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Abstract

We refined the motifs for carboxy-terminal protein prenylation by analysis of known substrates for
farnesyltransferase (FT), geranylgeranyltransferase | (GGTI) and geranylgeranyltransferase Il
(GGT2). In addition to the CaaX box for the first two enzymes, we identify a preceding linker
region that appears constrained in physicochemical properties, requiring small or flexible,
preferably hydrophilic, amino acids. Predictors were constructed on the basis of sequence and
physical property profiles, including interpositional correlations, and are available as the Prenylation
Prediction Suite (PrePS, http://mendel.imp.univie.ac.at/sat/PrePS) which also allows evaluation of
evolutionary motif conservation. PrePS can predict partially overlapping substrate specificities,
which is of medical importance in the case of understanding cellular action of FT inhibitors as

anticancer and anti-parasite agents.

Rationale

Prenylation refers to the posttranslational modification of
proteins with isoprenyl anchors [1-3]. These lipid moieties
are typically involved in mediating not only protein-mem-
brane but also protein-protein interactions. Three eukaryotic
enzymes are known to catalyze the lipid transfer. The first
two, farnesyltransferase (FT) and geranylgeranyltransferase 1
(GGT1), recognize the so-called CaaX box in the carboxy ter-
mini of substrate proteins and attach farnesyl (15-carbon
polyisoprene) or geranylgeranyl (20-carbon polyisoprene),
respectively, to a required and spatially fixed cysteine in that
motif. The third enzyme, geranylgeranyltransferase 2 (GGT2
or RabGGT) recognizes the complex [4] of Rab GTPase sub-
strate proteins with a specific Rab escort protein (REP) to
attach one or two geranylgeranyl anchors to cysteines in a
more flexible but also carboxy-terminal motif.

The CaaX box was initially understood to consist of a cysteine
(C), followed by two aliphatic residues (aa) and a terminal
residue (X) that would direct modification by either FT or

GGT1, but newly found substrates and kinetic studies of
mutated substrate peptides and enzyme inhibitors have
shown that the motif recognized by the enzymes appears to be
more flexible [2]. Furthermore, the determination of prefer-
ence for FT or GGT1 is more complex and a function of the
overall sequence context rather than specific amino acids at
single positions. Whereas GGT2 appears to be specific to Rab
GTPases as substrates, the recognition mechanism is not well
understood. Overlapping substrate specificities between all
three prenylating enzymes further complicate the under-
standing of the lipid modification process [5,6].

An unsolved problem so far is accounting for the complexity
of the prenylation substrate recognition motifs in theoretical
models in order to identify substrate proteins from their
amino-acid sequence. No available method has been able to
selectively assign the correct modifying enzyme, which deter-
mines the types and number of lipid anchors. The high prob-
ability of motifs similar to the small CaaX box occurring by
chance is a general problem that has so far prohibited large-
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scale proteome analyses [7]. We describe here a method that
aims to model the substrate-enzyme interactions on the basis
of refinement of the recognition motifs for each of the prenyl-
transferases. The Prenylation Prediction Suite (PrePS) selec-
tively assigns the modifying enzyme to predicted substrate
proteins and sensitively filters out false-positive predictions
based on the general methodology that has already been
applied successfully for the prediction of glycosylphosphati-
dylinositol (GPI) anchors [8], myristoylation [9] and PTS1
peroxisomal targeting [10].

Known substrates and their motif-compliant
homologs as learning sets

The first task consists of collecting sequences that are known
substrates for the respective enzymes. Typically, a good start-
ing point is the Swiss-Prot database [11]. However, according
to earlier experience with annotation inaccuracies [12], any
annotated experimental evidence has to be confirmed by fol-
lowing up all the related literature sources. As newly available
data can be missing in the Swiss-Prot annotation, the
searches have also to be extended to non-Swiss-Prot proteins.
In most cases, the annotations for prenylation in Swiss-Prot
are assigned by similarity to only a few entries with experi-
mental validation. A major concern is the annotation of the
correct anchor type attached to FT and GGT1 substrates,
which could previously only tentatively be estimated without
experimental data. This includes several entries with overall
sequence similarity to a verified prenylated protein but totally
different carboxy-terminal motifs. Given that single muta-
tions can abolish recognition or switch enzyme specificities
[13] and that not all homologs of lipid-modified proteins nec-
essarily have to share the same modification type or mem-
brane attachment factor (MAF) [14], entries with annotations
only by similarity should not be included without critical con-
sideration in a learning set.

