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Abstract

We develop an approach utilizing randomized genotypes to rigorously infer causal regulatory
relationships among genes at the transcriptional level, based on experiments in which genotyping
and expression profiling are performed. This approach can be used to build transcriptional
regulatory networks and to identify putative regulators of genes. We apply the method to an
experiment in yeast, in which genes known to be in the same processes and functions are
recovered in the resulting transcriptional regulatory network.

Background

It is now possible to measure DNA variation, RNA expression
levels, and protein expression levels from thousands of genes
in a given biologic sample [1-3]. Of great interest is inferring
the 'wiring diagram', or the way in which many genes regulate
one another and interact, from these sources of high-through-
put data [4,5]. However, this goal is complicated by the fact
that RNA levels, protein levels, phenotypes, and environmen-
tal conditions may all affect one another [6-10], creating
intractable sources of confounding. This has made it difficult
to distinguish correlation from causal regulatory effects, lim-
iting the success and applicability of constructed genome-
wide regulatory networks [11].

A number of integrative genomics studies have recently been
conducted, in which large-scale genotyping and expression
profiling is performed on individuals with randomized
genetic backgrounds [12-15]. Typically, linkage analyses have
been performed on these studies in order to detect quantita-
tive trait loci (QTLs) underlying gene 'expression traits'
[10,12-17]. Although these studies have shown that expres-
sion variation is highly heritable, this approach does not typ-

ically directly identify specific genes or mechanisms that are
responsible for expression variation without additional
experimentation. Instead of employing this experimental
approach to genetically dissect expression traits, we have
developed a method called 'Trigger' (Transcriptional Regula-
tion Inference from Genetics of Gene ExpRession) for infer-
ring causal regulatory relationships among all possible pairs
of genes.

Randomization is the 'gold standard' for inferring causality of
one variable on another [18-20]. This concept has success-
fully been applied in clinical trials to establish the causal
effects of drugs on disease. Because DNA variation has a sub-
stantial and widespread effect on transcriptional variation
[12-15,21-25], we show that randomizing DNA content pro-
vides a natural mechanism for randomizing RNA levels. By
utilizing this randomization, we present a new theoretical
result defining three testable conditions that, when true,
imply that a directed causal relationship exists among a pair
of transcripts, where this causal relationship is robust against
confounding caused by hidden variables. Using this theoreti-
cal result, we develop a method to test directly for this causal
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relationship, which allows us to estimate the probability that
the specific causal model is true. These probabilities can in
turn be used to build meaningful regulatory networks, in
which the certainty of any such network is easily quantified by
the false discovery rate (FDR) [26]. In addition, the proposed
approach explicitly identifies genes whose expression levels
are responsible for variation of expression traits, overcoming
a limitation of identifying only their QTLs.

The concept of causal modeling has previously been consid-
ered within the context of genetic variation [27-32]. Several of
these existing approaches search for the best-fitting causal
model among genes or traits linked to a common locus. The
consideration of causality in those papers is justified by the
joint linkage of traits to a common locus, thereby reducing the
total number of causal models [29-31], but it is not justified by
a randomization process. Whereas it has clearly been recog-
nized that changes in linkage status when conditioning on
traits in a specific order is strong evidence for a causal rela-
tionship among the traits [27,28,32], Trigger directly uses the
'Mendelian randomized' genotypes to test rigorously for cau-
sality. This allows for a strict definition of causality that can
be directly tested. The proposed method has the notable fea-
ture that the test for causality is robust against false positives
due to common hidden causal variables. The proposed
method also provides a single significance measure for each
potential causal relationship in such a way that they can be
individually interpreted as well as combined to estimate an
overall FDR of the network. Trigger avoids the ambiguities
caused by selecting among several models by an often subjec-
tively chosen model selection criterion.

We apply the proposed method to an experiment on yeast
[12,33], in which two distinct strains were crossed to produce
112 independent recombinant segregant lines, and genome-
wide genotyping and expression profiling were performed on
each segregant line. Applying Trigger to this study yields
genome-wide regulatory probabilities that can be used to con-
struct networks with any desired FDR. We identify regulatory
relationships among genes that recapitulate previous find-
ings, provide new predictions, and yield new information
about the topology of the yeast transcriptional regulatory
network.

Results and discussion

For an individual organism, DNA has the useful feature that
it is usually a static variable, meaning that it is fixed and will
not change with changing RNA levels, protein levels, pheno-
types, or environmental conditions. By performing designed
crosses of genetically distinct inbred or isogenic lines, one can
randomize the genotypes of an organism from two or more
genetic backgrounds, thereby producing independent realiza-
tions of DNA content from offspring to offspring [6]. At the
same time, one may measure gene expression, or any other
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molecular or clinical phenotype of interest, on each resulting
recombinant line.

