6+ 0.2 4
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3 2 2
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5 5 5
E o 0+ - —-=-=-=-=—=-=—==-==- - - e
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Figure 7

Estimated group means and bias functions for MAQC data. The left panel is an MA plot comparing the 'warped RNA' (group means adjusted gene-by-gene
for bias) for the two comparison groups. The middle panel shows the estimated dye effect functions, and the right panel shows the estimated site effect

functions.
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Estimated array functions for MAQC data. The estimated array effect functions by site. Note that site two has substantially more array-to-array variability

than the other two sites.

logical signal and bias. Applying MA methods will artificially
reshape all relationships, impacting the validity of any down-
stream analyses. We emphasize that eCADS is not restricted
to experiments with nontrivial levels of differential expres-
sion but is generally applicable to any valid design. Even in
examples where the MA assumptions hold, it is possible that
eCADS will yield greater sensitivity and specificity through its
ability to model the different sources of bias. eCADS will also
maintain an advantage over gene-by-gene ANOVA methods
by directly estimating the relevant bias functions instead of
using factor terms.

Conclusion

We have developed eCADS as a flexible and generally applica-
ble approach to normalizing two-channel microarrays. In
contrast with popular existing normalization methods moti-
vated mostly by pictures and intuition, we have provided an
approach based on an explicitly defined model, making it eas-
ier to state assumptions behind the method and its operating
characteristics. In contrast with existing model-driven nor-
malization methods, eCADS naturally incorporates intensity-
dependent relationships between genes without overfitting.

eCADS can be applied to any valid experimental design,
including direct comparisons, indirect comparisons, compar-
isons of more than two groups, and comparisons taking into
account other relevant variables. Furthermore, we show
below that, under a simple kind of balanced design, eCADS
removes biases in such a way that differential expression rela-
tionships are preserved. This is achieved without the need for
technical dye-swaps and without restrictive assumptions.
Software implementing eCADS is available from the authors'
website[16].

The ideas employed here have potential application in several
other related settings. For example, single-channel microar-

rays have their own associated biases [17], but similar inten-
sity-dependent relationships would be expected to hold.
Typically, each array is normalized to a baseline array [18], or
all arrays are normalized to each other in an iterative manner
[19], but experimental design is not commonly used directly
in single-channel microarray normalization methods; a
recent exception is [20]. Similarly, Agilent's two-channel
array CGH product uses rank-invariant features to smooth
MA plots [21]. Also, the scatterplot smoothing routine of [19]
was recently applied in the context of 'ChIP-chip' experiments
using Affymetrix tiling arrays [22]. Protein mass-spectrome-
try [23] is yet another example where, as with microarrays, we
expect a functional relationship between the biological
quantity of interest (here, peptide abundance) and the
observed outcome (peak intensity). Intensity-dependent
biases are commonly seen, and scatterplot smoothing
approaches have been considered [24].

Materials and methods

Model formulation

A two-channel microarray experiment produces data repre-
senting true expression levels that have been translated and
distorted by various technological processes. In particular, we
do not observe the true total (or even relative) counts of RNA
molecules. We observe some function of these quantities in
the form of a fluorescence intensity, where the function we
observe incorporates various technical aspects of the experi-
ment, including systematic biases. A minimal requirement is
that microarray data preserve relative expression relation-
ships. In particular, we want to be able to detect the presence
and direction of true differential expression. This can be
formalized by the requirement that the sign of relative rela-
tionships be preserved.

Our proposed statistical model for the observed expression
values from a microarray experiment can be motivated by
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considering the early ANOVA models proposed for microar-
rays [8,13]. Let y;;, be the observed log expression measure-
ment, a single-channel fluorescence intensity, for gene 7 on
array j labeled with dye k in comparison group I. We begin
with the model:

Yijir = i+ dig + by + @ + g, (1

1=1,2,..,m,j=1,2,.,nk=1,2,1=1,2. For simplicity, let k =
1 indicate red dye (k = 2 green). This is the ANOVA model of
[8], with some of the components collapsed together. Thus,
the 4, represent gene-specific baseline means, d, the dye
effects, t;;the group effects (a group main effect together with
its gene x group interaction), a; 'spot' effects (an array main
effect together with its gene x array interaction), and the &
random error.