Unfortunately, such justified concerns dramatically lower the
amount of data in the learning set. However, because of ear-
lier interest in developing peptide-based inhibitors of FT and
GGT1 as anticancer treatments, the kinetics of the enzymes
with various tetrapeptide substrates already modified with
lipid anchors by the enzymes have been measured [15].
Hence, a protein homologous to a verified prenylated protein
can be included in the learning set if its CaaX box has already
been shown to interact productively with one of the prenyl-
transferases at least as a tetrapeptide.

However, possession of a valid CaaX box might not be a suffi-
cient selection criterion. Typically, short terminal sequence
motifs are connected to the rest of the protein by a linker
region that experiences only limited constraints on specific
amino acids per position but often has a compositional bias
towards small or hydrophilic amino acids in connecting
sequence stretches [16]. This property is found in a prelimi-
nary assembly of verified FT and GGT1 substrates and has
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been confirmed in the actual learning set for up to 11 residues
upstream (amino-terminal) of the cysteine in the CaaX box
(see below). Hence, learning-set sequences should also not
violate the physicochemical properties constraining the
sequence stretch amino-terminal to the CaaX box.

Taking account of the considerations above, the following
procedure has been applied to obtain conservative and relia-
ble learning sets of FT and GGT1 substrates. First, a literature
search for known prenylated proteins and valid tetrapeptides
(see [17]). Second, BLASTP [18] with an E-value threshold of
0.005 starting with known prenylated proteins against the
National Center for Biotechnology Information (NCBI) non-
redundant database to find homologs and cluster all collected
sequences into groups of homologous proteins using the
Markov-chain clustering algorithm (MCL) [19]. Third, check
the validity of all CaaX boxes with experimental evidence for
at least tetrapeptides. Fourth, check compliance with the
physical properties of the full motif (including linker) by
applying a preliminary predictor based on corrected Swiss-
Prot entries in a similar style as described here (penalizing
deviations from the physical property landscape of the motif).

This resulted in learning sets of 692 FT and 486 GGT1 sub-
strates, respectively (see [17]). Among the FT substrates, 31
artificial constructs or mutations of naturally occurring
sequences that have been shown to be processed by FT have
also been included. Prenylation by GGT2 follows totally dif-
ferent mechanistic requirements than FT and GGT1 and will
be treated separately after the sections about CaaX
prenylation.

Refinement of the CaaX box motif descriptions

Compositional analysis of residue frequencies at single motif
positions reveals that major restrictions to specific amino
acid types exist only for positions within the CaaX box (see
sequence logos in Figure 1). The previously reported prefer-
ences for aliphatic residues at positions +1 and +2 (the aa in
CaaX) were recovered, but there is a clear tendency for other
residue types to also be allowed, especially at position +1 (the
first a in CaaX). Correlation analysis of residue frequencies at
single motif positions with amino-acid property scales
[20,21] can quantify the conservation of a physical property
pattern (see Materials and methods). Although correlations
higher than 0.6 can only be obtained for aliphatic property at
position +2 (FT: 0.85, GGT1: 0.87), the average aliphatic
property at position +1 within both FT and GGT1 learning sets
still appears elevated when compared to an average calcu-
lated from the carboxy-termini of the nonredundant
UniRef50 database [22] (see physical property profile in Fig-
ure 1). Similarly, there are correlations at position +2 and
deviations from the UniRef50 average at position +1 for a
property describing preference for extended conformations
(see Tables 1 and 2). This appears to be best explained by the
need to have the final peptide part in extended conformation
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Sequence logos [74] and physicochemical property profiles of FT and
GGT 1 substrates. Selected physical properties (hydrophilicity =
KRIW790102; flexibility = KARP850103, size = CHOC760101; aliphatic =
ZVEL_ALI_I; see Tables | and 2 for details) are calculated as average over
the nonredundant learning sets of FT and GGT 1. The plotted lines
correspond to the relative deviation of the respective properties from an
average calculated over carboxy termini from the UniRef50 database [22].

rather than coiled or helical in order to fit into the binding
pocket, as can be seen in the resolved structures of prenyl-
transferases with their substrate peptides [23].

