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Summary 

Semaphorins are secreted, transmembrane, and GPI-linked proteins, defined by cysteine-rich
semaphorin protein domains, that have important roles in a variety of tissues. Humans have 20
semaphorins, Drosophila has five, and two are known from DNA viruses; semaphorins are also
found in nematodes and crustaceans but not in non-animals. They are grouped into eight classes
on the basis of phylogenetic tree analyses and the presence of additional protein motifs. The
expression of semaphorins has been described most fully in the nervous system, but they are also
present in most, or perhaps all, other tissues. Functionally, semaphorins were initially
characterized for their importance in the development of the nervous system and in axonal
guidance. More recently, they have been found to be important for the formation and functioning
of the cardiovascular, endocrine, gastrointestinal, hepatic, immune, musculoskeletal, renal,
reproductive, and respiratory systems. A common theme in the mechanisms of semaphorin
function is that they alter the cytoskeleton and the organization of actin filaments and the
microtubule network. These effects occur primarily through binding of semaphorins to their
receptors, although transmembrane semaphorins also serve as receptors themselves. The best
characterized receptors for mediating semaphorin signaling are members of the neuropilin and
plexin families of transmembrane proteins. Plexins, in particular, are thought to control many of
the functional effects of semaphorins; the molecular mechanisms of semaphorin signaling are still
poorly understood, however. Given the importance of semaphorins in a wide range of functions,
including neural connectivity, angiogenesis, immunoregulation, and cancer, much remains to be
learned about these proteins and their roles in pathology and human disease. 
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Gene organization and evolutionary history  
Semaphorins are a large and diverse family of widely

expressed secreted and membrane-associated proteins,

which are conserved both structurally and functionally

across divergent animal phyla. This diversity in expression,

structure, and function is highlighted in the manner in

which a number of the semaphorins were originally charac-

terized. The first semaphorin to be discovered, the grasshop-

per transmembrane protein semaphorin-1a (Sema-1a;

originally named Fasciclin IV), was identified in a screen for

molecules with distinctive temporal and spatial distributions

in the developing grasshopper nervous system [1]. In parallel

experiments, a neuronal growth cone collapsing factor asso-

ciated with chicken brain membranes was biochemically

purified and found to be a secreted semaphorin (Sema3A;

originally named Collapsin) [2]. Separate experimentation

and molecular characterization revealed that an antigen first

observed in the 1970s as present in high frequency on

human red blood cells, the John Milton Hagen (JMH)

human blood group antigen, was a glycosylphosphatidyli-

nositol (GPI)-linked semaphorin (Sema7A; also known as

CDw108) [3,4]. And work in the human immune system



showed that an antigen first characterized in 1992 for its

presence on the surface of T lymphocytes was a transmem-

brane semaphorin (Sema4D; originally named CD100) [5]. 

Sequences encoding a number of different semaphorins have

since been identified in nematode worms, insects, crus-

taceans, vertebrates, and viruses, but to date they have not

been described in protozoans, plants, or the most primitive

metazoans. Although initially given various and often con-

flicting names, these sequences have now been consolidated

into one family called the semaphorins; the name is derived

from the word ‘semaphore’, meaning to convey information

by a signaling system [6,7]. The semaphorin gene family cur-

rently includes 20 members in mice and humans and five in

Drosophila, and they can be divided into eight classes, 1-7

and V (Figures 1,2) [7]. Vertebrates have members in classes

3-7, whereas classes 1 and 2 are known only in invertebrates

and class V only in viruses.

Semaphorin genes are dispersed throughout the genome,

typically including several exons per gene, and are known to

be alternatively spliced. There is considerable sequence

diversity within the family: with a few exceptions, individual

members are not more than about 50% identical to each

other at the amino-acid level (see Additional data file 1).

Characteristic structural features  
The eight main classes of semaphorins [7] differ in sequence

and overall structural characteristics, but all members of the

family contain a conserved extracellular domain of about

500 amino acids termed the semaphorin (sema) domain

(Figure 2). This domain shows considerably higher conser-

vation among the different semaphorins and across phyla

than do the full-length proteins (see Additional data file 2).