The spot effects a;;are allowed to change for every gene-array
combination. However, there is evidence that such effects are
functionally related within each array [2]. As such, fitting
every point individually will result in an overfit. On the other
hand, the dye effects d, are only allowed two values, one for
each dye. There is also evidence for intensity-dependent dye
effects [2-4]. As such, restricting dye changes to constant
shifts will result in an underfit. A more flexible dye term could
be used instead in equation 1. However, together with the
overfit array terms, this would quickly use up all available
degrees of freedom for model fitting.

A natural way to incorporate intensity-dependent relation-
ships is to replace the factor terms in equation 1 with func-
tions of the underlying RNA amounts, creating the fANOVA
model:

Yy = A0 + () + ax) + g (2)

where x;;is the average RNA amount for gene i in group L In
terms of the model given in equation 1, z; + t;is now repre-
sented by d(x;p), d, by §(x;), and a; by aj(xl-l). General inten-
sity-dependent biases due to differences between the dyes can
now be flexibly modeled with the &.(x;). Similarly, array-spe-
cific biases that are intensity-dependent can be modeled
using the a;(x;), without the use of separate factor terms for
every gene-array combination. To make model of equation 2
identifiable, we require that

S =0

and
n
ijla () =0
for any argument x.

Note that 'RNA amount' x; is an abstract quantity meant only
to help conceptualize the problem. Ideally, 'RNA amount'

Dabney and Storey
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would mean the average number of RNA molecules available
in group [ for hybridization to the spot that characterizes gene
1. Practically, we require only an 'RNA-equivalent amount’, a
bias-free monotone function of RNA count. As will be detailed
below, we actually estimate a translated version of the model
in equation 2 that is in terms of RNA-equivalent arguments
that can be estimated from the data. Having said that, for con-
venience, we refer to the x; as 'RNA amount' throughout the

paper.

While the form of the model in equation 2 is simple enough, a
major problem is immediately apparent: we do not know the
RNA amounts x;. If we did know the x;;, we would preprocess
the single-channel data in such a way that dye and array
biases are removed, but relationships between the compari-
son groups are not affected. In terms of the model in equation
2, this can be accomplished by subtracting off the terms
Il +ai(xy) (leaving us with the quantities of interest, d(x;)).
This would remove bias from both the individual observa-
tions and the average differences between comparison
groups.

Note that MA-smoothing methods make assumptions about
the form of the x;. For example, MA-smoothing methods
assume that the gene-specific group differences x;-x; are
symmetric about zero and that these differences do not
change systematically with gene-specific group averages
(x;+x;)/2 [11]. Since the x; are unknown, and no information
about them is available without performing a dye-swap, the
MA-smoothing assumptions are unverifiable in practice. Our
estimation procedure does not assume any particular
structure for the x;;. The x; are merely arguments for the func-
tions to be estimated. Our method thus applies regardless of
whether there is any asymmetry, intensity-dependent differ-
ential expression, unequal variability between groups, more
than 50% differential expression, and so on.

The efficient Common Array Dye Swap

In what can generally be called a 'dye swap', dye configuration
is swapped in some arrays relative to others. That is, on some
arrays, the red dye is used for group 1 and the green dye for
group 2, while for other arrays this configuration is reversed.
Typically, a 'technical dye-swap' is carried out, where the
swapping occurs on technical replicate arrays. The general
model in equation 2 is valid as long as there are arrays under
both dye configurations. In particular, no technical replica-
tion is necessary, obviating the need for a technical dye-swap
design. One simple implementation has half the arrays under
one dye configuration (group 1labeled red and group 2 green,
say, in a direct-comparison experiment) and the other half
under the other configuration. We define an 'efficient dye-
swap' as swapping dye configuration on arrays that represent
biological, rather than technical, replicates.

In [11], we proposed the CADS method for normalization
when technical dye-swaps are used in direct-comparison

Genome Biology 2007, 8:R44
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experiments (with both comparison groups on the same
array). The CADS model also uses functions of RNA amount
to represent intensity-dependent biases. However, CADS is
restricted to direct comparisons with technical dye-swaps and
does not easily incorporate additional covariates or sources of
bias. Since the present method is targeted at efficient dye-
swap designs, we refer to it as eCADS; our use of the term 'effi-
cient' is intended as a distinction between 'efficient'and 'tech-
nical' dye-swaps, not as a claim of efficiency of an estimator as
used in statistics. eCADS is still applicable to direct-compari-
sons and technical replicates and, thus, can be seen as a gen-
eralization of CADS. As we discuss below, the eCADS model is
estimated in a two-stage process. Under a simple form of
balanced design, this estimation procedure preserves differ-
ential expression relationships in expectation.

eCADS can be applied to any valid experimental design using
two-channel microarrays. Examples include: direct compari-
son experiments in which two groups are compared on the
same array; indirect comparisons using a reference design
(the dye used for the reference group must be swapped; and
experiments in which there are more than two comparison
groups. Additional covariates or sources of bias are also natu-
rally incorporated. Furthermore, any feature of the model can
be represented as either an intensity-dependent function or a
traditional factor term.

