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A report on the 14th Annual International Conference on
Intelligent Systems for Molecular Biology (ISMB), Fortaleza,
Brazil, 6-10 August 2006.

The 900 or so participants at the Annual International

Conference on Intelligent Systems for Molecular Biology last

August were treated to talks on topics ranging from

sequence analysis, structural bioinformatics, and

comparative genomics through to proteomics and systems

biology. It was evident that interest in RNA, especially non-

coding RNA (ncRNA), is growing, with quite a few talks on

locating and predicting the structure of small (and not so

small) ncRNAs. As well as such relatively new topics, the

classic problem of discovering sequence motifs and

assessing their significance seems to be re-emerging,

especially in the context of new applications. As the

biological problems scientists aim to address become more

complex, the mathematical principles and computational

tools being developed to solve them must become more

sophisticated. The conference showed that not only are

computer science and mathematics being applied to solving

key problems in molecular biology, but these problems are

inspiring the development of new computer science, and, to

a certain degree, new mathematics.

Sequences and statistics
Sequence analysis was still the theme running through

most talks. Its application outside DNA and proteins was

illustrated by Kiyoko Aoki-Kinoshita (Kyoto University,

Japan), who described motif discovery in carbohydrate

sugar chains (glycans), the third major class of

macromolecules. Starting from a single monosaccharide,

many glycans have a tree-like structure consisting of

branching chains with various combinations of

monosaccharides. Aoki-Kinoshita described a profile

Markov model using a probabilistic sibling-dependent tree

(PST) that aims to recognize glycan motifs, which are

basically paths on their tree representation. The model has

been tested successfully on both synthetic glycans and

glycan data from the KEGG GLYCAN database, accessed

from [http://www.genome.jp/kegg/glycan].

Eugene Fratkin (Stanford University, Palo Alto, USA)

described a combinatorial technique for finding motifs.

Combinatorial techniques, unlike commonly used machine

learning techniques, are based on a branch of mathematics

called combinatorics (graph theory is part of

combinatorics). The method, appropriately named

MotifCut, can be accessed at

[http://motifcut.stanford.edu] and is a graph-theoretical

approach to the problem which, through an optimization

method called convex optimization, can be solved in

polynomial time. The main idea of MotifCut is to build a

graph in which the vertices represent all sequences of a

given length (k-mers) in the input sequences and the edges

represent the degree of sequence similarity. In this graph, a

motif is defined as the maximum density subgraph; that is,

a set of k-mers that have the most highly weighted edges

between each pair. The dense subgraph is computed by

iterative application of the classic min-cut algorithm

(hence the name MotifCut) of Gallo and colleagues (1989).

Uri Keich (Cornell University, Ithaca, USA) introduced a

new optimization function to improve the ability of the

Gibbs sampling algorithm to discover motifs, especially

weak motifs. Keich showed that relying on entropy scores

and their E-values when finding weak motifs by Gibbs

sampling can lead to undesirable results. As an alternative,

he suggested using the incomplete likelihood ratio as a

scoring function, which performs much better on the

famed ‘implanted motif’ problem. The implanted motif

finding problem is an artificial problem in which a motif of

a given length (say 17 nucleotides) is randomly implanted

in a number of genome sequences (say five); each

implantation differs from others in at most a fixed number

of locations (for example, three). Knowing the length of the

motif, and the differences between the occurrences of the

motif, a motif finder is supposed to find the motif exactly.



The problem of counting the occurrences of a position

weight matrix in a DNA sequence has applications in cis-

regulatory analysis. Saurabh Sinha (University of Illinois,

Urbana-Champaign, USA) described a probabilistic scoring

method to solve this problem in a statistically sound

framework. He also described a local search technique to

solve the discriminative motif-finding problem; that is, how

to find position weight matrices that have high counts in one

set of sequences and low counts in another set.

Also addressing fundamental statistical questions in bio-

informatics, Karsten Borgwardt (University of Munich,

Germany) introduced a test for determining whether two

sets of biological observations have been generated by the

same probability distribution. This involves a ‘kernel’-based

statistical test, which compares the maximum discrepancy

between the means of a set of functions. A discrepancy

between the means of any member of a kernel-function class

in the two observations implies a difference in the distribu-

tions that must have generated them. The test has been

applied to various tasks, such as microarray data compari-

son, cancer diagnosis and classification of protein function.