In addition to several blocks of conserved amino acids, the

sema domain is characterized by highly conserved cysteine
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Figure 1
A phylogenetic tree of semaphorin sequences, showing groupings of related semaphorin genes and their organization into different classes. D, Drosophila;
M, mouse; V, viral; Z, sequence identified only in zebrafish and not in mammals. A Sema5D has also been described, but our analysis indicates that it is a
splice variant of Sema5B. Protein sequences were aligned using ClustalW in Vector NTI software and the tree was generated using the neighbor-joining
method, ignoring positions with gaps. 
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residues that have been found to form intrasubunit disulfide

bonds [8]. Crystal structures have revealed that the sema

domain of both the mouse secreted semaphorin Sema3A and

the human transmembrane semaphorin Sema4D fold in a

variation of the � propeller topology, a common topology

that occurs in proteins with diverse functions (reviewed in

[8]). Interestingly, these sema domains fold in a manner that

is most similar to the � propeller topology of integrins and

low-density lipoprotein (LDL) receptors. 

The sema domain is also a critical component through which

semaphorins mediate their effects [9-11]. In particular, an

approximately 70-amino-acid region within the sema

domain is important for the effects of Sema3A on repulsive

axon guidance and the collapse of the growing tip or growth

cones of axons, which stops their extension [9]. Structurally,

this portion of the sema domain of Sema3A and Sema4D

appears to correspond to blade three of the seven-bladed �

propeller topology [8]. Interestingly, a small stretch of

amino acids homologous to tarantula hanatoxin, a K+ and

Ca2+ ion-channel blocker, is also important for the growth-

cone-collapsing effects of Sema3A [12]. 

Immediately to the carboxy-terminal side of the sema

domain, semaphorins contain a plexin-semaphorin-integrin

(PSI) domain (Figure 2). This small stretch of cysteine-rich

residues has also been referred to as a MET-related sequence

(MRS) or a cysteine-rich domain (CRD). With the exception

of some viral semaphorins, all examples of proteins contain-

ing a sema domain have a PSI domain [8]. Crystal-structure

analysis indicates that this domain is highly conserved, but its

three-dimensional position relative to the sema domain can

vary among semaphorins [8]. Semaphorins also have con-

sensus N-linked glycosylation sites and may be alternatively
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Figure 2
Primary structures of members of the semaphorin family. All proteins are shown with their amino termini to the top. Class 1 semaphorins are
invertebrate transmembrane proteins and are structurally very similar to the class 6 semaphorins of vertebrates. Class 2 semaphorins (also from
invertebrates) are secreted; they are structurally similar to vertebrate class 3 semaphorins, which have a stretch of highly basic amino acids in their
carboxy-terminal region. Class 4, 6, and 7 semaphorins have been identified only in vertebrates. Class 4-6 semaphorins are transmembrane proteins.
Class 5 semaphorins are present in both vertebrates (Sema5A, Sema5B) and invertebrates (Sema5c) and contain seven canonical type 1 thrombospondin
repeats (TSRs). Class 6 semaphorins contain variable, alternatively spliced cytoplasmic portions. The lone class 7 sema (Sema7A) contains a membrane-
associated GPI moiety at its carboxy terminus. Class V semaphorins are highly similar to class 7 semaphorins and are found in DNA viruses, including
vaccinia (a close relative to the cowpox virus), human smallpox (variola virus), fowlpox, mousepox (ectromelia virus), and alcelaphine herpesvirus type 1
virus (AHV). Some class V semaphorins (the SemaVA proteins) do not contain an Ig domain, whereas others do (SemaVB proteins). Sema, semaphorin;
PSI, plexin-semaphorin-integrin; Ig, immunoglobulin-like; GPI, glycosylphosphatidylinositol.
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spliced (as in Drosophila Sema-1a [13], and mammalian

Sema3F [14] and Sema6A [15]), although little is known

about the significance of these modifications. 

In contrast to these defining characteristics, individual sem-

aphorins have a number of distinguishing features. Sema-

phorins vary in their membrane anchorage, and include

secreted, transmembrane, and GPI-linked family members

(Figure 2). They may also contain additional sequence

motifs, including a single C2-class immunoglobulin-like (Ig)

domain, a stretch of highly basic amino acids, and/or seven

canonical type 1 thrombospondin repeats (TSRs; Figure 2).

These additional domains are responsible for at least some

of their functional effects; for example, the Ig domain and

basic tail of chicken Sema3A potentiate the effect of its sema

domain in growth-cone collapse [9], and the throm-

bospondin repeats of mammalian Sema5A are important in

regulating the effect of Sema5A on axon guidance [11,16]. 

