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Background
There are three fundamental approaches to automated

construction of exon-intron structure for protein-coding

genes: native alignment – alignment of expressed sequences

(including high quality cDNA sequences, expressed

sequence tags (ESTs), and protein sequences) to the loci

from which they were transcribed; trans alignment – non-

native alignment of expressed sequences to loci that could

potentially express similar sequences (can be within or

between species); and de novo – prediction using the

sequences of one or more genomes as the only inputs (no

expressed sequences).

Native alignments of full insert, high quality cDNA

sequences are the unquestioned gold standard in high-

throughput annotation. However, even a concerted, high-
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Abstract

Background: This paper describes Pairagon+N-SCAN_EST, a gene annotation pipeline that uses
only native alignments. For each expressed sequence it chooses the best genomic alignment.
Systems like ENSEMBL and ExoGean rely on trans alignments, in which expressed sequences are
aligned to the genomic loci of putative homologs. Trans alignments contain a high proportion of
mismatches, gaps, and/or apparently unspliceable introns, compared to alignments of cDNA
sequences to their native loci. The Pairagon+N-SCAN_EST pipeline’s first stage is Pairagon, a
cDNA-to-genome alignment program based on a PairHMM probability model. This model relies
on prior knowledge, such as the fact that introns must begin with GT, GC, or AT and end with
AG or AC. It produces very precise alignments of high quality cDNA sequences. In the genomic
regions between Pairagon’s cDNA alignments, the pipeline combines EST alignments with de
novo gene prediction by using N-SCAN_EST. N-SCAN_EST is based on a generalized HMM
probability model augmented with a phylogenetic conservation model and EST alignments. It can
predict complete transcripts by extending or merging EST alignments, but it can also predict
genes in regions without EST alignments. Because they are based on probability models, both
Pairagon and N-SCAN_EST can be trained automatically for new genomes and data sets.

Results: On the ENCODE regions of the human genome, Pairagon+N-SCAN_EST was as
accurate as any other system tested in the EGASP assessment, including ENSEMBL and ExoGean.

Conclusions: With sufficient mRNA/EST evidence, genome annotation without trans alignments
can compete successfully with systems like ENSEMBL and ExoGean, which use trans alignments.
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budget effort to sequence cDNA libraries produces a full-

open reading frame (ORF) sequence for only about 50% to

60% of loci in a mammalian genome [1]. Thus, trans

alignments have played a key role in producing the most

trusted genome predictions, including the ENSEMBL

predictions (sometimes termed ‘evidence based’) that have

been used in the first published analyses of many new

genome sequences. Nonetheless, the evidence they provide

for expression is circumstantial rather than direct – for

example, the annotated genomic locus may represent a

pseudogene derived from the true genomic source of the

expressed sequence. Even when a trans alignment identifies

a functional homologous gene locus, the alignments tend to

be inaccurate in their details unless the expressed sequence

is highly similar to the genomic sequence [2, 3].

De novo predictions have always been viewed with some

suspicion. This suspicion derives in part from the tendency

of gene predictors developed in the 1990s to predict far too

many false positive genes and exons. It may also result, in

part, from the fact that one cannot point to the evidence

supporting de novo predictions – a large ensemble of

individually weak statistical patterns – the way one can

point to a single expressed sequence. Nonetheless, statistical

evidence is biological evidence, with a track record extending

back to Gregor Mendel.

If de novo prediction were indeed inaccurate, relying heavily

on trans alignments would make sense when analyzing a

genome for which few EST or cDNA sequences are available.

However, the rapidly increasing accuracy of de novo

prediction and the large number of very high quality cDNA

sequences available for human suggest the possibility that

high quality annotations might be produced without using

trans alignments. A system that does not use trans

alignments might be more accurate than one that does, since

all alignments would have near 100% identity. Even if its

accuracy were merely equal to that of a system using trans

alignments, the evidence supporting each prediction might

be considered more direct.

To build an annotation pipeline without trans alignment, we

combined a number of tools that have been recently

developed in our lab. These tools include Pairagon, a cDNA-

to-genome aligner, N-SCAN_EST [4], a multi-genome gene

predictor capable of taking guidance from EST alignments,

and PPFINDER [5], a program for eliminating pseudogenes

from sets of predicted protein-coding genes.