We have shown in previous work that a technical dye-swap is
necessary for removing dye bias in general from a single pair
of samples [11]. With eCADS, we provide a more general
result. Namely, dye bias can be removed from a set of sample
pairs with dye-swaps on biological replicates. Technical dye-
swaps are frequently avoided due to the inconvenience of
making technical replicate arrays. MA methods are often used
instead, at least partly due to their requiring only one array
per sample pair. However, we have shown that MA methods
require strong assumptions that cannot be validated in prac-
tice. eCADS handles the same intensity-dependent biases that
are targeted by MA methods and also requires only one array
per sample pair. In addition, eCADS does not require the
restrictive assumptions of MA methods.

Estimation

Unknown functional arguments

It is usually the case in the regression setting that one wants
to characterize the association between the dependent and
independent variables. In our setting, fluorescence intensity
is the dependent variable, and RNA amount is the independ-
ent variable; recall comments about our use of 'RNA amount’
in the section 'Model formulation'. However, for purposes of
normalization, our goal is to estimate the model terms repre-
senting bias and remove them. As it turns out, we are able to
estimate and remove bias terms from the eCADS model with-
out having to directly observe or estimate the independent
variable. This is done by estimating a translated version of the
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independent variable, borrowing strength across arrays, and
redefining the model to be in terms of the translated version.

The left panel of Figure 1 illustrates a hypothetical realization
of the model in equation 2. On the x-axis is RNA amount, and
each of the component functions of the model in equation 2
for a single array are labeled. The fluorescence intensities yg
(red) and y (green) are the sum of the average dye function
d, the dye-specific functions &z or &g, and the array-specific
function a. The fluorescence intensity for a particular gene
labeled red, say, is the evaluation of yj at that gene's RNA
amount, plus random error.

While we cannot estimate the actual RNA amounts for each
gene, we can translate the model in equation 2 so that it is in
terms of a quantity that we can estimate. Specifically, we
redefine the model in equation 2 to be defined in terms of
d(x;) instead of x;;. As illustrated in the right panel of Figure
1, this transformation of the model warps the x-axis in the left
panel of Figure 1, leaving the fluorescence intensities
unchanged. That is, the curves from the left panel have been
reshaped by changing the positions of their arguments on the
x-axis. Since we have reshaped around d(x;), the new average
dye function is the line of equality. Also, we have not affected
the qualitative characteristics of the dye- and array-specific
functions. Having translated the model, we proceed with the
two-stage estimation process: first, estimate the warped RNA
amounts; and second, estimate the translated version of the
model in equation 2, plugging in the warped RNA estimates.

In the simplest case, with group [labeled with both dyes on an
equal number of arrays, we can estimate d(x;) by simply
averaging all observations for gene i in group [; the dye and
array effects cancel out. More generally, we estimate the d(x;)
by fitting separate regression models to each gene (see the
appendix in Additional data file 1 for details). As a result, the
'warped RNA amounts' can be thought of as simple group
means, adjusted gene-by-gene for bias. Thus, in general,
eCADS begins with the fitted values from gene-specific
regressions, analogous to the ANOVA approach. However,
these gene-specific estimates are smoothed across genes by
plugging them into the functions of the eCADS model.

Parameterizing the model

Regression or ANOVA models are typically represented by
model matrices. The same principles apply in the microarray
setting [25]. An efficient dye-swap design can be character-
ized by a standard design matrix Z with rows for each array
channel and columns for the comparison groups, dyes, and
arrays. Specifically, with n arrays and p comparison groups,
define Z to be the 2n x (n + p + 2) matrix with hth row equal
to:

[Zglh"'nghzdlhzdzhzalh"'Zanh]’
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h =1,2,...,2n. The component Zg,h indicates whether the hth
channel is from comparison group I, Zd.h indicates whether
the kth dye was used for labeling the hth channel, and Zah

indicates whether channel h is from array j. As an example, an
experiment making direct comparisons between two groups
using two arrays would have:

1 1
o 1
1 (0}

= O +~= O
O = = O
- O O
= = O O

(0] (0]

We express the functions of the model of equation 2 in terms
of basis matrices. By combining these basis matrices with the
information in the model matrix Z, we can write the eCADS
model as a typical regression model in matrix form. Estima-
tion is carried out by minimizing a sum-of-squares criterion
subject to identifiability constraints on the regression param-
eters (details are given in the appendix in Additional data file
1). We emphasize that the eCADS model can be applied to any
‘valid' (derived from an experimental design that allows esti-
mation of the parameters of interest) model matrix Z. This
includes direct comparisons, indirect comparisons (reference
designs), and multiple comparison groups.