We have developed Trigger as an approach for inferring reg-
ulatory relationships among all pairs of genes at the genome-
wide level, based on these genetic cross experiments in which
high-throughput expression profiling is also performed (Fig-
ure 1). However, one may also incorporate any other molecu-
lar or clinical phenotype of interest into the algorithm.

Probabilities of transcriptional regulation

Suppose that there are m genes with transcription levels
measured on recombinant offspring from an experimental
genetic cross. (In the yeast experiment we consider, m =
6,216.) The goal is to use the data from such an experiment to
estimate the probability that the transcription of gene i has a
causal regulatory effect on the transcription of any other gene
J, which we denote by P;, where 'causal regulatory effect'
means that a change in the transcription level of gene i results
in a predictable change in the level of gene j. This is not nec-
essarily through a direct molecular interaction; however, if we
directly modulate the transcriptional level of gene 7, then this
should result in a corresponding change in the transcriptional
level of gene j. Trigger provides a conservative estimate of

these probabilities, denoted by f’y fori=1,..,mandj=1,..,

m.

These estimated regulatory probabilities can be used to build
aregulatory network based on a directed graph. The probabil-
ity that a directed edge exists from gene i to gene j in the net-

. One can directly threshold the

entries, essentially setting those not meeting the threshold
equal to zero. For example, one could remove all potential

work is estimated by 131]

edges with IA’U < 90% while including those with 131-- >90%.

Therefore, a directed edge would be drawn from gene i to gene

jifand onlyif 131~~ >90% (Figure 2). The resulting network has

an easily quantified and interpretable FDR, and each directed
edge has an estimated probability that it is true (see Materials
and methods [below] and Additional data file 1).

In addition to constructing a regulatory network from these
estimated probabilities, each gene i can be examined as a
putative regulator, and hence a quantitative trait gene or
'quantitative trait transcript' [34]. Specifically, the probability
that a specific gene 1 is a regulator for each other genej is esti-

mated as f’y . A threshold can be applied to these estimated

probabilities to obtain the FDR of the significant genes (see
Materials and methods [below] and Additional data file 1).
This particular application of Trigger allows one to move
beyond identifying QTL of expression traits to identifying a
specific underlying causal quantitative trait transcript.

Genome Biology 2007, 8:R219

Chen et al. R219.2



http://genomebiology.com/2007/8/10/R219

Genome Biology 2007,  Volume 8, Issue 10, Article R219 Chen et al.

(a)

Tor T,
Expression

(b)

T, Expression

(c)

T, Expression

(d)

T; | T, Expression

- SED G EEEEEEEESHIESsIII4 08 ¢ 8 o

Relative expression levels

2 - 0 1 2
1
T R

% 0 2 e v eTTERTTEMEIIIN, 9V W 1

‘—r—"w—’

All segregants L=BY L=RM

L L

P U CEEREEEPISTTTI I ¢ 8 4 »

LR R LR N o X R 1.2 J "-_r " "
& S8 S 283 BINIES SENES S4B WEEn sWm »

P T PP PTTETTE R W P ? @

.

—_——
L=BY L[=RM

S —
L=BY L[=RAM

Figure |

An illustration of the properties required to infer the causal relationship L — T;— T (a) All gene expression traits are normalized to follow a N(0,1)
distribution. By the causality equivalence theorem, in order to conclude that L — T;— T, it must be the case that (b) T;is linked to L, where the mean
expression among segregants with allele at L inherited from the BY parental strain is different from the mean expression among segregants with allele at L
inherited from the RM parental strain; (c) Tjis also linked to L; and (d) the expression of T;given T;is no longer linked to L. Trigger is an algorithm to
estimate the probability that all three conditions (shown in panels b to d) hold simultaneously.

Causal models of transcriptional regulation

Trigger is based on a rigorous mathematical framework that
we developed for utilizing randomized genetic backgrounds
and genome-wide expression in order to test rigorously for
causality among transcription levels. The approach starts
with a pair of transcripts and a locus to which both are linked.
Let L be the locus, T;transcript 7, and 7 transcript j.

The goal is to identify triplets (L, T}, T}) such that L — T;—> T},
where the arrow '-' means causation. The definition of
'causal' has been a topic of much interest [18,19]. Although
definitions of causality differ slightly among the many articles
published on this topic, in essence T;— T;means that the ideal
manipulation of T;will change the distribution of T}, whereas
the ideal manipulation of T;will not disturb the distribution of

T} 'Ideal manipulation' of a variable means to change the var-
iable in a manner that leaves every other variable unchanged,
at the moment when the manipulation occurs [35]. This
framework also applies to causality among random variables.