The major difference between FT and GGT1 substrates
remains at position +3 (the X in CaaX). Whereas a broad vari-
ety of residues are allowed in motifs recognized by FT (includ-
ing several substrates with leucine at +3), mainly leucine and
methionine appear to be preferred by GGT1 in agreement
with experimental evidence [13]. Interestingly, position +3
correlates (FT, 0.7; GGT1, 0.8) with a physical property that
measures membrane-buried preference parameters (see
Tables 1 and 2). This feature does not seem to be important to
support membrane interaction at a later stage for the protein,
as the three carboxy-terminal residues (-aaX) are often
cleaved off in a further processing step after attachment of the
anchor [24]. However, hydrophobicity and volume of posi-
tion +3 appear important for interaction with the binding
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pocket because of the rather lipophilic character of the latter
(isoprenyl anchor on one side and hydrophobic residues on
the others). The importance of position +3 for specificity
between FT and GGT1 is further strengthened by differing
conservation of residues in the binding pockets of the respec-
tive enzymes (Figure 2). Not surprisingly, the whole region of
the binding pocket harboring the end of the prenylpyrophos-
phate (geranylgeranyl [C20] is one isoprene unit longer than
farnesyl [C15]) and the X of the CaaX box (position +3)
appear to comprise the major differences in residue conserva-
tion (Figure 2).

Using the Fisher criterion (see Materials and methods), inter-
positional correlations of residue sizes within positions +1, +2
and +3 (the carboxy-terminal three residues of the CaaX box
that are buried in the binding pocket) from both FT and GGT1
substrates have been identified. Often, when a very large res-
idue occurs at specific positions, neighboring residues com-
pensate to obey the overall physicochemical constraints (for
example, size limitation) in the binding pocket. Similarly,
compensatory effects appear to exist regarding hydrophobic-
ity between positions +1 and +3 in FT and between +1, +2 and
+3 in GGT1 substrates (see Tables 1 and 2). Compensatory
effects also seem responsible for the toleration of even large
positively charged residues at positions +1 or +2, if the other
residues are small enough to accommodate the whole peptide
in the binding pocket. On the other hand, negative charges
are apparently incompatible with the substrate recognition
motif at these positions.

Extension of the CaaX prenylation motif by a
flexible linker region

While the requirement for specific amino acids at single posi-
tions appears to be marginal outside of the CaaX box, physic-
ochemical constraints that extend up to 11 residues amino-
terminal from the modified cysteine can be found (Figure 1,
Tables 1 and 2). At position -1 of the motif, there begins a pro-
nounced tendency for residues with either small or flexible
hydrophilic side chains. GGT1 especially appears to prefer
amino acids like serine or lysine at this position. In general,
GGT1 substrates have a higher number of lysines within posi-
tions -1 and -7 compared with the FT substrates.

The hydrophilic linker region with correlations over multiple
positions to several hydrophobicity- and flexibility-related
property scales might be required to allow accessibility of the
carboxy terminus for the lipid-attaching enzymes. Indeed, in
several resolved structures of in vivo prenylated GTPases,
secondary structural elements such as helices that stabilize
the fold of the protein are typically found only at the amino-
terminal side of that linker region (beginning of helix at posi-
tions -12 (PDB identifier 1FTN), -13 (PDB 1MHz1), -15 (PDB
1AM4), -12 (PDB 1A4R)). In the structure of a G protein
gamma subunit, the linker region also appears to be extended
and wrapped around the beta subunit in the heterotrimeric G
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FPP

Figure 2

The two CaaX prenyltransferases. (a) Ribbon representations of FT (PDB 1D8D [75]) and GGTI| (PDB IN4Q [76]); pink, alpha subunit; yellow, beta
subunit. (b) The prenylpyrophosphates (green) and CaaX tetrapeptides (blue) inside the binding pockets with enzyme-specific conservation (conservation
in FT or GGT| minus conservation in joined FT+GGT | alignment) mapped to binding-pocket surface. Increasing conservation difference is shaded from
white to yellow to red. FPP, farnesyl-, GGPP, geranylgeranylpyrophosphate. The alignment of the sequences of these proteins is shown in Figure 6.