Pairagon uses a PairHMM to produce native cDNA
alignments
To produce the best possible alignments of high quality

cDNA sequences, we used Pairagon, a cDNA-to-genome

aligner that is based on a pairHMM probability model [6]. A

pairHMM is a hidden Markov model (HMM) whose states

emit alignment columns. In our case, the columns contain

either a match between the two sequences, a mismatch, an

insertion in the genome, a deletion in the genome, or an

intron base in the genome (Figure 1). The particular

pairHMM model we developed is ‘strong’, in the sense that it

enforces prior biological and statistical knowledge rather

than letting the data at hand dictate the alignment even

when it is at odds with prior knowledge. In particular, our

model only produces introns with plausible splice site

sequences: GT-AG, GC-AG, AT-AC (AT-AG and other

extremely rare U12 intron types [7] are not currently

allowed). Furthermore, the probabilities of introns, matches,

mismatches, genome insertions, and genome deletions are

estimated from alignments of high quality cDNA sequences

produced by BLAT [8] and the relative probabilities of the

three intron types are derived from prior knowledge.

In order to make Pairagon run faster, we ran ungapped

BLASTN as a preprocessing step and used the long

alignments it produced to seed exon alignments (Figure 2,

left side). For more details on Pairagon and its heuristics, see

Materials and methods.

Our strategy was to use alignments of expressed sequences

directly only when very high quality sequences were

available. Thus, we applied Pairagon only to full ORF

Mammalian Gene Collection (MGC) sequences [1, 9, 10] and

human RefSeq mRNAs [11].
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Figure 1
PairHMM state diagrams of Pairagon. (a) Alignment model and (b) Null
model. RG1 and RG2 are unaligned genomic sequences in the 5’ and 3’
ends, respectively; RC1 and RC2 are unaligned cDNA sequences in the 5’
and 3’ ends, respectively; A, aligned; Entry corresponds to the first two
bases of an intron; Exit corresponds to the last two bases of an intron; 
G, genomic insertion; C, cDNA insertion; RG and RC are random
genomic and cDNA sequences, respectively. States that can start an
alignment are marked with an asterisk and states that can end an
alignment are marked with a dagger.

RG1
*

A
*†

G

C

RG2
†

RC1
*

RC2
†

Entry Exit

Intron

RG
*†

RC
*†

(a) (b)



N-SCAN_EST threads complete gene structures
through EST alignments
In the genomic regions between Pairagon’s cDNA align-

ments, we combined EST alignments with de novo gene

prediction by using N-SCAN_EST [4]. N-SCAN_EST is

based on N-SCAN [12, 13], a multi-genome de novo gene

predictor, which was the most accurate de novo predictor in

the EGASP assessment [14] by every measure except

nucleotide sensitivity. (De novo includes both the ‘ab initio’

and ‘multi-genome’ assessment categories.) N-SCAN_EST is

a version of N-SCAN that takes guidance from EST align-

ments. Specifically, it takes as input a representation of EST

alignments that we call ESTseq, by analogy to the ‘conser-

vation sequence’ used in TWINSCAN (a three-character

alphabet representing genome sequence conservation

between two species) [15, 16]. N-SCAN_EST takes guidance

from EST alignments, but it does not follow them blindly.

Instead, it also considers the DNA sequence of the target

genome and the evolutionary conservation information

provided by alignments of the target genome with the

genomes of other organisms. It predicts complete transcripts

by extending or merging EST alignments or by building gene

structures in which some exon regions are supported by EST

evidence while others are not. We have shown elsewhere

that this approach increases sensitivity and specificity not

only for the genes that have EST support, but even for those

that do not [4].

Pairagon+N-SCAN_EST annotates genomes without
using trans alignment
To apply N-SCAN_EST, we downloaded human ESTs from

dbEST and aligned them to the human genome using BLAT

[8] (Figure 2, right side). We also downloaded alignments of

the human, mouse, rat, and chicken genomes produced by

MULTIZ [17] from the University of California Sant Cruz

(UCSC) genome browser. These EST and genomic

alignments were input to N-SCAN_EST. N-SCAN_EST was

run on human genomic sequence that had been masked with

PPFINDER, our processed pseudogene masker [5]. After the

final round of N-SCAN_EST, all predicted transcripts that

overlapped Pairagon alignments were removed. The

remaining transcripts (one per locus) were combined with

the Pairagon alignments to produce the final gene set.

In the remainder of this paper we present accuracy statistics

for both the EGASP version of the pipeline and an updated

version and analyze the relative contributions of Pairagon

versus N-SCAN_EST. We then examine a series of examples

where our pipeline gave a revealing result, whether correct

or incorrect. Finally, we draw some lessons about how the

pipeline could be improved in the future.