With the genetic cross experimental design, the genotype at a
fixed locus L is a random variable, whose random outcome
occurs before and independently from the subsequently
measured expression values. For example, in the yeast exper-
iment analyzed below, two haploid parental strains (BY and
RM) were crossed to produce 112 recombinant haploid segre-
gant strains. Because of the random segregation of chromo-
somes during meiosis, the inheritance of L = BY or L = RM is
random. Therefore, when measuring the alleles at a single
locus L across 112 segregants, we observe 112 genotypes being

Genome Biology 2007, 8:R219

R219.3



http://genomebiology.com/2007/8/10/R219

Figure 2

A transcriptional regulatory network drawn from a Trigger probability
threshold of 90%. The network consists of 4,394 genes, 2,145 causal
relationships, and 127 causal genes. Genes are represented by orange
circles and causal relationships are represented by directed edges with
black arrows.

generated from some probability distribution. (See Materials
and methods [below] for explicit details on the assumptions
we make about the randomized genotypes among the loci.)

Because the randomization of L takes place before the expres-
sion levels of T;are measured, this implies that if 7;is linked
to locus L then L — T;. This property is due to the well estab-
lished principles in statistics showing that an association
between two variables when one of them is properly rand-
omized implies causation [19,20]. Additionally, the randomi-
zation of L is carried through to the variation in 7; whenever
L — T;. If L — T}, then segregants with L = BY have a different
mean expression for T;than segregants with L = RM. There-
fore, the randomization of L provides a randomization of the
mean level of expression for T;. Figure 1a shows the transcrip-
tional levels for a given gene, and Figure 1b shows a case in
which it is linked to some locus L. Because the inherited allele
L = BY or L = RM is random for each segregant, the mean
level of expression for T;is random when L — T

Importantly, some of the variation in T;will not be explained
by L, specifically the random fluctuations of the transcription
levels within each genotype (Figure 1b). Therefore, it is not
possible to conclude that 7;— T;whenever T;and T;are signif-
icantly associated to L. This follows because there could be a
common hidden variable affecting both T;and T;. (Note that if
T; were perfectly randomized, then there would be no causal
hidden variable for T;, which demonstrates the power of ran-
domization.) Suppose that a hidden variable H is such that H
— T;and H — T;. Because of this common hidden causal var-
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iable, any association between T;and T;would not allow us to
conclude that 7;— T;even though T;has been partially rand-
omized. In other words, the partial randomization of T;
caused by L is now confounded by the effect of H. The com-
mon causal hidden variable H does not prevent T; — T; from
occurring; rather, we just are unable to draw any conclusion
when this is the case, unless we are willing to model common
hidden causal variables. Modeling common hidden causal
variables has been shown to be particularly challenging in this
high-dimensional setting [36], and doing so would require
much additional work.

If there is a common causal hidden variable H that affects
both T;and T}, then the Trigger method is designed to not
make any conclusions about causality. However, if there is
not a common hidden causal variable, then it is now possible,
in a straightforward manner, to determine whether T; — T;.
The following new theorem identifies three conditions that
are equivalent to the case in which both L — T;— T;and no
common causal hidden variable affects both T;and T;. (See
Materials and methods [below] for a mathematical proof.)

Causadlity equivalence theorem

The causal relationship L — T; — T;exists and there are no
hidden variables causal for both T;and T;if and only if the fol-
lowing three conditions hold: L — T;, L » T}, and L L T} | T;.

This theorem is used in the following manner. If L » T}, L —
T;,and L 1 T;| T;, then we may conclude that L — T;— T;exists
and there are no hidden variables causal for both T;and T;.
The fact that 'there are no hidden variables causal for both T;
and Tj' is not an assumption. Rather, it is a verified fact that
follows when the three properties are true, as we show in the
proof given in Materials and methods (below). We would pre-
fer to detect all cases where L —» T; — T; however, as
explained above, it is not yet possible to do so in the presence
of common causal hidden variables.

Figure 1 provides a graphical representation of the three
properties that must be satisfied. The last condition, L L T; |
T;, denotes that T; conditioned on the information in T;is
independent from L. The first two conditions basically ensure
that both transcripts are subjected to a common randomiza-
tion. The third condition is the key one for inferring causality
based on these randomizations. Basically, what the third con-
dition determines is whether the causal effect from L on T;can
entirely be captured by 7. If so, then T;is indeed a causal fac-
tor for variation in T; with no hidden variables.

For computational and statistical efficiency, we limit L to be
the locus of gene i (see Additional data file 1), which we denote
as L;. We call L; — T;the primary cis linkage and L; —> T} for
any other gene j the 'secondary linkage' here. Because Pr(7;—
T)> Pr(L>T;—> Tj), we can obtain a conservative estimate of
P;; by estimating Pr(L — T;— T}). From the causality equiva-
lence theorem it follows that:
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Pr(L;—> T;—> Tj)
=Pr(L;— T;and L;— Tjand L; L T;| T})

=Pr(L;—> T) x Pr(L; > T;| Li—> T)

The Trigger algorithm conservatively estimates P;;by estimat-
ing each probability in the above product from left to right
and taking their product. (See Materials and methods [below]
and Additional data file 1.)