Visualized with Swiss-Pdb Viewer [59].

protein signaling complex (PDB 1GG2). It needs to be empha-
sized that the linker region must not necessarily be in an
unstructured conformation after the anchor has been
attached (see also carboxy-terminal helix in structure PDB
1F5N of human 67 kDa guanylate binding protein 1 [25]), as
folding back or lipid-mediated interaction with other proteins
or membranes can also induce changes in the three-dimen-
sional structure of the linker region. However, there appears
to be a requirement for the ability to easily unfold/fold into
flexible and more extended conformations that allow the car-
boxy terminus to be accessed and modified by the prenyl-
transferases. It is noteworthy that this length estimation of a
flexible, hydrophilic linker is consistent with earlier findings
in the GPI anchor [21], myristoylation [12] and PTS1 targeting
[26] motifs. Hence, the actual motif length of substrates for
CaaX prenylation appears longer than previously thought
(total 15 residues = 4 CaaX + 11 linker).

Prediction function and validation

Following the approach already applied to the prediction of
GPI and myristoyl anchors and PTS1-mediated targeting [8-
10], a scoring function measuring compliance with the pre-
nylation motif separately for the enzymes FT and GGT1,
respectively, has been constructed (see Materials and meth-
ods). In brief, the composite prediction function S consists of
a term Spmﬁle scoring a query sequence against the redun-
dancy-corrected profile of the learning-set sequences and
another term S, that penalizes deviation from the physico-
chemical motif requirements.

S = Sproﬁle + Sppt

The term S5 distinguishes the three positions +1, +2 and
+3 of the CaaX box as well as the linker region (-1 to -11). Sopt
comprises a sum of terms that are constructed from the phys-
ical property requirements for FT and GGT1 substrates that
were outlined in the section describing the motif refinement

Genome Biology 2005, 6:R55
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Physical property terms in the FT scoring function

Property Position Rationale Explanation

ARGP820103 [62] +3 Corr = 0.7(nrLS) Membrane-buried preference, lipid contact
when entering binding pocket

logPREN_CKQX_FT [I15] +3 Corr = -0.72(nrLS) Kinetic measurement, relative unprocessed
FPP amounts with tetrapeptide CKQX

CHOC760101 [63] +1 to +3 Fisher = 1.3 Side chain volume

ZVEL_CHARG [64] +1 to +3 LS composition General charge penalty

ZVEL_CHNEG [64] +1 to +3 LS composition Special negative charge penalty

WERD780102 [65] +1 and +3 Fisher = 1.51 Hydrophobicity compensation for inside
preference

ZVEL_ALI_I [64] +1 and +2 +2: Corr = 0.85(prof) Amino-acid property: aliphatic

+1: continuing deviation from Uniref50 average
LIFS790102 [66] +1 and +2 +2: Correlation = 0.76(prof) Preference for extended conformations

+1: continuing deviation from Uniref50 average

ZVEL_TINY_ [64] -l Corr = 0.68(prof)
MOBILITY_2 [21] -l Corr = 0.6 (nrLS)

VINM940101 [67] -1l to -1 -2: Corr = 0.72(prof)
-3: Corr = 0.75(prof)
-4: Corr = 0.78(nrLS)
-5: Corr = 0.82(nrLS)
-6: Corr = 0.84(nrLS)
-7: Corr = 0.79(nrLS)
-8: Corr = 0.74(prof)
-9: Corr = 0.82(nrLS)
-10: Corr = 0.84(nrLS)
-11: Corr = 0.79(nrLS)

Size, bulkiness
Side chain mobility

Normalized flexibility average

Rest: continuing deviation from Uniref50 average

Fraction of site occupied with water

Rest: continuing deviation from Uniref50 average

KRIW790102 [68] =11 to -1 -2: Corr = 0.76(prof)
-6: Corr = 0.83(nrLS)
-7: Corr = 0.83(nrLS)
-8: Corr = 0.76(prof)

Buried helix (see Materials ~ -20 to -1 Remove false positives

and methods)

Helix with strongly hydrophobic sides folds
back to protein core and reduces flexibility
and accessibility of C-terminus

Corr, correlation; LS, learning set; nrLS, nonredundant; prof, profile.

