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In a recent Genome Biology article,

Choe et al. [1] described a control

dataset for Affymetrix GeneChips. By

spiking RNA at known quantities, the

identities of all null and differentially

expressed genes are known exactly, as

well as the fold change of differential

expression. With the wealth of analysis

methods available for microarray data,

a control dataset would be very useful.

Unfortunately, serious errors are

evident in the Choe et al. data, disprov-

ing their conclusions and implying that

the dataset cannot be used to validly

evaluate statistical inference methods.

We argue that problems in the dataset

are at least partially due to a flaw in the

experimental design.

q-value estimates incorrectly
criticized 
Figure 8 in Choe et al. [1] suggests that

estimated q-values substantially under-

estimate the true q-values. For

example, Figure 8b shows that, when a

q-value cutoff of 0.20 is used, the true

q-value is closer to 0.60. This reflects a

serious error somewhere in the analy-

sis. The question is whether the error

occurs prior to, or as a result of, the

q-value calculations.

False-discovery rates were originally

proposed by Soric [2] and Benjamini

and Hochberg [3]. The q-value was

developed as the FDR analog of the p-

value [4-7]. There is sound statistical

justification behind both FDR and q-

value methods; that is, there is rigorous

mathematical proof for their claimed

operating characteristics. For example,

conditions have been detailed where

the q-value estimates are guaranteed to

be (simultaneously) conservative [5,7].

This means that, if a gene is assigned

an estimated q-value of 0.05, then its

true, population average, q-value is no

larger than 0.05.

Note that the q-value methodology

employed by Choe et al. [1] was credited

to the SAM method proposed by Tusher

et al. [8], even though the q-value

methodology was developed separately

from the SAM method in references [4-

7]. The SAM software (different from

the SAM method [8]) is based on at

least four different articles [4,8-10],

each of which contributes unique

methodology. Failing to differentiate

between the SAM method of Tusher et

al. and the SAM software seems to have

caused a good deal of confusion in the

literature when evaluating and under-

standing the operating characteristics of

the methods in the software [11].

We now show that the fundamental

requirements for employing q-values

(and even p-values) are not satisfied by

Choe et al.’s dataset, leading to spuri-

ous conclusions. These requirements

are stated in each of the original papers

detailing the q-value methodology [4-

7]. In particular, the q-value methodol-

ogy draws on the fact that the p-values

for null genes should be uniformly dis-

tributed on the interval (0,1) [12]. As

stated by Storey and Tibshirani [5]: “If

the null p-values are not uniformly dis-

tributed, then one wants to err in the

direction of overestimating p-values

(that is, underestimating significance).

Correctly calculated p-values are an

important assumption underlying our

methodology.” This is not a special

requirement for q-values - it is a

requirement for any type of standard

significance criterion [13].

Choe et al. [1] identified 10 combina-

tions of pre-inference steps that

seemed to work best. Their q-value cal-

culations were then done on these “10

best” datasets. We reproduced their

analyses of each dataset using standard

two-sample t-statistics (conclusions

did not depend on whether parametric,

permutation, or bootstrap null distrib-

utions were used). Figure 1 of this cor-

respondence compares the observed

quantiles of the null genes’ p-values to

the corresponding quantiles from the

uniform distribution. If the null
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p-values were distributed uniformly,

then the observed quantiles should fall

along the dashed line of equality. It is

clear that the null p-values are not uni-

formly distributed, tending to be much

smaller than they should be. In other

words, when observing the p-value dis-

tribution among the null genes (which

are known here), they show a substan-

tial amount of significance beyond

what would be expected by chance. It is

therefore clear that the problems

evident in Figure 8 of Choe et al. are

not due to the q-value methodology,

but rather to the fact that the calculated

p-values are not valid.

Problems with the
experimental design 
The question remains as to the cause of

the p-values being incorrect. One

source of the problem is the experi-

mental design itself. Consider Figure 1

in Choe et al. [1]. In column three,

there are three aliquots of labeled

cRNA clones. Each of these aliquots is

divided, and one half is then spiked-in

with known concentrations of RNA

among the genes selected to be differ-

entially expressed. Because random

variability is introduced in the spike-in

step (between columns 3 and 4 in

Figure 1 of Choe et al. [1]), even null

genes will have some differences in

RNA amount. That is, both halves of

each aliquot undergo some modifica-

tion (even the control half), leading to

random variation being introduced to

the RNA amounts of all genes. This

leaves three matched pairs of indepen-

dent samples, where some variation

exists within pairs for all genes.