Application to yeast

We applied the Trigger algorithm to the yeast experiment
(Materials and methods [below]) and found several interest-
ing characteristics of the resulting regulatory probability
matrix. Table 1 lists the overall significance results with dif-
ferent probability thresholds and Additional data file 2 con-
tains the entire regulatory probability matrix. For example, at
a probability threshold of 90%, we found 4,394 significant
regulatory relationships among 2,145 genes where 127 are
causal. Figure 2 shows a regulatory network drawn from the
Trigger results at this threshold, where a directed edge is
drawn from gene i to gene j if and only if P;> 90%. It can be
seen from Figure 2 that we have constructed a highly inter-
connected network where there is clearly a "hub structure'.

We examined in detail four genes as putative regulators:
CNS1 on chromosome 2, ILV6 on chromosome 3, SAL1 on
chromosome 14, and NAM9 on chromosome 14. Each was
highly significant for cis linkage, and the locus of each puta-
tive regulator had many significant secondary linking genes.
At a 90% posterior probability cut-off (FDR = 6%), 144, 51
and 36 genes were significant for being regulated by CNS1,
ILV6, and SAL1, respectively. At an 80% posterior probability
cut-off (FDR = 11%), 14 genes were significant for being regu-
lated by NAMo. The significant genes, posterior probabilities,
and other relevant information for each putative regulator
can be found in Additional data file 3. Note that each of these
putative regulators is also a significant quantitative trait gene
(or quantitative trait transcript) for each expression trait that
it significantly regulates. Figure 3 shows heat maps of the four
putative regulators and their corresponding significantly reg-
ulated genes. It can be seen that each significant gene is both

Table |
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linked to the locus of the putative regulator and has correlated
expression with the regulator within each genotype, both of
which are necessary but not sufficient for causality.

In order to determine whether the genes that are significant
for each putative regulator show a coherent functional rela-
tionship, we employed the Gene Ontology (GO) database
[37]. For each putative regulator, we queried the database
among all significant genes and the regulator itself. This
approach takes independently performed experiments and
synthesizes the information obtained from those. The GO
searches allowed us to test specifically whether common
processes, functions, and components are present among
each set of genes. Indeed, we found an abundance of signifi-
cance for enriched GO terms for each set of genes correspond-
ing to a putative regulator.

Figure 4 shows the results of GO analysis for the putative reg-
ulator NAM9, which is a mitochondrial ribosomal component
of the small subunit and inviable under deletion [38]. It is a
structural constituent of ribosome, involved in translation
and mitochondrial small ribosome subunit [39-41]. For the 14
genes significant at an 80% posterior probability threshold
(FDR = 11%), 13 are known to be in the same or similar path-
way as NAMo9g. The other significant gene is heretofore
uncharacterized. Translation, structural constituent of ribos-
ome, and mitochondrial small ribosome subunit are all highly
significant terms in the GO tree.

Additional data file 1 (Figure S1) shows the results for the
putative regulator CNS1, which is an essential tetratricopep-
tide repeat (TPR)-containing co-chaperone, deletion of which
is inviable [42]. It binds both heat shock protein 82p
(Hsp82p) and Ssaip (Hsp70), and stimulates the ATPase
activity of SSA1. CNS1 is involved in the protein binding proc-
ess, and its cellular component is associated with cytoplasm
[42-45]. Of the 144 genes significant at the 90% joint poste-
rior probability cut-off (FDR = 6%), a substantial subset is
involved in transferase activity and ribosome biogenesis and
assembly, which coincides with the key role played by CNSz in
yeast. Many of the 144 genes were also found to be in the same
pathway as CNSi; for example, TRM8 and CNS1 are both
involved in a pathway for protein binding [46,47].

Overall significance of the regulatory probability matrix at different probability thresholds

Probability threshold Number of putative Total number of genes Number of edges FDR (%)
regulators

0.95 76 1,075 1,499 27

0.90 127 2,145 4,394 6.0

0.85 194 3,150 8,826 9.4

0.80 255 4,044 15,448 12.9

FDR, false discovery rate.
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Figure 3

Heat-map display and hierarchical clustering of genes significantly regulated by the four putative regulators considered. The top row is the expression of
the putative regulator (red indicates high expression, and blue low expression). All remaining rows are the hierarchically clustered significant genes. Each
column represents a single segregant, where the segregants have been separated by genotype at the putative regulator's locus (black line). The columns
have been ordered according to increasing expression of the putative regulator within each genotype. (a) CNS/ and its 144 significant genes. (b) ILV6 and
its 51 significant genes. (c) SALI and its 36 significant genes. (d) NAM9 and its |4 significant genes.