Results and discussion
RefSeq and MGC cDNA sequences mapped to the ENCODE

regions were downloaded from the UCSC Genome Browser

and alignments were generated using the Stepping Stone

implementation of Pairagon v0.5 as described in Materials

and methods. GenBank’s coding sequence (CDS) anno-

tations of these cDNA sequences were used to produce 451

aligned transcripts annotated with GenBank ORFs (141 from

MGC sequences and 310 from RefSeq sequences). Merging

identical gene structures and removing inconsistent

structures (for example, gap in the coding region leading to a

frame shift in the genome) yielded 413 unique gene

structures. N-SCAN_EST predictions were generated as

described in Materials and methods. The 94 N-SCAN_EST

predictions that did not overlap the 413 Pairagon gene

structures were added to the gene set. We obtained seven

gene structures by aligning sequences from our RT-PCR

experiments. Two of these did not overlap the existing set

and were included in our submission to the ‘any evidence’

category. We do not discuss this set in detail because it is

almost identical to the submission to the ‘mRNA/EST

evidence’ category. The accuracy statistics for this set can be

found in the EGASP assessment report [14].

The official assessment of Pairagon+N-SCAN_EST
shows high accuracy
Table 1 compares the coding region prediction accuracy

measures of three submissions to the EGASP ‘mRNA/EST
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Figure 2
Block diagram of the Pairagon+N-SCAN_EST pipeline. The bold arrows
mark the section of the flowchart corresponding to N-SCAN gene
prediction.
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evidence’ category at the gene, transcript, exon and

nucleotide levels. Pairagon+N-SCAN_EST (Pairagon+N) is

optimized for high accuracy in predicting exact exons and

transcripts, so we will focus our analysis on those columns of

Table 1. By both measures, ExoGean is the most sensitive of

the three programs and Pairagon+N is the most specific;

ENSEMBL is intermediate except in exact exon specificity,

where it falls below the other two. None of the programs

completely dominates any other, although one might argue

that Pairagon+N has a slight edge, since the margin by

which its specificity exceeds that of the second best program

is substantially larger than the margin by which its

sensitivity falls below the others. In absolute numbers, our

pipeline identifies almost the same number of correct

Gencode transcript structures as ENSEMBL (255 versus

258, respectively), and 21 fewer than ExoGean, but we have

many fewer incorrect transcripts (149 versus 205 from

ENSEMBL and 237 from ExoGean). Their gene accuracy

measures are slightly better than ours because ENSEMBL

and ExoGean predict more transcripts per gene locus on

average. Predicting more transcripts at a locus increases the

chance that at least one of them is correct, yielding a true

positive by the gene measure, while no penalty in false

positives is incurred for the additional incorrect transcripts.

This is arguably a flaw in the gene level measure when

applied to systems that can predict more than one transcript

per locus.

Pairagon’s cDNA alignments are highly accurate
The individual accuracies of Pairagon and N-SCAN_EST

gene structures in the submission are given in Table 2.

Pairagon’s nucleotide and exon specificities are 98.8% and

96.1%, respectively. Pairagon is also very accurate in

identifying splice sites – we estimated that 98.3% of the

introns that Pairagon identified have supporting evidence in

the Gencode reference genes. When there is high quality

mRNA evidence, more than three-fourths of transcript

structures predicted by Pairagon are correct.

Identifying the correct splice boundaries is the crucial step in

cDNA-to-genome alignment, and here Pairagon proves to be

extremely accurate. Out of the 1,834 introns Pairagon

predicted (both within and outside coding regions), only 22

introns from 15 transcript structures were not supported by

HAVANA annotation. Three of them (from a single

transcript) matched the introns of a Gencode gene labeled

‘putative’ and eight of them were a result of using incorrect

seed exons from BLASTN (discussed in detail below). The

remaining 11 were from Refseq cDNAs that have no evidence

in HAVANA annotation. Two of the eleven aligned to the

reference genome with numerous mismatches.

There are 22 unique GC-AG introns in the protein coding

part of the HAVANA annotation. Pairagon correctly

identifies 12 of these. The remaining 10 are missed because

they did not have supporting Refseq or MGC cDNA

sequence. When other systems prefer a GT dinucleotide,

especially if it occurs close to the actual GC donor site,

Pairagon gets the GC splice boundaries correct. Figure 3

shows one such example where ENSEMBL, Augustus and

ExonHunter choose an incorrect GT donor site that is four

nucleotides downstream of the correct GC donor, which

Pairagon chooses. There are two unique AT-AC splice sites

in the annotation and Pairagon correctly identifies both of

them. Among the methods that use mRNA/EST evidence,

AceView identifies the two introns and ENSEMBL identifies

one of them. There are also two AT-AG introns with one

supporting Gencode annotation each, and only AceView

predicts them. Pairagon’s splice boundary model prevents it

from identifying these introns.