One very important and timely problem in sequence analysis

was discussed by Tien-Ho Lin (Carnegie Mellon University,

Pittsburgh, USA) - the identification of victims in a mass

disaster using DNA fingerprints. In such a situation,

hundreds of samples are taken from remains that must be

matched to the pedigrees of the victims’ surviving relatives,

and the DNA is also degraded by heat and exposure. Lin

described a very interesting probabilistic framework for

clustering samples while eliminating implausible sample-

pedigree pairings. This framework handles both degraded

samples (missing values) and experimental errors in

producing and/or reading a genotype.

Lutz Krause (Bielefeld University, Bielefeld, Germany)

described the application of the powerful pyrosequencing-

based technology (developed by the company 454 Life

Sciences and now marketed by Roche Diagnostics) to

explore the genomes of organisms that are difficult to

culture by conventional means, and which can be studied

only through DNA extracted directly from environmental

sources. Krause described the development of a new gene-

finding algorithm that aims to address the problems in

identifying genes from this DNA, namely the short lengths of

the contigs and the existence of in-frame stop codons and

frameshifts, which arise due to poor sequence quality in

DNA extracted from environmental sources.

Exploring gene expression
A popular theme in the contributions on transcriptomics was

novel motif-discovery and modeling algorithms for transcrip-

tion factor binding sites. Barret Foat (Columbia University,

New York, USA) described a new algorithm, MatrixREDUCE,

to model transcription factor binding sites. MatrixREDUCE

can be found at [http://bussemaker.bio.columbia.edu/

software/MatrixREDUCE]. The algorithm uses genome-wide

occupancy data for a transcription factor and the associated

nucleotide sequences to discover the sequence-specific

binding affinity of the factor.

Yong Lu (Carnegie Mellon University, Pittsburgh, USA)

described the identification of cycling (self-regulatory) genes

from gene-expression data. The idea is to combine

microarray data from multiple species with sequence

information in a graph-theoretical framework in which each

gene is represented by a node and each edge represents

sequence similarity. Starting from the measured expression

values for each species, a ‘belief propagation’ machine

learning approach is used to determine a posterior score,

indicating expression, for genes, which is then used to

determine a new set of cycling genes from each species.

Gene-expression profiling is commonly used as a tool for

identifying genes that are important for the development

and maintenance of different cell types. Yuan Qi

(Massachusetts Institute of Technology, Cambridge, USA)

described work aimed at detecting relevant genes from a

large set of expression profiles via a novel Bayesian, ‘semi-

supervised’ clustering method called BGEN. This new

method trains a kernel classifier based on labeled and

unlabeled gene-expression examples. The semi-supervised

trained classifier can then be used to efficiently classify the

remaining genes in the dataset.

RNA bioinformatics and structural informatics
The importance of ncRNAs was recognized in 2006 by the

award of the Nobel prize for Physiology or Medicine for work

on RNA interference (RNAi), and interest in ncRNAs was clear

in the number and quality of talks on this topic at the meeting.

One theme was the detection of potential ncRNAs in genome

sequences. Shaujie Zhang (University of California, San Diego,

USA) introduced a framework for constructing and comparing

sequence-based ncRNA filters. The use of this framework gives

rise to a new formulation of the covariance model, which, in

turn, speeds up the alignment of the potential RNA sequence

with the model and thus gives a much faster ncRNA filter than

the available alternatives. Unlike short interfering RNAs

(siRNAs) and micro RNAs (miRNAs), there are no current

effective computational and experimental screening methods

for the class of ncRNAs known as small modulatory RNAs

(smRNAs). These are a novel class of small (approximately 20

base pair) RNAs that are double-stranded, exist in the cell

nucleus, and do not code for proteins. Despite their very small

size, smRNAs perform a major role in the differentiation of

neural stem cells to neurons. There are currently no screening

methods for them. Neil Jones (University of California, San

Diego, USA) addressed this question and described a graph-

theoretical discovery method  for long and highly similar motifs
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through a comparative genomics approach that does not

require an alignment of orthologous upstream regions (which

do not align well); which can be accessed  at

[http://www.cse.ucsd.edu/groups/bioinformatics].