Localization and function  
As a group, semaphorins are expressed in most tissues and

this expression varies considerably with age. The expression

patterns of the individual semaphorins are best character-

ized in the nervous system, particularly during development,

where most, or perhaps all, semaphorins are widely

expressed in the nervous system by neuronal and non-

neuronal cells (reviewed in [17]; see Table 1 for details of the

expression and functions of all members of the family and

associated references). Semaphorins are also widely

expressed in many organ systems and their derivatives,

including the cardiovascular, endocrine, gastrointestinal,

hepatic, immune, musculoskeletal, renal, reproductive, and

respiratory systems. 

No particular pattern of expression appears to define each of

the different classes of semaphorins, but many are dynami-

cally expressed in particular areas during development, and

this expression often decreases with maturity. In the nervous

system, for example, semaphorin expression is often associ-

ated with growing axons as they form axonal tracts, but this

expression often decreases following the formation of the

tracts. Interestingly, changes in the adult expression levels of

semaphorins have been described following injury in neu-

ronal and non-neuronal tissues, during tumorigenesis, and

in association with other pathological conditions.

The diverse expression patterns of the different semaphorins

suggest that they are important in a variety of functions

during development and into adulthood. Indeed, genetic

analyses in both invertebrates and vertebrates indicate that

semaphorins are often required for viability and reveal, in

combination with additional functional assays, distinct roles

in various physiological and pathological processes in most

or perhaps all tissues. These studies reveal that semaphorins

function to direct tissue morphogenesis through their effects

on cellular processes such as adhesion, aggregation, fusion,

migration, patterning, process formation, proliferation, via-

bility, and cytoskeletal organization.

Semaphorins are best known for their roles in nervous

system development, and a number of approaches in vivo

and in vitro indicate that semaphorins can enable axons to

find and connect with one another and their other targets

(reviewed in [18]). An important way in which semaphorins

guide these growing axons is by repelling them or preventing

them from entering certain regions. For example, characteri-

zation of their normal expression patterns, the defects

observed in particular semaphorin mutants, and assays in

vivo and in vitro have revealed that at least some sema-

phorins form molecular boundaries to prevent axons and

cells from entering inappropriate areas. Semaphorins also

have roles in physiological and pathological processes in the

adult. In the nervous system, altered semaphorin function

has been linked to epilepsy, retinal degeneration,

Alzheimer’s disease, motor neuron degeneration, schizo-

phrenia, and Parkinson’s disease [19-22]. 

Semaphorins may also limit the ability of axons to regrow

after injury and prevent abnormal sprouting of axons

involved in pain or autonomic function [23-26]. In the

immune system, semaphorins are critical for various phases

of the immune response (Table 2; reviewed in [27]). Sema-

phorins are also involved in cancer progression, by affecting

chemotaxis, viability, tumorigenesis, metastasis, and angio-

genesis (reviewed in [28]). More recently, semaphorins

have also been implicated in vascular health and heart

disease (reviewed in [29]). 

Mechanism 
The molecular mechanisms by which semaphorins mediate

their functional effects are far from clear. Semaphorin-

mediated axon repulsion is a result of the modification of

the axonal cytoskeleton at the growing tips or growth cones

of axons. The control of axon outgrowth or growth-cone

motility depends critically upon the dynamics of F-actin

polymerization and depolymerization, coupled with the reg-

ulation of F-actin translocation and microtubule dynamics.

Following exposure to secreted Sema3A, growth cones

undergo a rapid collapse that is accompanied by the depoly-

merization of F-actin, a decreased ability to polymerize new

F-actin, attenuated microtubule dynamics, and collapsed

microtubule arrays (reviewed in [30]). The molecular mech-

anisms underlying these phenomena are poorly understood

but may also be responsible for many of the functional

effects that semaphorins have in non-neuronal tissues. For

example, the cytoskeleton is required for cells to move,

polarize, change shape, engulf particles, and interact with

other cells; even the most divergent family member, the viral

semaphorin SemaVA, induces actin cytoskeletal rearrange-

ment in dendritic cells of the immune system and alters the

ability of these cells to adhere and migrate [31].
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Table 1

Expression and function of semaphorins

Semaphorin Species Expression (with representative references) Functions (with representative references)