In the Stepping Stone implementation of Pairagon, the

accuracy of the final alignment depends on how well the seed

exons are mapped in the genome (see Materials and

methods and Figure 4 for details). Figure 5 shows an

example where the first 112 bases (forming an exon) of the

cDNA can be mapped to either of two tandem duplicates that

are identical in those 112 bases. Because we chose to use

BLASTN parameter topComboN=1, which does not return

alignments of a query segment to more than one location in

the genome, BLASTN aligned the exon arbitrarily to the

locus farther from the rest of the alignment. As a result,

Pairagon placed the exon in the same general region, while

the annotation maps it to the nearer locus. One possible way

to address this problem would be to follow Zhang and Gish

[18], who report using topComboN=4 to generate multiple
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Table 1

Prediction accuracy measures of mRNA/EST evidence based gene prediction methods

Name NSn NSp ESn ESp ExT TSn TSp TrG GSn GSp

Pairagon + N-SCAN_EST 87.6 92.8 76.6 89.0 7.2 39.3 60.6 1.3 69.6 61.7

ENSEMBL 90.2 92.0 77.5 82.7 7.8 39.8 54.6 1.5 71.6 67.3

ExoGean 84.2 94.3 79.3 83.5 9.8 42.5 52.4 2.3 63.2 80.8

The highest value for each measure is in bold. The columns are Nucleotide sensitivity (NSn) and specificity (NSp), Exon sensitivity (ESn) and specificity
(ESp), Exons per transcript (ExT), Transcript sensitivity (TSn) and specificity (TSp), Transcripts per gene (TrG), and Gene sensitivity (GSn) and specificity
(GSp).



combinations of high-scoring segment pairs (HSPs) as seed

alignments for their cDNA-to-genome alignment program,

EXALIN. We can then superimpose the search subspaces

obtained from the possible HSP combinations. Using this

approach, Pairagon would choose the correct alignment for

the example in Figure 5 because, all other things being equal,

it favors shorter introns over longer ones.

Pairagon’s accuracy has improved since the official
evaluation
Since the EGASP assessment, we have made several

improvements to both Pairagon’s probability model and its

implementation. We have retrained Pairagon using its own

alignments of 20,594 MGC cDNA sequences to 21,249 loci

on the human genome. Several bug-fixes and optimizations

have resulted in a faster and more robust program with

lower memory requirements. Table 3 lists the accuracy

measures of the current version of Pairagon (v0.95) when

aligning the same cDNA sequences used for the assessment.

Pairagon v0.95 shows improvement in all accuracy measures.

It now identifies 22 more correct Gencode transcripts and

162 more correct exons with a small improvement in

specificity as well. Thus, the accuracy of our pipeline using

Pairagon v0.95 is substantially better than that of the

version submitted for the assessment, which was already as

good as, or slightly better than, that of the other entrants. Of

course, other systems have likely improved as a result of this

exercise, too.
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Figure 4
Generating the search subspace given three high-scoring segment pairs
(HSPs) in the Stepping Stone algorithm. The three diagonal lines
represent the three HSPs. The stars represent alignment pins. The lighter
blue areas represent the search subspaces that are actually used in the
heuristic method. The optimal algorithm uses the entire rectangle in blue.
The block diagram shows the optimal spliced alignment where blue boxes
represent an exon and the thin lines represent an intron.
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Table 2

Individual prediction accuracies of Pairagon alignments and N-SCAN_EST predictions in the submission

Name NSn NSp ESn ESp ExT TSn TSp TrG GSn GSp

Pairagon 71.5 98.8 66.8 96.1 8.1 37.9 76.5 1.4 66.9 84.2

N-SCAN_EST 84.9 91.1 72.2 84.5 8.1 18.3 38.7 1.0 38.2 38.7

N-SCAN_EST* 16.0 73.0 9.8 59.1 4.1 1.4 8.5 1.0 2.7 8.5

N-SCAN_EST† 72.2 73.0 57.6 59.1 4.1 8.3 8.5 1.0 12.7 8.5

*N-SCAN_EST predictions not overlapping Pairagon alignments (sensitivities measured against all Gencode genes). †N-SCAN_EST predictions not
overlapping Pairagon alignments (sensitivities measured against Gencode genes not overlapping Pairagon alignments). Columns are defined as in Table 1.