A major flaw occurs when the three

samples from each treatment (control

or spike-in) are combined into two

aliquots in column 4. Now, instead of

three independent matched pairs, there

is only a single matched pair in column

4. Each half of this single matched pair

is hybridized to three chips. Therefore,

the random variation introduced at the

spike-in stage will not be detectable

among the six resulting chips. If every

chip is treated as an independent

observation, then the variation intro-

duced in the previous step among null

genes will appear to be true signal.

Unfortunately, this is exactly what

Choe et al. do, leading to the incorrect

p-values that we observed earlier. This

problem cannot be fixed by modifying

the statistics. 

Consider the following scenario, which

suffers from the same problem as Choe

et al.’s design but is phrased in more

familiar terminology. Suppose we are

interested in differences in gene expres-

sion for two biological groups under

two conditions, A and B. To this end, we

obtain expression measurements for a

single individual (that is, a single bio-

logical replicate) under both conditions.

On the basis of the sample from this

single individual, we then form three

replicated chips for each condition.

By chance, there will be small differ-

ences in the expression measurements

under both conditions A and B. With a

proper estimate of the variability, these

differences will be identified as being

random and the associated tests called

null. The problem is that we cannot use

our single individual to estimate the

true variability of expression measure-

ments under conditions A and B, taking

into account all sources of variation. If

we treat the six replicated observations

as three independent matched pairs,

then our estimated variance is due only

to random aspects of the hybridization

process. This will significantly underes-

timate the true variances, and, as a
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Figure 3
Histograms of null p-values from simulation
based on independent samples. The null p-
values using three independently sampled
individuals as described in the text are shown.
The dashed line represents the expected height
of the bars assuming the null p-values are
uniformly distributed. The null p-values are
uniformly distributed when biological replicates
are used.
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Figure 1 
QQ plots of null p-values corresponding to null
genes. A plot of the observed versus expected
quantiles of the null genes’ p-values are shown
for each of the 10 best datasets. The observed
trends indicate that the null genes’ p-values trend
are substantially smaller than they should be.
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Figure 2
Histograms of null p-values from simulation
representing the experimental design of Choe
et al. [1]. The null p-values generated from the
simulation as described in the text are shown.
The dashed line represents the expected height
of the bars assuming the null p-values are
uniformly distributed. The null p-values are not
uniformly distributed when only technical
replicates are used.
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result, we will grossly inflate the signif-

icance of differential expression - even

among null genes.

We performed a simple simulation of

the above scenario; details are given in

Additional data file 1. We considered

both the case where three technical

replicates are formed on a single indi-

vidual and the case where three inde-

pendently sampled individuals were

used. Figure 2 of this correspondence

shows a histogram of the null p-values

under the first scenario where only

technical replicates are used, and

Figure 3 shows the results using biolog-

ical replicates. It is clear that the null p-

values are not uniformly distributed

under Choe et al.’s design (Figure 2),

tending to be much smaller than they

should be. Figure 4 compares esti-

mated and actual q-values, analogous

to Figure 8b in Choe et al. [1]. When a

single individual is used, we see that

q-values substantially underestimate

the truth due to the flawed underlying

p-values. Meanwhile, when three inde-

pendent individuals are used, the esti-

mated q-values are conservative as the

theory says they should be [4-7].

A large-scale “spike-in” control dataset

would be invaluable for head-to-head

comparisons of statistical methods for

microarrays. The Choe et al. dataset

was intended to serve this purpose.

Unfortunately, the data set is flawed in

that even the null genes appear to be

differentially expressed. As a result, the

dataset cannot be relied upon for eval-

uating statistical inference methods.

We note further that, when applying

statistical methods such as the q-value

estimates, one must take care to ensure

that all necessary assumptions are met.

Additional data file 
Additional data file 1 available with this

paper provides details of the simula-

tions reported here.