Sema-1a Insects and worms Epidermis [1], neurons [1,6,13,50] Cell migration [110], digestion/defecation [110], fecundity
[110], morphogenesis [110], neural connectivity [1,13]

Sema-1b Insects and worms Glia [55], oocytes [55] Cell migration [110], morphogenesis [110], neural 
connectivity [110]

Sema-2a Insects and worms Epidermis [6], epithelium [6], gonads [6], Cell migration [111], morphogenesis [111], neural 
muscles [6], neurons [6] connectivity [112]

Sema-2b Insects Unknown Unknown

Sema3A Vertebrates Adipose tissue [56,57], bone [58], cartilage [58], Bone formation [113], cancer-cell chemotaxis [114], 
cancer cells [59], connective tissue [60], endothelial cartilage formation [113], cell death [115], cell adhesion 
cells [61], epithelium [62], glia [25], gut [62], heart and aggregation [61,116], cell migration and patterning
[2,58], kidney [63], limb [58], lung [2], meningeal  [117-119], cell proliferation [120], cytoskeletal organization
cells [64], muscle [2,57], neurons [2,58], pituitary  [2], heart formation [113], lung formation [121], neural
[62], placenta [65], scar tissue [66], teeth [67], connectivity [2,113,122], vasculogenesis [61,123]
umbilical cord [65], uterus [65]

Sema3B Vertebrates Cancer cells [68], endothelial cells [61], glia [69], Cell death [124], cytoskeletal organization [125], neural 
mammary gland [70], muscle [60], neurons [60], connectivity [126], tumor suppression [124]
teeth [71]

Sema3C Vertebrates Cancer cells [59], connective tissue [60], endothelial Cardiovascular development [127], cell survival [128], 
cells [71], fibroblasts [53], glia [72], lung [60,73], cytoskeletal organization [9], heart formation [127], lung 
macrophages [53], mammary gland [70], neurons  formation [73], neural connectivity [9,128]
[60], skeleton [60], teeth [71]

Sema3D Vertebrates Bone [74], cartilage [75], endothelial cells [61], Neural connectivity [75]
epidermis [74], fibroblasts [76], glia [72], heart [77], 
meninges [74], muscle [74], neurons [74] 

Sema3E Vertebrates Cancer cells [78], ear [79], endothelial cells [61], Cell growth [33], cell migration [33], cytoskeletal 
lung [78], nervous tissue [25,74,80], skeleton [78], organization [80], neural connectivity [80,129], tumor 
teeth [71] metastasis [33], vascular patterning [130]

Sema3F Vertebrates Cancer cells [81], dermis [82], ependyma [82], Angiogenesis [131], cell attachment [132], cell migration
epithelium [82], eye [82], gonads [81], gut [81], [133,134], cell proliferation [133], cytoskeletal 
heart [81], kidney [81], lung [81,82], muscle [81], organization [14,135], lung formation [73], neural 
neurons [82], pancreas [81], prostate [81], skin [82], connectivity [82,136], tumor metastasis [137], tumor 
spleen [81], submandibular gland [82], teeth [67], suppression [138], synaptic transmission [20]
thymus [81], thyroid gland [82]

Sema3G Vertebrates Heart [83], kidney [83], lung [83], meninges [83], Cell migration [134], neural connectivity [83]
neurons [83], placenta [83]

Sema4A Vertebrates Epithelial cells [19], glia [25], immune cells [84,85], Cell survival [19], cytoskeletal organization [139], 
mammary gland [70], neurons [60], teeth [71] lymphocyte activation and immune responses [84,85], 

neural connectivity [139], retina and visual system [19]

Sema4B Vertebrates Glia [25], immune cells [86], neurons [60,87], Unknown
teeth [71]

Sema4C Vertebrates Bone [76], ear [88], glia [25], immune cells [86], Myogenesis [89]
kidney [88], lung [88], muscle [89], neurons [88,90], 
regenerating muscle [89], teeth [88], pituitary [88]

Sema4D Vertebrates Glia [24], gonads [91], gut [91], immune cells [86,91], Angiogenesis [140,141], cell aggregation and adhesion 
kidney [91], heart [91], lung [91],  lymph node [91], [91,142], cell death [143], cell differentiation [91], cell 
mammary gland [70], muscle [91], neurons [92], migration [35,140,141], cell proliferation [144], cell 
placenta [91], prostate [91], spleen [91], teeth [71], survival [91,145], cytoskeletal organization [143,146], 
thymus [91] invasive/cancerous growth [147], immune responses 