Figure 3
An annotated GC donor site that ENSEMBL misses. There is a GT dinucleotide four nucleotides downstream of the GC donor site (both dinucleotides
are marked brown in the sequence). Pairagon identifies the correct donor site. (Screen shot obtained from UCSC Genome Browser web site [23].)
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A lack of biological evidence raises questions about
ORF annotation
Identifying the coding region in (even) a full-length mRNA is

an extremely difficult problem. NCBI and HAVANA do not

always agree in their CDS annotations of mRNA sequences,

even if they agree on the exon-intron structures. Because we

relied on the CDS annotations from NCBI, a few of our gene

predictions are incorrect according to HAVANA, although

the underlying alignment is correct. For example, GenBank’s

annotated translation start sites for cDNA sequences

BC001940 and NM_001004759.1 are 798 bases down-

stream and 81 bases upstream of HAVANA’s annotated

translation start sites in Gencode genes AC005538.1-001

and AC011711.3-001, respectively. A few more of our ORF

predictions obtained from correct alignments are labeled

incorrect because HAVANA has not made any CDS

annotations on the exon-intron structures yet. For example,

the exon-intron structure of our gene NM_181879.1 from

aligning a reviewed RefSeq mRNA NM_181879.1 matches

that of Gencode reference gene AC008984.1-003, which

does not have a CDS annotation. Since the biological

evidence supporting the GenBank ORF annotations, if any,

is not available for evaluation, we might do better by using a

modified version of N-SCAN to predict ORFs on aligned

cDNA sequences.

N-SCAN_EST performs well on complete GENCODE
test regions
After the release of the HAVANA annotations, we found that

N-SCAN_EST predictions used to fill the gaps between

Pairagon alignments had a very high proportion of incorrect

genes – the gene/transcript specificity of the original N-

SCAN_EST predictions was 8.5% in regions that did not

overlap Pairagon alignments (gene and transcript specificity

are the same for programs that predict only one transcript

per locus). However, this is due largely to the fact that there

are high quality cDNA sequences covering most of the real

genes in the ENCODE regions. When these are not used and

N-SCAN_EST’s predictions on the complete GENCODE test

regions are evaluated, their specificity is 38.7% (Table 2).
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Figure 5
An incorrect alignment from Pairagon. The seed alignment from BLASTN aligned the 112-base exon at a location about 30 kb upstream (arrow in
Pairagon gene prediction) instead of the annotated location (arrows in Gencode reference genes). Both alignments for that exon are 100% identical.
(Screen shot obtained from UCSC Genome Browser web site [23].)
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Table 3

Prediction accuracies of improved Pairagon alignments and Pairagon+N-SCAN_EST gene structures

Name NSn NSp ESn ESp ExT TSn TSp TrG GSn GSp

Pairagon v0.95 78.8 99.2 72.7 96.5 8.4 41.3 77.0 1.4 71.3 84.3

Pairagon v0.0.95 + 89.9 92.5 79.0 88.9 7.6 42.4 63.3 1.3 73.3 64.5
N-SCAN_EST

Columns are defined as in Table 1.



In the ENCODE regions, the accuracy of N-SCAN_EST is

due in large part to the accuracy of N-SCAN itself (this may

not hold in less gene-dense regions). Table 4 compares the

five submissions to the Dual or Multiple Genome category of

EGASP that score the highest on exons, transcripts, and

genes. N-SCAN scores the highest in all categories except for

nucleotide sensitivity. In terms of exon specificity, N-SCAN

is 4.8% better than the next best system (Dogfish) and in

transcript specificity 18% better than the next best system

(Augustus-dual). For transcript and exon sensitivity, N-

SCAN is 4.7% and 4.6% better, respectively, than any other

system except TWINSCAN-MARS. N-SCAN outperforms

TWINSCAN-MARS by about 1% transcript sensitivity and

2% exon sensitivity. TWINSCAN-MARS has relatively high

sensitivity in part because it predicts several transcripts per

gene, for which it pays a price in specificity. Even with the hit

it takes in specificity, TWINSCAN-MARS is among the top

three performers, especially at the transcript level. This may

be explained, in part, by the fact that N-SCAN and

TWINSCAN-MARS share nearly identical models for DNA

sequence [16], although their conservation models are quite

different.

N-SCAN’s ability to explicitly model untranslated regions

(UTRs) [12, 13, 19] facilitates the distinction between coding

and non-coding exons. Figure 6 illustrates this advantage of

N-SCAN when compared to other dual- or multiple-genome

gene predictors on Gencode reference gene AC009404.6.