(and listed in Tables 1 and 2 together with their rationale for
inclusion in Sp,).

The threshold for a query protein to be a predicted farnesyla-
tion or geranylgeranylation target by FT or GGT1, respec-
tively, is set to include all sequences in the learning set.
Hence, the self-consistencies or upper bounds of sensitivities
of the FT and GGT1 predictors are 100%. Additionally, the
robustness of the method has been cross-validated in jack-
knife tests (see Materials and methods). In the cross-valida-
tion over the complete scoring function, the rates of finding
known substrates after excluding them and their close
homologs from the learning procedure (and, therefore, lower
bounds for sensitivities) were 92.6% for FT and 98.6% for
GGT1, respectively.

As required for a good predictor [16], the scores are translated
into probabilities of false-positive prediction. For this pur-
pose, a sigmoidal function (analytically based on the extreme-
value distribution) is fitted to the distribution of score values
calculated from non-prenylatable proteins (see Materials and
methods). The general probabilities of false-positive predic-
tion (that complement the specificities to 100%) are
estimated to be 0.11% for the FT and 0.02% for the GGT1 pre-
dictor, respectively.

Capability to distinguish FT and GGT 1 substrates

Previously, the assignment of CaaX box substrate proteins to
either FT or GGT1 has been based mainly on the identity of
the final residue in the motif (position +3) where FT allows
several amino-acid types and GGT1 clearly prefers leucine
[13,27]. This view has not changed but it has become clear
that several substrates with leucine at position +3 can also be
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Physical property terms in the GGT | scoring function

Property Position Rationale Explanation
ARGP820103 [62] +3 Corr = 0.8(prof) Membrane-buried preference, lipid contact when
entering binding pocket
LEVM760105 [69] +1 to +3 Fisher = 1.36 Size limitation (radius of gyration of side-chain)
YUTK870101 [70] +l to +3 Fisher = 1.38 Hydrophobicity compensation (Unfolding Gibbs
energy in water, pH7.0)
ZVEL_CHARG [64] +1 to +3 LS composition General charge penalty
ZVEL_CHNEG [64] +1 to +3 LS composition Special negative charge penalty
ZVEL_ALL_I [64] +1 and +2 +2: Corr = 0.87(prof) Amino-acid property: aliphatic
+1: continuing deviation from
Uniref50 average
LIFS790102 [66] +1 and +2 +2: Corr = 0.77(prof) Preference for extended conformations
+1: continuing deviation from
Uniref50 average
FAUJ880101 [71] -1 and +2 Fisher = 1.52 Size, bulkiness (residues although 10 A apart, face
to same side of base pair)
FINA910103 [72] -1 Corr = 0.75(prof) Helix termination (for example, K, S favored,
D,E.LLV disfavored)
KARP850103 [73] -7 to-1 -1: Corr = 0.69(prof) Flexibility (GGT1 lysine preference)
-2: Corr = 0.70(prof)
-3: Corr = 0.7 | (prof)
-4: Corr = 0.74(nrLS)
-5: Corr = 0.75(prof)
-6: Corr = 0.70(nrLS)
-7: Corr = 0.78(nrLS)
VINM940101 [67] -1l to -1 -4: Corr = 0.72(prof) Normalized flexibility average
-5: Corr = 0.82(prof)
-6: Corr = 0.84(nrLS)
-7: Corr = 0.75(nrLS)
-8: Corr = 0.77(nrLS)
-9: Corr = 0.68(prof)
-10: Corr = 0.86(prof)
Rest: continuing deviation from
Uniref50 average
KRIW790102 [68] -1l to -1 -3: Corr = 0.70(prof) Fraction of site occupied with water