[91,144], neural connectivity [24,145,146] 

Sema4E Zebrafish Epithelium [93], nervous system [93] Neural connectivity [148]

Sema4F Vertebrates Glia [72], immune cells [86], lung [94], mammary Cytoskeletal organization [94], neural connectivity [94]
gland [70], neurons [94,95], teeth [71]



Post-translational processing underlies at least some of the

functional effects of semaphorins. Several secreted and

transmembrane semaphorins undergo proteolytic process-

ing, and this is important in semaphorin-mediated repulsive

axon guidance, growth-cone collapse, cell migration, inva-

sive growth, and metastasis (for example, see [32-35]). For

example, mouse Sema3A, Sema3B, and Sema3C are synthe-

sized as inactive precursors and become repulsive for axons

upon proteolytic cleavage [32].

Oligomerization is another modification that is important

for semaphorin function. The secreted vertebrate sema-

phorin Sema3A is a dimer [9,36,37], and dimerization is

important for its activity in repulsive axon guidance and

growth-cone collapse [36,37]. Cysteine residues in the

carboxy terminus are important for this dimerization,

although weak dimerization also occurs between sema

domains [8]. Transmembrane semaphorins also form

disulfide-linked dimers and depend on oligomerization for

at least some of their functional effects [5,11,16,36,38-40]. 

Semaphorin receptors and signaling 
Semaphorins exert the majority of their effects by serving as

ligands and binding to other proteins through their extracel-

lular domains. All classes of semaphorins except class 2 have

been found to bind directly to members of the plexin (Plex)

family of transmembrane receptors (reviewed in [41]; see

Table 2 for a summary of the receptors and signaling pro-

teins associated with semaphorins and Figure 3 for the

primary structure of known semaphorin receptors). Interest-

ingly, plexins also contain sema domains, albeit highly diver-

gent, that are important for binding to semaphorins [8].

Several other proteins have also been identified that bind to

the extracellular portions of semaphorins (Figure 3). In par-

ticular, members of the neuropilin (Npn) family of trans-

membrane proteins are receptors for class 3 semaphorins
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Table 1 (continued)

Semaphorin Species Expression (with representative references) Functions (with representative references)

Sema4G Vertebrates Ear [96], epithelium [96], glia [72], gut [96], hair Unknown
follicles [96], kidney [96], liver [96], neurons [96], 
pituitary [96], teeth [71]

Sema5A Vertebrates Cancer cells [97], glia [25], heart [98], kidney [98], Cell morphology [149], cytoskeletal organization [11], 
liver [98], lung [98], muscle [98], neurons [98], spleen neural connectivity [11,16,25], vasculature patterning  [150]
[98], teeth [71]

Sema5B Vertebrates Bone [76], cancer cells [97], glia [25], neurons [98], Unknown
teeth [71]

Sema5c Insects Cardiac cells [55], epidermis [97,99], gut [99], Tumor metastasis [97], tumor suppression [97]
muscle [55,99], oocytes [55]

Sema6A Vertebrates Cancer cells [100], bone [101], glia [25], gut [40], Angiogenesis [100], cell migration [100], cytoskeletal 
immune cells [86], kidney [40], lung [101], muscle organization [40], neural connectivity [40,49,151]
[101], neurons [101], meninges [101], teeth [71]

Sema6B Vertebrates Bone [76], cancer cells [102], glia [72], heart [39], Neural connectivity [151]
liver [39], lung [39], muscle [39], nervous tissue 
[39,103], teeth [71]

Sema6C Vertebrates Bone [76], dermis [104], glia [72], heart [105], Cytoskeletal organization [104,105], neural connectivity 
kidney [105], liver [105], muscle [104], neurons  [104,105]
[104], placenta [105], teeth [71]

Sema6D Vertebrates Gut [105], heart [105], kidney [105], liver [105], Cell migration [48], cytoskeletal organization [105], heart 
lung [105], muscle [105], neurons [105], placenta formation [48,152], morphogenesis [152], neural
[105], uterus [106] connectivity [105]