Sung E Choe, Michael Boutros, Alan M

Michelson, George M Church and

Marc S Halfon respond: 

One of the main purposes of our paper

[1] was to challenge the community to

improve on existing microarray analy-

sis methods and to promote a better

understanding of the experimental

conditions for which these methods are

appropriate. Dabney and Storey make a

valuable contribution to this effort with

their clarification as to why our q-value

calculations underestimate the false-

discovery rate by noting that the under-

lying p-value distributions for the “null

genes” - those with no expected fold

change between the S spike (S) and

control (C) samples - are non-uniform

in each of the 10 best datasets consid-

ered in our original manuscript [1].

Dabney and Storey also provide simu-

lation results to suggest that the

problem is due to our use of technical

replicates. However, we demonstrate
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Figure 4
A plot of the true versus estimated q-values
from simulations described in the text. The solid
gray line shows the results averaged over 30
simulations when using a design similar to that
of Choe et al. [1]. The solid black line is the
analogous comparison when using three
independent individuals. The dashed line
represents equality; conservatively estimated q
values should fall beneath this line. The Choe et
al. [1] design produces anti-conservative q-
values estimates due to the incorrect underlying
p-values, while the more statistically sound
design produces conservative q-value estimates.
The Monte Carlo variation of the q-value
estimates is small enough that these conclusions
are not affected.
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Figure 5
A detailed description of the Choe et al. [1] experiment. Individual PCR products (a) were pooled
together (b) and converted to labeled cRNA (c). Note that all mixing and labeling within each pool
was performed at this stage, before splitting the pools into C and S samples. Therefore, relative
concentrations of individual cRNA species are identical for all cRNAs in a given pool. (d) The
labeled pools were then divided into the C and S samples. Poly(C) RNA (20 �g) was added to the C
sample at this step to equalize the amount of nucleic acid present in each hybridization. (e) Each
sample contained enough labeled cRNA for three hybridizations. Relative concentrations for each
pool are shown in (f). Note that the 1x (“null gene”) pools 13-19 were combined together at step
(b), before labeling at step (c), creating a single 1x pool before labeling and splitting. The ‘1x’
concentration of RNA used for this pool was approximately 6x greater than the 1x concentrations
of the other pools to reflect the greater number of individual RNAs (that is, so that the 1x
concentrations of all RNAs were approximately equal).

Individual PCR products
(cDNAs) in 96-well plates

Pool plates into
pools of 96-384

PCR products each

Make labeled
cRNA

Mix labeled pools at specified
relative concentrations

(fold change levels)
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Spike (S) chips
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here that this aspect of our design is

sound, and that their model is consis-

tent neither with our actual experimen-

tal design nor with the observed

distribution of the null p-values. We

also offer a more likely explanation for

the problems that they note.

Dabney and Storey claim that “serious

errors are evident in the Choe et al.

data” due to a “flaw in the experimental

design” concerning technical instead of

independent replication, and they

provide simulation results to support

their view. They fail, however, to

provide justification for their simula-

tion parameters, which appear to be

greatly exaggerated and inconsistent

with our actual experimental design.

This is especially true with respect to

their value for � (the correlation

between the S and C concentrations).

Whereas Dabney and Storey place � at

0.85 (see their Additional data file 1),

in reality it should be close to 1.0, as

our design ensures that cRNAs from

the same pool have virtually identical

fold changes between the S and C

samples.  The “null genes”, listed in the

original paper as pools 13-19, were

combined into a single pool before

labeling and division into the S and C

samples (Figure 5). In other words, all

of the null genes were partitioned as a

group into either the S or C samples.

Common intuition as well as standard

experimental practice tell us that the

variation in fold change for genes from

the same pool will be negligible, but we

can also estimate it as follows. Consider

the set of RNAs at the detection limit of

the assay, which Affymetrix puts at 1.5

pM [14]. Assuming that equal parti-

tioning from the null gene pool to the S

and C samples follows a binomial dis-

tribution with p = 0.5, the standard

deviation in RNA amount is only

slightly more than 104 molecules for

the approximately 108 molecules in the

pool. Thus there is no appreciable vari-

ation in the amount of any given RNA

species (nor in the fold changes

between the S and C samples for

cRNAs within the same pool). As there

was a single pipetting event from the

null gene pool to each of the S and C

samples, there is some uncertainty as

to the exact ratio of allocation to S

versus C; however, this degree of

uncertainty is low (less than 0.3%

according to the pipette manufacturer’s

specifications). Importantly, this is

manifest as a scaling error that affects

the pool of null genes as a whole - for

example, the true ratio might be

1:0.997 for all null genes, rather than

1:1. Any such differences, if actually

detectable above the variation intro-

duced by hybridization itself, were

resolved by using our knowledge of the

null genes to normalize between arrays

whenever applicable. The dominant

source of variation in our experiment is

indeed, by design, that due to “aspects

of the hybridization process”. When

parameters in keeping with a greatly

reduced amount of variation are used

in Dabney and Storey’s model, the p-

value distribution is uniform (data not

shown). The observed non-uniformity

therefore cannot be attributed to our

use of technical replication.