Buried helix (see Materials  -20 to -1

and methods)

-4: Corr = 0.73(prof)

-5: Corr = 0.84(prof)

-6: Corr = 0.8 (prof)

-7: Corr = 0.83(nrLS)

-8: Corr = 0.85(nrLS)

-9: Corr = 0.76(prof)

-10: Corr = 0.86(prof)

Rest: continuing deviation from
Uniref50 average

Remove false positives

Helix with strongly hydrophobic sides folds back
to protein core and reduces flexibility and
accessibility of carboxy terminus

modified (if only to a lesser extent) by FT and not only GGT1.
For example, in vitro studies have shown that motifs like
CVIL, CVLL, CAIL and CCIL (single-letter amino-acid code)
are valid for FT as well [28]. Mutation of the CVIA motif of
yeast A-factor to CVIL results in geranylgeranylated as well as
farnesylated proteins in vivo [29]. Also, RhoB (with a CKVL
motif) is known to be both farnesylated and geranylgeran-
ylated in vivo [30]. Similarily, substrate proteins ending with

phenylalanine, such as the CVIF of R-Ras2/TC21, are not spe-
cific to either enzyme and can be substrates to FT and GGT1
[31].

In the same way that FT can accept CaaX box motifs ending
in leucine and phenylalanine, GGT1 appears to tolerate
methionine at this position, which was previously thought to
direct farnesylation. This has important consequences in the

Genome Biology 2005, 6:R55
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Correlation between predicted and experimental FT/GGT| substrate
selectivity. The correlation of the difference between predicted FT and
GGT 1 scores with the difference of the experimentally measured
logarithmic affinities for FT and GGT| of the same substrates is plotted.

case of the oncoprotein K-Ras (in variants with CVIM and
CIIM motifs) which becomes geranylgeranylated in vivo
when farnesyltransferase is inhibited [32].

As we have experienced with our earlier predictors for myris-
toylation and PTS1 targeting, we find even some correlations
of the prediction scores with experimentally measured sub-
strate-enzyme affinities. Interestingly, the scores of the GGT1
predictor give better agreement with the experimental data
when divided by 3, in agreement with a threefold lower in
vivo activity of GGT1 compared to FT [5]. To estimate the
capability of the FT and GGT1 predictors to model the over-
lapping but distinct substrate specificities, we analyzed a set
of heterogeneous substrate motifs that have been measured
under the same experimental conditions for their affinities to
either FT or GGT1 [5] and we tried to correlate these experi-
mental data with our prediction scores. The set of motifs
(CVLS, CIIS, CIIC, CVLF, CVIM, CAIM, CAIV, CAII, CAIL,
CVVL, CIIL, and CTIL) contains a large fraction of examples
that have been previously shown to be cross-reactive between
FT and GGT1 or where the assignment based on simple heu-
ristics depending on hydrophobicity of the final residue fails.
In Figure 3, we have plotted the difference of predicted FT
and GGT1 scores against the difference of experimentally
measured logarithmic affinities for FT and GGT1. A correla-
tion of 0.74 indicates that the theoretical interaction model
implemented in the prediction function at least semi-quanti-
tatively resembles the relative substrate specificities between
FT and GGT1.

Prediction of prenylation by GGT2

Unlike FT and GGT1, substrate recognition by GGT2 is less
dependent on strictly defined carboxy-terminal motifs, but on
the complex formation of the substrate with an escort protein
[4]. As illustrated in Figure 4, the substrate-escort protein
complex then binds to GGT2 (consisting of the alpha and beta
subunit typical of prenyltransferases) and, thereby, position-
ing the flexible substrate carboxy terminus towards the site of
modification. Typically, the carboxy-terminal arrangement of
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cysteines is -XXXCC, -XXCXC, -XXCCX, -XCCXX or -CCXXX
and, if available, both cysteines in such a motif will be geran-
ylgeranylated. Currently, only the prenylation of Rab
GTPases [33] with the help of Rab escort proteins (REP; two
copies in higher organisms, otherwise only one copy) is
known for the enzyme GGT2 which is, therefore, also called
Rab geranylgeranyltransferase. Reports of lipid modification
of fungal casein kinase I apparently represent carboxy-termi-
nal palmitoylation [34] rather than the earlier postulated
GGTz2 prenylation [35].