Sema7A Vertebrates Adrenal gland [107], bone [108], cancer cells [109], Cell fusion [108], cell migration [108,153], immune
erythrocytes [109], fibroblasts [76], glia [72], gonads responses [153], stimulating cytokine production [153], 
[107], gut [107], heart [107], kidney [107], lung [107], neural connectivity [154]
lymph nodes [107], immune cells [109], muscle [107], 
neurons [107], placenta [107], spleen [107], teeth [71], 
thymus [107]

SemaVA DNA viruses Not applicable Cell adhesion [31], cell migration [31], cell retraction 
[31], cytoskeletal organization [31], immunomodulation 
[155], proinflammatory responses [155], inducing 
cytokine production [156], regulating phagocytosis [157]

SemaVB DNA viruses Not applicable Cell aggregation [156]
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Table 2 

Receptors and signaling proteins associated with semaphorins

Binding receptors (with Signaling proteins (with ‘Reverse’ signaling (with 
Semaphorin representative references) representative references) representative references)

Sema-1a PlexA [158,159] OTK [168], Gyc76c [169], MICAL [170], Nervy [171], ena [50]
PKA [171], Rac [172]

Sema-1b PlexA [158] - -

Sema-2a - - -

Sema-2b - - -

Sema3A Npn-1 [160,161], PlexA1, A2, A3, A4 [165,173,174], PlexD1 [175], VEGF receptor [176], -
proteoglycans [162] L1CAM [177], integrins [61], �2-chimaerin [178], Cdc42 [179], 

Cdk5 [180], cGKI/PKG [181,182], Calcium channels [12], cofilin [183], 
CRAM [184], CRMP [185], FARP2 [45], Fes [184], Fyn [180], Go/Gi [185], 
guanylate cyclase [186], GSK-3 [187], LIM kinase [183], 12/15-lipoxygenase 
[188], MAP kinases [176], MLCK [189], nNOS [190], PI 3-kinase [181], 
PIPKI�661 [45], PKA [181], PTEN [191], Rac [192], Rap1 [193], Rho [194], 
Rnd [195], ROCK [181], R-Ras [45]

Sema3B Npn-1 [125], Npn-2 [125] NrCAM [126], FAK [126], MAP kinases [126], Src [126] -

Sema3C Npn-1 [163], Npn-2 [163] PlexD1 [196], MLCK [189], ROCK [189] -

Sema3D Npn-1 [164] - -

Sema3E Npn-1 [164], PlexD1 [130] Ca2+ channels [129], MAP kinases [129], PKC [129], Ras [129] -

Sema3F Npn-2 [163], Npn-1 [163] PlexA3, A4 [173,174], NrCAM [127], E-cadherin [197], -
Beta-catenin [197], PI 3-kinase [198], MAP kinases [198]

Sema3G Npn-2 [83] - -

Sema4A Tim-2 [84] ROCK [139] -

Sema4B - - PSD-95 [87]

Sema4C - - PSD-95 [90], GIPC [207], 
norbin [208]

Sema4D PlexB1 [165], PlexB2 [166], Met [147], Ron [199], ErbB2 [200], PlexC1 [34], integrin [201], AKT [141], CD45 [142], serine kinase
CD72 [167] Gab1 [147], LARG [146], 12/15-lipoxygenase [201], p190RhoGAP [202], [209]

PDZ-RhoGEF [146], PI 3-kinase [141], Pyk2 [141], Ras [46,203], Rho [204], 
Rnd [205], Src [141], MAP kinases [203], Raf [203]

Sema4E - - -

Sema4F - - PSD-95 [95]

Sema5A PlexB3 [149], HSPG [16], Met [149] -
CSPG [16], Syn-3 [16]

Sema5B - - -

Sema5C - - -

Sema6A PlexA4 [151] - EVL [15]

Sema6B PlexA4 [151] - Src [39]

Sema6C - - -

Sema6D PlexA1 [152] OTK [152], VEGF receptor 2 [152] Abl [46]

Sema7A PlexC1 [165] Integrins [154], Arg [206], FAK [154], MAP kinases [154] Kinase activity [4]