A non-uniform null p-value distribu-

tion does not necessarily invalidate our

dataset; it may simply indicate that the

analysis methods we applied do not

adequately model the hybridization

process.  In this regard, we note that

the models proposed by Dabney and

Storey are not truly consistent with the

observed null gene p-values in our
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Figure 6
Sample quantile plots for the p-values of the observed test statistics for the “null genes”. The x-axes
correspond to the expected quantiles for a uniform distribution and the y-axes correspond to the
observed (sample) quantiles. (a) Sample quantile plots for the t-test p-values associated with the 150
preprocessing combinations described by Choe et al. [1]. Black lines correspond to the 10 best
datasets and are consistent with the curves presented in Figure 1 of this correspondence. The red lines
correspond to re-loessed datasets that were obtained using the same combinations of preprocessing
steps as the original 10 sets with the exception that the invariant subsets consisted only of the ‘present
null’ (present with fold change = 1) probe sets (versus both the ‘present null’ and ‘empty null’ probe
sets used in [1]). The distribution of the p-values thus depends upon the choice of the invariant subset.
(b) Sample quantile curves for dataset 10a. Solid lines correspond to the two-sided p-values and the
dashed and dotted lines correspond to the p-values associated with the one-sided tests. Dabney and
Storey’s model does not account for the discrepancy in the one-sided p-values observed for this
dataset, which is not manifest in the re-loessed data (red lines). Similar results are seen with datasets
10b, c, d and 9a, b, c, d. (c) As in (b) but showing sample quantile curves for dataset 10e; dataset 9e is
similar. The p-value discrepancies are much less pronounced for these two datasets. Used with
permission from [15].

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) All 150+ datasets

Uniform quantiles

O
bs

er
ve

d 
qu

an
til

es

Re-loessed best 10
Original best 10
All other datasets

 

0.0 0.2 0.4 0.6 0.8 1.0

(b) Dataset 10a

Uniform quantiles

O
bs

er
ve

d 
qu

an
til

es

Two-sided
Greater
Less

 

0.0 0.2 0.4 0.6 0.8 1.0

(c) Dataset 10e

Uniform quantiles

O
bs

er
ve

d 
qu

an
til

es
Two-sided
Greater
Less

0.0

0.2

0.4

0.6

0.8

1.0



data. Their model cannot explain unex-

pected discrepancies present in the dis-

tributions of the one-sided p-values,

and neither can it explain the fact that

the actual distributions of the null gene

t-statistics and p-values appear to

depend upon signal intensity. Figure 6a

of this correspondence shows quantile

plots for the t-test p-values associated

with the 150 preprocessing combina-

tions we used. The lines highlighted in

black correspond to the “10 best

datasets” and are consistent with the

curves presented in Figure 1 of this cor-

respondence. The black curves in

Figures 6b and 6c contain sample

quantile curves; the solid lines corre-

spond to the two-sided p-values and

the dashed and dotted lines correspond

to the p-values from the one-sided

tests. Note the discrepancy in the one-

sided p-values in Figure 6b. This was

observed for eight of the 10 datasets

and is not accounted for in the Dabney

and Storey model, under which the dis-

tributions of these p-values should be

similar. This discrepancy appears to

follow from the fact that each of the 10

best Choe et al. datasets were obtained

using preprocessing steps that included

loess correcting the observed intensity

values from a set of “null genes” that

included both “empty null” (not

present in either sample) and “present

null” (present with fold change = 1)

probe sets. We have calculated a new

set of 10 best datasets in which the cor-

rection is based only on the present

null probesets (Figure 5, red curves).

This ‘re-loessing’ of the data eliminates

the discrepancy in the one sided p-

values (Figure 6a,b) and provides proof

of principle that preprocessing algo-

rithms can have a substantial effect on

the p-value distribution.