At present, RNA structure prediction is based on thermo-

dynamic models. Chuong Do (Stanford University, Palo

Alto, USA) described a computational alternative to these

models that derives RNA-folding parameters through

statistical learning tools. The computational tool

developed, called Contrafold and accessible at

[http://contra.stanford.edu/contrafold/], is based on

conditional log-linear models, a class of probabilistic

models that generalize stochastic context-free grammars.

By providing a means of distinguishing RNA stems of

different lengths, Contrafold can predict the secondary

structure of treacherous RNA sequences, such as 5S rRNA,

much more accurately than the thermodynamic models.

Structural-similarity searching among small molecules is a

standard tool in molecular classification and in silico drug

discovery, and public databases of such information are now

being developed. I described our team’s work on a novel

k-nearest-neighbor search method for structural similarity

and classification of small molecules, represented by arrays of

chemical descriptors. This is aimed at finding the best

methods to separate molecules that exhibit a given activity

from those that do not. We have shown how to compute a

weighted Minkowski distance, which aims to show how

similar the molecules are in terms of the bioactivity in

question, on the descriptor arrays for the best separation

through a linear programming formulation. I also described a

data structure that exploits all available memory to search for

all similar small molecules to a query molecule through a

distance-based approach.

Visualizing systems biology
A common theme in contributions on systems biology was

the integration of various data sources for visualizing,

inferring the topologies of, or understanding the dynamics

of networks and subnetworks. Using genotype information,

gene expression, protein-protein interaction, protein phos-

phorylation and transcription-factor-binding information,

Zhidong Tu (University of Southern California, Los

Angeles, USA) described ways of showing which genes

control the expression levels of a specific gene. He

described a stochastic algorithm that infers the causal

genes and identifies significant pathways on the expression

network where each node is either a protein or a

transcription factor.

Yanay Ofran (Columbia University, New York, USA) intro-

duced a new platform for integrating molecular data and

insights about the qualities of individual proteins in a

network visualizer, which goes beyond the traditional

topology-oriented presentation. The platform generates

networks on the macro systems level and analyzes the

molecular characteristics of each protein on the micro level at

the same time. It also annotates the function and subcellular

localization of each protein and displays the process on an

image of a cell. Adrien Faure (Institut de Biologie du

Developpement de Narseille-Luminy, France) aims to

understand the dynamics of a regulatory network by treating it

as a Boolean logic circuit that can work synchronously or

asynchronously. The idea makes a lot of sense, as most of the

available data on regulation are qualitative. Faure showed how

this general approach can be applied to test some of the

dynamical properties of the mammalian cell.

Cells need to adapt the activity levels of metabolic functions

to changes in the environment. Jose Nacher (Kyoto

University, Kyoto, Japan) explored the connections between

the gene-expression response to external changes and the

induction or repression of specific metabolic functions. His

team has analyzed the transcriptional response of

Saccharomyces cerevisiae to different stress conditions or

stress signals. These signal-induced expression data are then

integrated with structural data about the yeast network and

the topological properties of the induced or repressed

subnetworks are analyzed. These subnetworks turn out to be

quite different from random networks; for example, their

degree of distribution, the number of vertices with a specific

number of neighbors, seems to have a heavy tail, indicating

few nodes with many neighbors.

Mustafa Kirac (Case Western Reserve University, Cleveland,

USA) addressed the question of automatic assignment of

Gene Ontology (GO) annotations to partially annotated

proteins through a data mining approach. The most accurate

protein annotations are currently provided by curators, but

the possibility of automatically assigning annotations

through mining of protein-protein interaction networks is

appealing. Kirac showed how to compute the probabilistic

relationships between GO annotations of proteins and assign

highly correlated GO terms of annotated proteins to non-

annotated proteins in the target set to achieve a prediction

accuracy of up to 81%.

The meeting showed how much bioinformatics has matured

in the past few years. The computational tools for what can

now be considered as ‘classic’ bioinformatics problems, such

as motif discovery and RNA structure prediction, now have

much more solid foundations. The need for depth in

developing both mathematical models and algorithm tools is

very evident for these problems, and their application is also

being broadened. As many of the talks, especially in systems

biology, showed, new problems are emerging very rapidly,

requiring development of new computational tools that need

to integrate various types of data. These are all signs that

bioinformatics is maturing into an independent scientific

field with considerable depth and breadth.
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