Additional data file 1 (Figure S2) shows the significant GO
results for ILV6 and its 51 genes under statistically significant
regulation. ILV6 is a regulatory subunit of acetolactate syn-
thase, which catalyzes the first step of branched-chain amino
acid biosynthesis [48,49]. Amino acid biosynthesis and its
associated pathways are significantly enriched GO terms with

Pvalues below 10-1°. Cyclohydrolase activity and lyase activity
are some other significant pathways identified by GO
analysis.

The putative regulator SAL1 is a probable transporter and a
member of the calcium-binding subfamily of the mitochon-
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Figure 4

GO trees for NAM9 and 14 significantly regulated genes at 80% posterior probability threshold (FDR 11%). The colors of the boxes indicate the

significance of the various Gene Ontology (GO) terms. NAM9 encodes a mitochondrial ribosomal component of the small subunit, involved in translation
and mitochondrial small ribosome subunit [39-41]. Yeast is unviable under NAM9 deletion [38]. NAM9 is a structural constituent of ribosome, and it can be
seen that seven out of the 14 genes, together with NAM9, are involved in translation. Five of them are also a ribosomal structural constituent and encode
mitochondrial ribosomal subunits. Among the |4 putatively regulated genes, all except one uncharacterized gene are associated with mitochondria. FDR,

false discovery rate.

drial carrier family, with two EF-hand motifs. It works in
transporter activity and calcium ion binding [50], with its cor-
responding cellular component involved in the mitochondrial
inner membrane [51]. From the GO analysis (Additional data
file 1 [Figure S3]), we can see that a number of the 36 genes
significantly regulated by SAL1 are associated with the mito-
chondrian and membrane GO terms. Six of the 36 signifi-
cantly regulated genes are involved in mitochondrial inner
membrane with high statistical significance (P < 10-8), a trend
that is consistent with previous findings [50,51].

It should be noted that in the case of SAL1 no polymorphism
exists in the immediate 500 base regions upstream or down-

stream of the SAL1 open reading frame. The linkage peaks
occur approximately 13 kilobases and 21 kilobases on either
side. This illustrates that linkage does not have to be due to an
unequivocally cis-acting regulatory polymorphism in order
for Trigger to work. On the contrary, there must simply be
some locus to which both expression traits T; and T; are
linked. We justified limiting the locus L to be in the 50
kilobases region of T;based on computational and statistical
increases in efficiency (Additional data file 1).

In addition to these four well characterized putative regula-
tors, we noticed that expression levels of a number of genes
with relatively unknown function (for instance, YSW1, PHM7,
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and so on), were predicted to regulate a number of genes, with
significant GO terms appearing for each set. Therefore, our
results can potentially be used to predict properties of
relatively unknown genes as well. Furthermore, several tran-
scription factors significantly regulated a number of genes,
including HAP1 [52,53] and RAD16 [54,55]. In previous work
it was found that mutations in GPA1 and AMN1 lead to
expression changes in genes whose expression exhibits link-
age to each respective locus [14]. Missense mutations (leading
to amino acid changes in the protein product) were identified
in both GPA1 and AMN1 that appear to be the cause of the
expression changes in the linking genes. In work to be
reported in the future we examine the GPA1 and AMN1 cases
in detail, showing that there appears to be common causal
hidden variables involved. The Trigger approach is extended
to take into account these common causal hidden variables,
allowing us to recapitulate the previous findings regarding
GPA1 and AMN1.

Comparison with other approaches

Mendelian randomization

Recently, 'Mendelian randomization' was proposed as a tech-
nique in genetic epidemiology to study the environmental
determinants of disease [27,28]. Trigger builds upon this con-
cept in the sense that it also employs the randomization of
genotypes as a starting point to infer causality. Essentially, we
have extended this idea by deriving precise conditions under
which the causality of one trait on another can be confirmed
and by providing a statistical technique for estimating the
probability that one trait is causal for another, among poten-
tially thousands of traits.

Model selection approaches

The concepts of 'causality’ and 'regulation’ have been utilized
in different ways in previous reports concerning the construc-
tion of biologic networks [29,30,32,56-60]. Among those
using the more rigorous definition of causality [35,61], most
published approaches have been to choose among the best fit-
ting causal models by partial correlation or by model selec-
tion. The difference between our work and most previous
work is that we explicitly test for and quantify each causal
relationship of interest by using the randomization of genetic
backgrounds built into the genetic cross experimental system.
Furthermore, we assess the significance of each causal rela-
tionship by estimating the probability that the causal rela-
tionship is true, so that it can be considered in a
straightforward manner with millions of other potential
causal relationships.