Although re-loessing the data improved

the null distributions, they are still non-

uniform. If the model proposed by

Dabney and Storey is neither consistent

with the actual experimental design

(their parameter values are not realis-

tic) nor consistent with the observed

data (the real one-sided p-values are

dissimilar), what does account for

the non-uniform distribution of the

p-values? We find that the distributions

of the null gene t-statistics and p-values

depend upon signal intensity. Figure 7

of this correspondence demonstrates

this point using smoothed estimates of

the p-value and t-score quartiles as a

function of signal intensity in represen-

tative datasets. Figure 7c shows that the

re-loessed dataset 10a provides for t-

tests that are better centered than the

original dataset, an observation consis-

tent with the results depicted in Figure

6b. While the medians for the t-statis-

tics seem to be properly centered after

re-loessing the data, the quartiles (and

hence the amount of variation) remain

greatly inflated, however, and change

with intensity.

We speculate that the preprocessing

algorithms are unable to properly adjust

for systematic differences in overall

signal strength that exist between the

control and spike-in samples. Figure 8

of this correspondence contains

smoothed estimates of the average rank

of expression values and squared devia-

tions (with respect to the appropriate

group mean) of the three control (“C”)

replicates for the original (Figure 8a,b)

and re-loessed (Figure 8c,d) datasets.

Comparison of Figures 8a and 8c reveals

that re-loessing appears to adequately

recenter the control expression values

relative to the spike-in (S) expression

values (the average rank over six arrays

should be 3.5). The ranks of the squared

deviations for the control replicates,

however, remain below those of the

spike-in replicates, suggesting that the

control expression values are less vari-

able than the spike-in values. This

difference again appears to be intensity

dependent.

The preceding analysis suggests that

the observed non-uniformity of the

p-values is not easily explained by a
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Figure 7
Smoothed estimates of the quartiles as a function of signal intensity for the p-values and observed
t-test statistics for (a,c) dataset 10a and (b,d) dataset 10e. Distributions of the null p-values and test
statistics vary with intensity, although less so for the re-loessed datasets (red lines). Even though the
medians for the t-statistics seem to be properly centered after re-loessing the data, the quartiles
(and hence the variation) are greatly inflated and appear to be intensity dependent. The x-axes show
the rankit of the log of the product of the expression means. The y-axes show the observed two-
sided p-values (a,b) or the observed t-statistics (c,d). Solid and dashed gray lines indicate the
theoretical medians and quartiles, respectively. Black curves correspond to the original datasets and
red curves correspond to the re-loessed datasets. Used with permission from [15].
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simple model. Although relevant

mainly to just one aspect of our study

(regarding q-value estimates), this is an

important and complex issue in need of

further investigation, and we are grate-

ful to Dabney and Storey for bringing it

to our attention. Whether these non-

uniform p-values are manifest in other

datasets or are merely a byproduct of

the unbalanced signal strengths present

in our experiment also remains an open

question to be addressed by future

studies. However, in most microarray

experiments it is impossible to check if

the null p-values are uniformly distrib-

uted (as the true set of null genes is not

known) and it is therefore impossible to

determine whether or not the require-

ments for accurate estimation of q-

values are met. We therefore caution

that the preprocessing issues seen here

might be relevant in other microarray

experiments. We can easily conceive of

biological conditions in which imbal-

ances similar to those in our original

study could exist - for example, when

comparing different tissue types, in

certain developmental time courses, or

in cases of immune challenge.
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Figure 8
Smoothed estimates of the average rank of expression values and squared deviations (with respect
to the appropriate group mean) of the three control replicates for the (a,b) original and (c,d) re-
loessed datasets. The x-axes correspond to the rankit of the log of the product of the expression
means. The y-axes correspond to the observed ranks and were calculated across all six samples. If
the control (C) and spike-in (S) expression values are interchangeable, the average rank of the
control values should be 3.5. (c) Re-loessing adequately re-centers the control expression values
relative to the spike-in expression values. (d) Despite re-loessing, however, the ranks of the squared
deviations for the control replicates remain below those of the spiked-in replicates, suggesting that
the expression values for the control replicates are less variable than those for the spiked-in
replicates. This difference appears to be intensity dependent. Used with permission from [15].
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