The fANOVA model and its basis matrix representation allow
for flexible choices of the form of its component functions, as
well as for the inclusion of additional sources of bias. The dye
functions are defined as being monotone, and this could be
explicitly incorporated into the model, as discussed in chapter
6 of [26]. Time-dependent biases, as can arise when forming
arrays over periods of weeks or months, could be incorpo-
rated by adding functions of time. Spatial biases could be
incorporated through the inclusion of a two-dimensional
smoother, as in [27]. In the analyses that follow, we use natu-
ral cubic spline bases [28] with five degrees of freedom.

Operating characteristics

eCADS preserves differential expression relationships

We now consider making inference on data normalized with
eCADS. Because fluorescence intensities are nonlinear
warped versions of RNA amount even with perfect normaliza-
tion, it is not possible to preserve relative fold-change
amounts in terms of direct RNA counts. It is possible, how-
ever, to preserve the sign and/or existence of differential
expression. Specifically, after eCADS normalization, the
expected value of a test statistic for a particular gene that
compares two groups should equal the sign of the true differ-
ence in RNA amount. This means that, in expectation, null
genes are called null, overexpressed genes are called overex-
pressed, and underexpressed genes are called underex-
pressed. Since differential expression methods are almost
always based on sample averages [29], we assume that the
test statistics are based on sample averages.
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It can be shown (see the appendix in Additional data file 1)
that eCADS normalization preserves the sign of differential
expression in expectation under a simple kind of balance in
experimental design that we refer to as 'balance with respect
to comparison group'. An efficient dye-swap design is 'bal-
anced with respect to comparison group' if each experimental
level for any one factor is repeated the same number of times
for each comparison group. For example, a direct comparison
of two groups with n arrays that follows the model in equation
2 is balanced with respect to comparison group if n/2 arrays
have one dye configuration, and n/2 have the other. If indi-
rect comparisons are made using reference designs, dye con-
figuration must still be swapped. Suppose, for example, that
there are three comparison groups, with n, arrays for group 1,
n, arrays for group 2, n,and arrays for group 3, with the same
reference sample used for all arrays. Balance with respect to
comparison group requires that n,/2 of the arrays corre-
sponding to group 1 have the group 1 target labeled red, while
the other n,/2 have reference labeled red, for example. The
arrays in the other groups must similarly be broken into equal
groups by dye configuration.

To further illustrate the generality of the eCADS model, con-
sider the following example. In making direct comparisons
between two groups, suppose that there is bias due to dye,
array, and array batch, with B batches. Suppose also that we
would like to adjust for gender when comparing the groups.
We thus consider the model:

Yijkirs = d(x;) + o) + aj(xy) + clxp) + by(x;p) + Eiikirss (3)

where c, corresponds to the rth gender, r = 1,2, and bgcorre-

sponds to the sth array batch, s = 1,2,...,B. As with the other

model terms, Y c.(x)= by(x)=0 for any argument x.
r S

Normalization by eCADS would remove the biases due to dye,
array, and batch. Inference would then be carried out by a
weighted average of group differences within each gender, as
with a gene-specific linear regression. Balance with respect to
comparison group here requires: n/2 arrays in each dye con-
figuration; n/B arrays in each array batch; and n/2 males in
group 1, n/2 females in group 1, n/2 males in group 2, and n/
2 females in group 2. Note that it does not matter how these
factors are arranged with respect to one another.

The question remains of the penalty incurred when perfect
balance with respect to comparison group is not possible due,
for example, to an odd number of arrays. In general, using
plug-in estimates for RNA amounts x is analogous to
regressing on a covariate that has been measured with error.
Outside of very simple settings, it is not possible to fully char-
acterize the bias that results from such measurement error
problems. However, as seen in the simulations above, there
does not appear to be much of a penalty for having minor
imbalances.
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Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is an appendix,
containing mathematical details of the eCADS method.
Additional data file 2 contains the prostate development data
in comma-delimited text form. Additional data file 3
describes the prostate data format.
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