We have made some simple comparisons between Trigger
and the model selection and correlation based approaches
(Figure 5). In addition to Trigger showing different signifi-
cance rankings relative to these approaches, it offers an
increase in specificity. Most of the papers employing model
selection have used the 'Akaike information criterion' (AIC)
or derivatives thereof [29,31,32]. Among the about 38 million
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triplets (L;, T}, T]-), the AIC model selection method [62] clas-
sifies about 15.4 million as causal, whereas Trigger identifies
about 4,400 causal relationships with probability exceeding
90%. For the putative regulator CNS1, about 2,800 genes are
classified as having a causal relationship with CNS1 by model
selection, as opposed to the 144 Trigger found to be signifi-
cant with probability exceeding 90%. The advantages that
Trigger has over AIC and other model selection criteria are as
follows: there is no generally applicable method to obtain an
interpretable measure of significance based on these criteria
(which is especially problematic when considering thousands
of traits); and these approaches force one to model directly all
possible hidden variables, making typically unverifiable
assumptions about their underlying model [11].

Extensions to other data types

We have presented Trigger within the context of inferring
regulatory relationships based on gene expression data from
organisms with randomized genetic backgrounds. However,
this method may actually be applied to a much broader class
of data types. Because the estimation is done in a nonpara-
metric and scale-free manner (Materials and methods
[below] and Additional data file 1), it is possible to combine
any combination of expression, proteomic, metabolomic, and
phenotypic data as the variables among which causal rela-
tionships are inferred. These may be considered separately or
simultaneously, allowing one to discover regulatory relation-
ships, say, among protein levels and transcriptions levels. The
general requirement is that one must acquire organisms with
random genetic backgrounds that are essentially stable as the
expression levels and other potential traits are measured. The
computational approach and statistical principles underlying
the method remain the same for all of these data types.

Conclusion

The Trigger algorithm allows one to infer transcriptional reg-
ulatory relationships among genes at the genome-wide level,
based on experiments in which large-scale genotyping and
expression profiling are performed among individuals with
randomized genetic backgrounds. Moreover, the algorithm
can be applied to any high-throughput phenotypic data in
which genotypes or some other static regulatory mechanism
has been randomized. Trigger works by identifying pairs of
genes with expression levels both affected by a common ran-
domized genotype and then testing for three key properties
that we have mathematically demonstrated to be equivalent
to a directed causal relationship among the pair of gene
expression traits.

We applied Trigger to an experiment in yeast in which 112
independent recombinant segregants were subjected to
genome-wide expression monitoring. The Trigger algorithm
produced a regulatory probability matrix from this experi-
ment that has been made available (Additional data file 2).
This matrix can be used to build networks by a variety of
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TRIGGER significance rank
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Figure 5

A comparison of Trigger with correlation and model selection for inferring
existence causal relationship with CNS/. (a) Significance ranking according
to Trigger versus the ranking according to correlation. Although this plot
is not calculated conditional on linkage to the CNS/ locus, the plot
conditional on linkage yields an equivalent qualitative conclusion. (b)
Significance ranking according to Trigger versus the ranking according to
model selection. For CNS/ and each gene, AIC was employed to selection
among models capturing causality (M1), an inconclusive relationship (M2),
linkage only (M3), and independence (M4). The x-axis is broken up into
models M| to M4; within each model type the genes were ranked
according to their AIC score. For both correlation and model selection, it
can be seen that there is not a strong relationship with Trigger in terms of
the ranking, although a ranking in both is clearly necessary for a high
Trigger probability. Note that many Trigger probabilities are zero, so the
ranking does not extend all of the way to 6,216.
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techniques in which the noise level of any resulting network is
easily assessed by the FDR. Our analysis of the results indi-
cates that the proposed algorithm produces rich and
biologically coherent information, mainly through a GO anal-
ysis of four putative regulators (CNS1, ILV6, SAL1, and
NAMo9).

Some caveats and limitations of the proposed approach are
apparent. First, for any gene to be identified in a causal rela-
tionship, it must be linked to some locus. This is because the
expression levels must be subjected to randomization based
on the randomization of the genotypes. Therefore, this
approach will not find all causal relationships. Second, a com-
prehensive genetic network requires additional measure-
ments beyond transcriptional levels. Although it is
straightforward to include all quantitative information in
Trigger, such as transcription, protein, metabolite, and phe-
notype levels, it is not clear how to include important qualita-
tive information, such as known protein interactions or
transcription factor binding sites. The Trigger approach
would have to be extended or combined with an existing
approach to incorporate such data types.