Rab proteins are small GTPases (around 60 different have
been identified in humans) [36] that share the general fold of
the Ras superfamily as well as conserved residues in the
nucleotide-binding site. Distinct motifs have been identified
that are specific to the Ras, Rho, or Rab families [37]. By vir-
tue of contributing to the binding site of Rabs with their REP,
the Rab-specific F3F4 motif can be indirectly used to distin-
guish possible GGT2 substrates within the Ras superfamily
(see sequence logos in Figure 4). However, the REP interac-
tion motif (Rab F3F4) alone could be too short (13 residues)
to allow highly sensitive large-scale database scans with
thresholds that recognize the learning set (100% self-consist-
ency requires a bit score greater than 5). Interestingly, a
search with the final predictor against NCBI's nonredundant
database finds only 34 hits with the F3F4 region alone that do
not represent Rab proteins or their folds. To avoid these false
positives, the hit to the overall alignment of Rab proteins with
HMMer [38] (E-value < 0.1) is applied as additional predic-
tion criterion to simulate recognition of the correct fold of
related sequences.

Two alignments (F3F4 region and full length) were therefore
constructed and after removal of entries with a maximal
redundancy of 90% identity over the whole sequence length
(117 of 179 entries annotated in Swiss-Prot remaining), hid-
den Markov models (HMMs) were created and calibrated.
The choice of this methodology for the GGT2 prediction was
strongly influenced by the fact that the HMMer [38]
algorithm is well established in conservatively detecting fold
homologies for globular domains at the sequence level. The
final GGT2 prediction algorithm checks the carboxy termini
for cysteines (at least one cysteine among the five last resi-
dues) and parses the HMMer outputs to combine the searches
for final results. Estimates of false-positive prediction can be
derived from the HMMer E-values.

PrePS: Webinterface and EvOluation

The three tools to predict lipid modification by FT, GGT1 and
GGT2 are available as Prenylation Prediction Suite (PrePS),
which is accessible online [39]. Users can submit their query
sequences to all three or selections of the single predictors.
Details of the profile and physical property terms of the scor-
ing function are provided and can also be used to check and
rationalize whether and why certain query sequences or arti-
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Figure 4

Determinants of GGT2 prenylation. (a) Sequence logos [74] of Ras superfamily members around part of the Rab-REP interaction site (colored red in the
otherwise yellow GTPase structure). (b) Structural model of the Rab-REP-GGT2 prenylation complex based on PDB entries ILTX [77] and 1VGO [4].

REP| (green) has a prenyl-binding pocket which is proposed to be involved in the dual geranylgeranylation mechanism (bound geranylgeranyl is shown in
green). However, the catalytic attachment to the substrate cysteines takes place in the center of the GGT?2 alpha-beta complex (light and dark blue) where
the prenylpyrophosphate that will be transferred is also bound (blue space-filling representation, zinc in red). The structure was visualized using Swiss-Pdb

Viewer [59].

ficial constructs intended for membrane targeting might be
less suitable prenylation targets. Additionally, an option is
provided that allows the user to retrieve homologs of the
query protein from NCBI's nonredundant database using
BLASTP and automatically annotates them with their respec-
tive PrePS results. From the scores for the different predictors
(left screenshot in Figure 5) as well as the alignment of the
carboxy termini of homologous sequences (right screenshot
in Figure 5), the evolutionary motif conservation can be eval-
uated (evOluation) and used for further rationalization of the
biological importance of the predicted motif.