Only the N-SCAN prediction agrees with the Gencode

reference gene; N-SCAN’s ability to model 5’ UTR content is

the key. The 168 base-pair (bp) region upstream of the

annotated start codon lies within a 1,012 bp CpG island

(annotated on the UCSC Genome Browser CpG-island

track). The 67% G+C content of this 168 bp region is very
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Table 4

Prediction accuracy measures of multiple-genome based gene prediction methods

Name NSn NSp ESn ESp ExT TSn TSp TrG GSn GSp

Augustus-dual 88.9 80.2 63.1 69.1 6.1 12.3 18.6 1.0 26.0 18.6

N-SCAN 85.4 89.0 67.7 82.1 8.0 17.0 36.7 1.0 35.5 36.7

Twinscan-MARS 84.3 74.1 65.6 61.7 8.6 15.9 15.1 1.7 33.5 24.9

Saga 52.5 81.4 38.8 50.7 5.6 2.2 3.4 1.0 4.4 3.4

Dogfish 64.8 88.2 53.1 77.3 8.7 5.1 14.6 1.0 10.8 14.6

The highest value for each measure is in bold. Columns are defined as in Table 1.

Figure 6
Initial exon of a gene where N-SCAN correctly discriminates coding region from the 5’ UTR. Other gene prediction systems predict longer coding
regions due to the high G+C content of the region. (Screen shot obtained from UCSC Genome Browser web site [23].)
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high compared to typical intronic and intergenic regions and

even high compared to most exonic regions. However, this is

not unusual for a region of this size within a CpG island.

Without explicit 5’ UTR-content modeling, however, it is

more likely to be predicted as a coding region rather than as

a 5’ UTR, intronic, or intergenic region. For example,

Augustus + Mouse Homology and TWINSCAN-MARS anno-

tate this region as coding. N-SCAN’s modeling of DNA

content and conserved sequence for 5’ UTR regions facilitates

the correct categorization of this region.

When the genome sequence and conservation do not provide

sufficient information about the coding potential of a gene

locus, EST evidence can be very useful in gene prediction.

Figure 7 shows a gene where N-SCAN_EST predicts three

out of four exons correctly while both ENSEMBL and N-

SCAN do not predict any gene in the region. In fact, N-

SCAN_EST is one of only two gene predictors that predict

any gene in this locus. There are high quality EST align-

ments supporting this gene, such as BX116511 with a 100%

identical alignment of 583 bases, which aid N-SCAN_EST in

predicting this gene even though the conservation rate of the

coding regions is low. This low conservation may explain

why N-SCAN failed to predict a gene; likewise, the extremely

low genomic conservation in Exon 3 may explain why even

N-SCAN_EST missed this exon.

Conclusions
The results of this exercise have demonstrated two things.

First, this careful community assessment has been very

valuable, particularly for the way in which it uncovered

weaknesses in, and inspired improvements to, Pairagon and

other systems. Second, genome annotation without trans

alignments can compete successfully with systems like

ENSEMBL and ExoGean, which use trans alignments, under

certain circumstances. However, annotation accuracy in the

EGASP assessment is determined largely by the accuracy

with which high quality native cDNA sequences can be

aligned, and secondarily by the accuracy with which

HAVANA’s ORF calls on those cDNA sequences, or lack

thereof, can be anticipated. We cannot extrapolate the

results of this exercise to situations in which fewer full

length cDNAs and/or fewer ESTs are available. In such

situations, the accuracy of our pipeline would depend more

on N-SCAN and N-SCAN_EST, while the accuracy of

ENSEMBL would depend more on trans alignments. In

future assessments, it would be worthwhile to assess

prediction pipelines under a range of scenarios between the

two evaluated this time –freedom to use all available native

cDNA and prohibition against using any. In particular, the

selective elimination of cDNA and EST sequences from the

available pool would shed light on the tradeoffs among

different approaches under a range of situations of practical

significance (see [4] for such a study on Pairagon+N-

SCAN_EST).

Materials and methods
Pairagon gene predictions
The state diagram of Pairagon’s pairHMM model for cDNA-

to-genome alignment is given in Figure 1. The different states

model different alignment columns as follows: matches and

mismatches are modeled by state A; intron is modeled by a
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Figure 7
A gene where N-SCAN_EST predicts three out of the four exons right. All other programs except AceView do not predict anything in that locus. N-
SCAN_EST missed an exon even though there is EST evidence for it. We believe that lack of conservation overwhelmed the EST evidence for that exon.
(Screen shot obtained from UCSC Genome Browser web site [23].)
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loop consisting of Entry, Intron and Exit; insertion and gap in

genome are modeled by states G and C, respectively. Four

additional states – RG1, RC1, RG2 and RC2 modeling

unaligned genomic and cDNA sequences – were added to

facilitate local alignment. Although, for simplicity, Figure 1

shows only one loop modeling introns, our model contains

two such loops. One of them requires GT or GC at the splice

donor site and AG at the splice acceptor site. The other

requires AT and AC at those sites, respectively. Each state can

emit the different columns of a cDNA-to-genome alignment

with certain probabilities (emission probabilities). For each

state there is also a probability of staying in that state or

transitioning to different states (transition probabilities).