The approach we have proposed is an early step toward mov-
ing beyond correlation and model selection based analyses of
high-throughput molecular profiling data. Trigger offers a
rigorous approach to inferring causality, based on the highly
successful concept of randomized experiments, which has
played a key role in science and medicine since its inception.
This work also contributes to a better understanding of the
ways in which multiple high-throughput data types can be
combined to produce more informative estimates of the
highly complex molecular networks underlying organisms.

Materials and methods

Expression measurements and genotyping

The expression and genotype data were recently reported
elsewhere [12,33]. In that work, 112 segregants (one from
each tetrad) were grown from a cross involving parental
strains BY4716 (isogenic to the laboratory strain S288C) and
the wild isolate RM11-1a. RNA was isolated and ¢cDNA was
hybridized to microarrays in the presence of the same BY ref-
erence material. Each array assayed 6216 yeast open reading
frames. GeneChip Yeast Genome S98 microarrays were pur-
chased from Affymetrix (Santa Clara, CA, USA). Genotyping
was performed using GeneChip Yeast Genome S98 microar-
rays (Affymetrix) on all 112 F, segregants. The resulting
genetic map of 3,312 markers covered more than 99% of the
genome.

Assumptions regarding random genotypes

We simply point out here that the main assumption regarding
random genotypes is that the L; are random variables occur-
ring before and independently from the subsequently meas-
ured expression values. We also assume that the alleles
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inherited by different individuals at a fixed locus occurs inde-
pendently; in other words, we assume that the crosses have
been carried out independently. (If related segregants or off-
spring are collected, then Trigger can be adjusted to account
for this.) However, we do not assume that the inheritance at
several loci on a given chromosome occurs independently,
and we make no other assumptions about independence of
inheritance among loci. Segregation distortion, selection, and
other traditionally problematic issues arising when perform-
ing genetic crosses for the purpose of genetic mapping do not
invalidate Trigger.

As in all genetic crosses, the more independent the inherit-
ance of the loci is, the more information there is in the exper-
iment. For example, suppose thatloci L;and L, are dependent
(for instance, they are located on the same chromosome, or
their segregation is dependent because of selection). Suppose
also that I; — T; — Tjand L — T;, but it is not the case that L;,
— T;. Because L;and L are dependent, it will not be the case
that L; L T;| T}, as not all linkage information for 7jis captured
by T; Specifically, L; contains some information about L,
because of their dependence, so T; | T;is not independent
from L;. This is an example of how dependence of inheritance
of different loci can reduce the power of Trigger. However,
Trigger does not produce false positives because of this, so it
is robust to linkage among loci on the same chromosome or
other forms of dependence among loci.

Proof of causality equivalence theorem

The proof of the theorem follows from well-established theory
in graphical and causal modeling [35,61,63]. Several basic
assumptions are typically made in causal modeling to avoid
nonsensical situations. The 'causal Markov assumption’'
states that in a causal model, each variable is independent of
all of its non-descendants given information about all of its
direct causes. The 'faithfulness assumption' states that any
conditional independence relationships in the population
exist in the presence of the causal Markov assumption. Under
the faithfulness assumption, conditional independence of two
variables implies there is no direct edge between the two. Our
proof also relies on the known result that if a hidden variable
is causal for both X and Y, then the directed graph associated
with X and Y can be represented by X — Y [63].

We first show that if L — T; — T;with no hidden variables
causal for both T;and T, then L - T;, L - Tj,and L L T;| T;.
Under these assumptions, the first two properties (L — T;and
L — T;) are trivially true. Because there are no hidden varia-
bles involved, T;is the only direct cause of T, and L is a non-
descendant of Tj, it follows by the causal Markov assumption
that the third property (L L T;| T;) holds.

We now show the more important direction of this equiva-
lence: if L - T;, L > T;,and L L T;| T}, then L — T;— T;and
there are no hidden variables causal for both T;and T;. The
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third property (L L T;| T;) implies that there is no direct edge
between L and T;by the faithfulness assumption.

Let us first consider the case when there are no hidden varia-
bles causal for both T;and T}, so that the only variables
involved in this causal graph are L, T}, and T;. Because of the
second property (L — T}), and there is no direct edge between
L and Tj, it must follow that there is a direct edge between T;
and T;. Otherwise, T;is completely independent of L, which
violates the second property. Thus, L — T;- T}, where an edge
without arrowheads implies dependence. If any two variables
are dependent, then one is a cause of the other or there must
be a third variable causal for both [63]. Thus, either T;is
causal for T;, or ]}is causal for T, or both cases are true. L can-
not be the common direct cause for both T;and T, because no
direct edge exists between L and T;. If L is an indirect cause of
T;, then T;as the only other variable in the graph must be a
direct cause of T}, implying that T;— T;. If T;— T;and the first
property (L — T) holds, then it cannot be the case that the
third property (L L T;| T) holds. Thus, T}is not causal for T;
but it is true that T; — T}, implying that L — T; > T;.