SemaVA PlexC1 [156] Integrins [31], cofilin [31], FAK [31] -

SemaVB PlexC1 [156] - -

A hyphen indicates not known. Abbreviations: Abl, Abelson tyrosine kinase; AKT, AKT serine/threonine kinase; Arg, Abl-related tyrosine kinase; CAM, cell
adhesion molecule; CD45, CD45 phosphatase; Cdk5, cyclin-dependent kinase 5; CRAM, CRMP-associated molecule; CRMP, collapsing response mediator
protein; cGKI, cGMP dependent protein kinase I; CSPG, chondroitin sulfate proteoglycan; ErbB2, receptor tyrosine kinase; ena, enabled; EVL, ena/VASP-
like protein; FAK, focal adhesion tyrosine kinase; FARP2, FERM domain-containing GEF; Fes, feline sarcoma tyrosine kinase; Fyn, Fyn tyrosine kinase; Gab1,
GRB2 associated binding protein 1; GIPC, GAIP interacting protein carboxy terminus; GSK-3, glycogen synthase kinase-3; Gyc76c, receptor guanylate
cyclase 76c; HSPG, heparin sulfate proteoglycan; LARG, leukemia-associated RhoGEF; Met, receptor tyrosine kinase; MICAL, molecule interacting with
CasL; MLCK, myosin light chain kinase; nNOS, neuronal nitric oxide synthase; Npn, neuropilin; OTK, off-track receptor tyrosine kinase; PI 3-kinase,
phosphatidylinositol 3-kinase; PIPKI�661, PIP kinase type I; PKA, protein kinase A; PKC, protein kinase C; PKG, protein kinase G; Plex, plexin; Pyk2, Pyk2
tyrosine kinase; PSD-95, post-synaptic density protein; PTEN, PTEN phosphatase; ROCK, Rho-associated kinase; Ron, receptor tyrosine kinase; Src, Src
tyrosine kinase; Syn-3, syndecan-3; Tim, T-cell immunoglobulin domain and mucin domain; VEGF, vascular endothelial growth factor.



[30]. Both the basic tail and the sema domain of Sema3A are

important for binding to Npn-1, although binding to the

sema domain is weaker. Neuropilins, however, only have

short cytoplasmic tails that are not required for the effects of

semaphorins on axon guidance [30]. Interestingly, neuro-

pilins also bind plexins, such that class 3 semaphorins,

which bind to neuropilins, signal their effects through the

cytoplasmic domain of plexins.

The signal transduction cascades used by semaphorins are

poorly understood. No canonical signal transduction path-

ways seem to mediate the effects of semaphorins, making the

identification of semaphorin signaling intermediates difficult.

Over the past few years, however, a number of proteins have

been identified and linked with semaphorin signaling, includ-

ing G proteins, kinases, regulators of cyclic nucleotide levels,

oxidation-reduction enzymes, and regulators of the actin

cytoskeleton (Table 2). These intermediates suggest that novel

signaling cascades implement semaphorin function (reviewed

in [21,41-44]), although a complete signaling pathway through

which these proteins direct semaphorin function has not yet

been characterized. Furthermore, semaphorin signaling inter-

mediates have been identified using several different func-

tional assays, complicating a precise determination of the

roles of these proteins in the different semaphorin functions. 

At the moment, the best characterized semaphorin signaling

cascades are those used for axon guidance and cell migration.
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Figure 3
Semaphorin receptors. Members of the plexin protein family are organized into four classes (A, B, C, and D); plexins are known to bind to semaphorins
from all classes except class 2, whose receptors are unknown. Class 3 semaphorins bind both members of the neuropilin protein family. Sema4A binds
Tim-2, a member of the T cell, immunoglobulin and mucin (Tim) domain protein family expressed on activated T cells [27]. Sema 4D binds CD72, a
member of the C-type lectin family, and uses it for its effects in lymphoid tissues [27]. Sema, semaphorin; PSI, plexin-semaphorin-integrin; IPT,
immunoglobulin-like fold shared by plexins and transcription factors; GAP, GTPase-activating protein; MAM, Meprin, A5, Mu; PMR, polymorphic region;
ITIM, immunoreceptor tyrosine-based inhibitory motif; IgV, immunoglobulin variable region.
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Semaphorin-mediated repulsive axon-guidance signaling

depends on the large cytoplasmic domains of plexins, at least

some of which have GTPase-activating protein (GAP) activ-

ity: these domains show sequence similarity to a group of

Ras-family-specific GAPs, and mammalian PlexA1 and

PlexB1 have GAP activity towards R-Ras [45,46]. The cyto-

plasmic domains of plexins also bind other small GTPases as

well as binding regulators of GTPase activity, including

guanine-nucleotide exchange factors (GEFs) and GAPs [44].