These probabilities can be estimated using maximum

likelihood from example alignments.

We implemented the Viterbi algorithm, an optimal dynamic

programming algorithm for finding the most probable

alignment between two sequences, in C. Although it produced

accurate alignments, the time and space complexity for

optimally aligning two sequences increases in proportion to

the product of the sizes of the input sequences, imposing

limitations on the size of the input sequences. Therefore, we

adapted the Stepping Stone algorithm [20], a heuristic

modification to the optimal algorithm. Stepping Stone relies

on faster seeded alignment programs like BLASTN to

identify regions of high identity between the cDNA and the

genomic sequence (diagonal lines in Figure 4). It restricts

the optimal dynamic programming algorithm to regions

close to the approximate exons that the seed alignments

correspond to (light blue region in Figure 4).

Pairagon v0.5 was trained using 15,766 BLAT alignments of

15,297 MGC [1, 9, 10] cDNA sequences to the human

genome build NCBI35 (May 2005). Transition probabilities

between the states were estimated from the alignments

using maximum likelihood. Because this was a bootstrap

procedure, and BLAT does not pay careful attention to splice

sites, we assigned reasonable estimates for probabilities of

GT-AG, GC-AG and AT-AC splice site combinations (98.9%,

1.0% and 0.1%, respectively). All bases were equally

probable in states RG1, RC1, RG2, RC2, G, C and Intron. The

probability of a match in the aligned state was estimated

using maximum likelihood and was evenly distributed

among the four possible combinations. Similarly, the proba-

bility of a mismatch in the aligned state was distributed

among the 12 possible combinations.

Ungapped local alignments between the cDNA sequences

and the unmasked ENCODE regions were generated using

BLASTN [21] with parameters M=1 N=-3. These

approximate seed exons were then used by the Stepping

Stone implementation of Pairagon v0.5 to generate an

alignment. GenBank CDS annotations of the cDNA

sequences were used to convert these alignments into gene

structures.

N-SCAN gene predictions
The genome sequence was masked for putative processed

pseudogenes using PPFINDER [5]. N-SCAN gene predic-

tions were then obtained as explained in [12,13].

N-SCAN_EST gene predictions
Human ESTs, downloaded from dbEST on 20 January 2005,

were aligned to whole human genome (build NCBI35) by

BLAT [8]. For each EST sequence, the alignment with the

greatest number of bases matching the genome was selected.

Alignments with at least 98% of the bases in the entire EST

matching the genome were chosen to generate an ESTseq for

each chromosome. ESTseq parameters were estimated from

regions corresponding to a set of cleaned Refseq annotations

containing 17,798 transcripts. An additional 1,000 bases on

either side of the genes were used to train intergenic regions.

The genome sequence was masked for putative processed

pseudogenes using PPFINDER [5]. ESTseqs corresponding

to the ENCODE regions were obtained by cutting the

relevant sections out of the chromosomal ESTseq, and N-

SCAN_EST was then used to predict genes.

Pairagon+N-SCAN_EST pipeline
A block diagram showing the steps involved in generating

Pairagon gene structures and N-SCAN_EST gene

predictions, and combining them is given in Figure 2.

Because multiple mRNA sequences are available for some

genes, identical Pairagon gene structures are merged into

one gene. N-SCAN_EST predictions are added to the final

set if they do not overlap the merged Pairagon gene

structures. We used the Eval software package [22] for

finding these overlapping genes.

Acknowledgments
We are grateful to Jeltje van Baren for help with her PPFINDER software
for detection of processed pseudogenes in gene annotation sets. Thanks
also to the organizers of the GENCODE evaluation, including especially
Roderic Guigó and Paul Flicek. This work was supported in part by grants
U01 HG003150 (ENCODE) and R01 HG02278 from the National Human
Genome Research Institute and by Contract N01-CO-12400 from the
National Cancer Institute (Mammalian Gene Collection).

This article has been published as part of Genome Biology Volume 7,
Supplement 1, 2006: EGASP ’05. The full contents of the supplement are
available online at http://genomebiology.com/supplements/7/S1.

References
1. The MGC Project Team: The status, quality, and expansion of

the NIH full-length cDNA project: The Mammalian Gene
Collection (MGC). Genome Res 2004, 14:2121-2127.

2. Brent MR: Genome annotation past, present and future: How
to define an ORF at each locus. Genome Res 2005, 15:1777-
1786.