Now consider the second case in which there might be causal
hidden variables in the graph. Because L is an independently
randomized, static variable, there cannot be any hidden vari-
ables causal for both L and T;or both L and T;. The only pos-
sible existence of hidden causal variable in this graph is one
affecting both T;and T;. However, if there is a common hidden
cause for T;and Tj, then T; — T;[63]. If this is true, then T;| T;
is dependent with L, contradicting the third property (L T; |
T)). Therefore, L — T;— T;with no hidden variables affecting
either of the two.

Note that it can be shown that the second and third properties
(L — T;and L L T;| T;, respectively) imply the first property (L
— T;). However, we have designed Trigger to test for all three
properties because conditioning on the first property
increases the power to detect the state of the second and third
properties.

Estimation of regulatory probabilities

The following method was developed to estimate the regula-
tory probabilities. Recall that by the causality equivalence
theorem:

=Pr(L;— T) x Pr(L;> T;| L;> T)
x Pr(L; L T;| T;| Li— T;and L;— T))

To compute the joint posterior probability, the probabilities
on the right hand side of the equation are estimated from left
to right in that respective order. The basic algorithm works as
follows (with specific details following) (Note that further
details about steps 1to 6 can be found in Additional data file 1.)
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Step |
Transform the expression data for each gene to follow a Nor-
mal distribution with mean 0 and variance 1.

Step 2

Fof each transcript, T; (i = 1, 2, ..., m), test the null hypothesis
of no cis linkage to L;versus the alternative hypothesis of cis
linkage to L, by performing a standard likelihood ratio test to
obtain observed statistics X; (i = 1, 2, ..., m). Permute the
expression data B times and perform the test on the permuted

data to obtain null statistics X iOb (b =1, 2, .., B). This is
equivalent to testing L; — T;.

Step 3

FoiJ each pair (L;, T;) from step 2, carry out the following. For
all other transeripts T; (j # i), test the null hypothesis of no
linkage to L;versus the alternative hypothesis of linkage to L;
under the assumption that L; — T;. Similarly to above, apply a
standard likelihood ratio test to obtain observed statistics Yj;.

Permute the expression data B times under the assumption
that L; - T;, and perform the test on the permuted data to

obtain null statistics Yi](-’b (b=1,2,..,B).

Step 4

Fof each triplet (L;, T}, T)), carry out the following. Estimate
the conditional distribution of T} | T;, which is tractable under
the Normal transformation. Test the null hypothesis of inde-
pendence between L;and T; | T; versus the alternative hypo-
thesis of dependence between L;and T; | T;. Again, apply a
standard likelihood ratio test to obtain observed statistics Z;
for this test. Permute the expression data B times under the
assumption that L;— T;and L;— T}, and perform the test on

the permuted data to obtain null statistics Z gb b=1,2,..,
B).

Step 5

For each test from steps 2 to 4, the set of observed statistics
and null statistics can be used to estimate the probability that
the hypothesis of interest is true, based on previous method-
ology [17,26,64]. For example, the observed statistics X; (i =1,

2, ..., m) and null statistics leb (i=1,2,...,m;b=1,2,..,B)
from step 2 can be used to form an empirical Bayes estimate
of Pr(L; > T;), which is equivalent to an estimate of the
probability that the alternative hypothesis is true for each i =
1, 2, ..., m. The statistics from step 3 are used to estimate Pr(L;
— T;| Li— T;), and the statistics from step 4 are used to esti-
mate Pr(L; L T;| T;| L;— T;and L;— T)).

Step 6
Multiply the three estimated probabilities together to get an
estimate of Py= Pr(L;—> T;—> Tj), where:
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Py =Pr(L; — T)xPr(L; = T; | Ly = T)xPr(L; » T; | T;| L; - T; and L; - T})

False discovery rate estimation

A significance threshold can be applied to the probabilities for
either the entire regulatory probability matrix or for a specific
putative regulator. For the entire probability matrix, this

would entail applying a threshold A to the 131] , where we call

L;— T;— T;significant if and only if Isi- > \. For a given puta-
tive regulator, the exact same thresholding would take place,

except only the f’u for a fixed putative regulator, gene i,

would be considered. The estimate of the FDR corresponding
to A, FDR(}), is as follows:

%, -Py(Py=1)
#{Pyj=A}

FDR(1) =

A

Where 1( ﬁi~ >))is1or 0 according to whether P

i 2 A or not,

respectively, and # {ﬁi- > A} is the total number of ﬁy >
[17,65]. Further details and justification can be found in Addi-
tional data file 1.
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FDR, false discovery rate; GO, Gene Ontology; Hsp, heat
shock protein; QTL, quantitative trait locus; Trigger, Tran-
scriptional Regulation Inference from Genetics of Gene
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