The functional implications of these interactions are best

understood for mammalian Sema4D and mammalian PlexB1:

activation of PlexB1 by Sema4D enhances the activity of

RhoGEFs, activating the small GTPase RhoA, and leads to

cytoskeletal rearrangement and repulsive axon guidance.

There may be variation, however, in the signaling cascades

activated by the different semaphorins. Repulsive axon guid-

ance signaling by invertebrate Sema-1a or vertebrate Sema3A

through class A plexins, for example, uses many proteins not

currently characterized as important for repulsive axon guid-

ance by Sema4D and PlexB1 [18,21,41,42].

Specific signaling proteins may also be required for the dis-

tinct functions of semaphorins. For example, Sema4D,

together with PlexB1, limits cell migration or axon out-

growth by signaling through signaling proteins including the

epidermal growth factor receptor ErbB2, Rho kinase, 12-15

lipoxygenase, and PlexC1; whereas Sema4D signaling

through PlexB2 and the hepatocyte growth factor receptor

Met, the receptor tyrosine kinase Ron, p190RhoGap, the

tyrosine kinases Pyk2, Src, and Akt, and phosphatidylinosi-

tol 3-kinase enables cell migration or axon outgrowth

(reviewed in [41,47]). 

Importantly, recent work has also begun to identify mecha-

nisms by which semaphorin signaling and its functional

effects can be modulated. Neurotrophins, growth factors,

chemokines, cell adhesion molecules, and integrins have all

been shown to modulate semaphorin signaling, and some of

these effects seem to occur through cyclic nucleotides, nitric

oxide, and semaphorin receptor endocytosis [21,41,42].

Interestingly, semaphorins can also serve as cell-surface

receptors for plexins and perhaps other proteins, and

mediate some of their functional effects through ‘reverse sig-

naling’ [48] (Table 2). In particular, transmembrane sema-

phorins can function as receptors essential for generating

proper neuronal connectivity [49,50] and cardiac develop-

ment [48], and these effects have been linked to the associa-

tion of their cytoplasmic portions with signaling and

anchoring proteins (Table 2).

Frontiers  
Despite considerable progress in our characterization of

members of the semaphorin family, much remains to be

learned about their functions and molecular mechanisms of

action. Several semaphorins have yet to be functionally

characterized, and many have undergone only a cursory

examination. A number of questions remain, including the

purpose of having so many related semaphorins and the under-

lying logic to their complex expression patterns and physiologi-

cal roles. The degree of interaction among semaphorins is also

poorly understood. Do they regulate each other’s signaling cas-

cades? Do they physically associate? What special attributes

and abilities do the secreted, transmembrane, and GPI-linked

forms of semaphorins functionally provide? 

Understanding the signaling cascades that underlie the dif-

ferent functional effects of semaphorins will provide insights

into these important proteins. Are there differences in the

signaling cascades activated by the different semaphorins?

How much do their signaling cascades vary in order to

mediate their different cellular effects? How do semaphorins

exert their dramatic effects on the cytoskeleton? 

A more detailed understanding of the role of semaphorins in

the normal functioning adult is important. In the nervous

system, the role of semaphorins in forming neural connec-

tions is well established, but the role of semaphorins in

neural connectivity as it pertains to thought, emotion,

memory, and behavior is unknown. The role of semaphorins

in human disease and pathology is also poorly understood.

Mutations in semaphorins are associated with patients with

cancer [28], retinal degeneration [51], decreased bone

mineral density [52], rheumatoid arthritis [53], and

CHARGE syndrome (a disorder characterized by cranial

nerve dysfunction, cardiac anomalies, and growth retarda-

tion) [54]. Further characterization of the semaphorins and

a better understanding of their signaling mechanisms will

undoubtedly uncover additional roles for semaphorins and

semaphorin signaling in human disease. 

Given the role of semaphorins in a wide range of tissues and

functions including neurobiology, vasculobiology, cancer

biology, and immunobiology, further characterizing the

semaphorins and their signaling cascades will reveal funda-

mental mechanisms of how these systems work and strate-

gies for preventing and treating pathologies associated with

them.

Additional data files 
The following additional data files are available: tables of the

protein sequence identities between different semaphorins

over the whole sequence (Additional data file 1) and the

sema domain (Additional data file 2).
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