3. Birney E, Clamp M, Durbin R: GeneWise and Genomewise.
Genome Res 2004, 14:988-995.

4. Wei C, Brent MR: Integrating EST alignments and de novo
gene prediction using TWINSCAN. BMC Bioinformatics 2006, In
Press.

5. van Baren MJ, Brent MR: Iterative gene prediction and pseudo-
gene removal improves genome annotation. Genome Res
2006, 16:678-685.

http://genomebiology.com/2006/7/S1/S5 Genome Biology 2006, Volume 7, Supplement 1, Article S5 Arumugam et al. S5.9

Genome Biology 2006, 7(Suppl 1):S5

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research



6. Durbin R, Eddy SR, Krogh A, Mitchison G: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cam-
bridge University Press; 1998.

7. Levine A, Durbin R: A computational scan for U12-dependent
introns in the human genome sequence. Nucleic Acids Res 2001,
29:4006-4013.

8. Kent WJ: BLAT - the BLAST-like alignment tool. Genome Res
2002, 12:656-664.

9. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD,
Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF et al.:
Generation and initial analysis of more than 15,000 full-
length human and mouse cDNA sequences. Proc Natl Acad Sci
USA 2002, 99:16899-16903.

10. Strausberg RL, Feingold EA, Klausner RD, Collins FS: The mam-
malian gene collection. Science 1999, 286:455-457.

11. Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence
(RefSeq): a curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Res 2005,
33(Database issue):D501-D504.

12. Gross SS, Brent MR: Using multiple alignments to improve
gene prediction. In Research in Computational Molecular Biology, 9th
Annual International Conference, RECOMB 2005, Cambridge, MA, USA,
May 14-18, 2005, Proceedings. Edited by Miyano S, Mesirov JP, Kasif S,
Istrail S, Pevzner PA, Waterman MS. Cambridge: Springer; 2005:374-
388.

13. Gross SS, Brent MR: Using multiple alignments to improve
gene prediction. J Comput Biol 2006, 13:379-393.

14. Guigo R, Flicek P, Abril JF, Reymond A, Lagarde J, Denoeud F,
Antonarkis S, Ashburner M, Bajic VB, Birney E, et al.: EGASP: The
ENCODE Genome Annotation Assessment Project. Genome
Biology 2006, 7 (Suppl 1) :S2.

15. Flicek P, Keibler E, Hu P, Korf I, Brent MR: Leveraging the mouse
genome for gene prediction in human: from whole-genome
shotgun reads to a global synteny map. Genome Res 2003, 13:
46-54.

16. Korf I, Flicek P, Duan D, Brent MR: Integrating genomic homol-
ogy into gene structure prediction. Bioinformatics 2001, 17
(Suppl 1):S140-S148.

17. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM,
Baertsch R, Rosenbloom K, Clawson H, Green ED, et al.: Aligning
multiple genomic sequences with the threaded blockset
aligner. Genome Res 2004, 14:708-715.

18. Zhang M, Gish W: Improved spliced alignment from an infor-
mation theoretic approach. Bioinformatics 2006, 22(1):13-20.

19. Brown RH, Gross SS, Brent MR: Begin at the beginning: predict-
ing genes with 5’ UTRs. Genome Res 2005, 15:742-747.

20. Meyer IM, Durbin R: Comparative ab initio prediction of gene
structures using pair HMMs. Bioinformatics 2002, 18:1309-1318.

21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. J Mol Biol 1990, 215:403-410.

22. Keibler E, Brent MR: Eval: a software package for analysis of
genome annotations. BMC Bioinformatics 2003, 4:50.

23. UCSC Genome Browser [http://genome.ucsc.edu]

S5.10 Genome Biology 2006, Volume 7, Supplement 1, Article S5 Arumugam et al. http://genomebiology.com/2006/7/S1/S5

Genome Biology 2006, 7(Suppl 1):S5


	Abstract
	Background
	Results
	Conclusions

	Background
	Pairagon uses a PairHMM to produce native cDNA alignments
	N-SCAN_EST threads complete gene structures through EST alignments
	Pairagon+N-SCAN_EST annotates genomes without using trans alignment

	Results and discussion
	The official assessment of Pairagon+N-SCAN_EST shows high accuracy
	Pairagon’s cDNA alignments are highly accurate
	Pairagon’s accuracy has improved since the official evaluation
	A lack of biological evidence raises questions about ORF annotation
	N-SCAN_EST performs well on complete GENCODE test regions

	Conclusions
	Materials and methods
	Pairagon gene predictions
	N-SCAN gene predictions
	N-SCAN_EST gene predictions
	Pairagon+N-SCAN_EST pipeline

	Acknowledgments
	References