Comparison with alternative methods

Until now, the only available tool to predict protein prenyla-
tion has been the Prosite [40] search with the pattern
PS00294, which is also used in the PSORT II software [41].
However, this method can neither predict prenylation by
GGT2 nor can it distinguish between modifications by FT or
GGT1 and, hence, the attached anchor type. During
preparation of this paper, an excellent study by Beese, Casey
and colleagues [23] has been published that tries to define
rules for substrate selectivity by crystallographic analysis of
FT and GGT1 complexed with eight cross-reactive substrates.
These detailed descriptions of the binding-pocket interac-
tions of a few selected substrate peptides are in good agree-
ment with the motif characteristics identified in this work.
While the information gathered from the structural analysis
exceeds the capability of any other purely theoretical method

to judge interaction for the specific resolved enzyme-sub-
strate pairs, it is difficult to generalize an interaction model
from such a small dataset only on the basis of amino-acid con-
straints at single motif positions. Hence, applying these rules
to a more restrictive Prosite-style pattern fails to identify
around 30% of substrates experimentally verified in
tetrapeptide interaction assays. When taking a closer look at
known substrates that are not recognized by the rules of
Beese, Casey and colleagues [23] it becomes apparent that
this is mainly due to only a few factors. These are the exclu-
sion of leucine at position +3 for alternative FT substrates
(known example CKVL of RhoB), the exclusion of phenyla-
lanine at position +3 for alternative FT substrates (known
example CVIF of R-Ras2/TC21), the exclusion of glutamine at
position +2 for FT substrates (known example serine/threo-
nine kinase 11 or LKB1 with the motif CKQQ) and the
exclusion of methionine at position +3 for alternative GGT1
substrates (known example CVIM of K-Ras). In addition, the
rules of Beese, Casey and colleagues [23] assign isoleucine
and valine at position +3 to GGT1 but not FT substrates. How-
ever, these two amino acids were shown to be valid for both
FT and GGT1, with at least comparable affinities [13].

The inadequacy of the Beese, Casey and colleagues [23] motif
in finding true-positive examples could be counteracted by
loosening the motif description, as is already the case in the
original Prosite entry PS00294, which nevertheless fails to
predict known substrates with glutamine (LKB1) or proline
(hepatitis delta antigen) at position +2. However, any reduc-
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Screenshot of the output provided by the PrePS server [39]. On the left is the prediction result for the query protein H-Ras (GenBank PO1112) and the
three prenylating enzymes. On the right, is shown the carboxy-terminal alignment and PrePS predictions of homologs of the query protein for evaluation
of evolutionary motif conservation. Note that H-Ras is predicted to be prenylated only by FT, whereas the homologs K-Ras and N-Ras can also be

prenylated by GGTI.

tion in motif stringency concomitantly results in a dramatic
increase in the number of false-positive predictions. Table 3
compares typical prediction parameters for the different
methods, if applicable. Neither the old nor an adjusted
Prosite pattern can compete with the performance of PrePS in
finding true substrates while, at the same time, only having a
minimal number of false positives. The short Prosite patterns
also do not take into account the linker region preceding the
CaaX box, which is not defined by clear amino-acid type pref-
erences but rather by general physicochemical property
restrictions. The answers of Prosite-style predictions are only
binary (yes/no), whereas PrePS gives continuous scores that
can be split into interpretable motif-region contributions and
that are shown to correlate with experimentally measured rel-
ative substrate affinities for FT or GGT1, respectively. Fur-
thermore, only PrePS includes prediction of prenylation by
GGT2 and provides an evaluation of evolutionary conserva-
tion of the prenylation motif among homologs of the query
sequence.

Medical implications and prediction examples

Farnesyltransferase inhibitors (FTIs) have been developed to
prevent prenylation of oncogenic Ras proteins and are cur-
rently undergoing phase II and III clinical trials [42]. While
FTIs have been suggested also to target parasitic diseases
[24,43], their efficacy as cancer treatments has been found to
be ambivalent in respect of different cancer types. This could
be due to the alternative prenylation of oncogenic proteins by
GGT1 under FT inhibition, such as K-Ras, in contrast to the
total inhibition of prenylation for unique FT substrates, such
as H-Ras [2,44]. Identifying these two types of substrate
behavior is critical for understanding FTT action as well as

identifying their real cellular targets [45,46]. One of the
applications of PrePS is in the distinction of substrates that
are specific to FT (FTI target) or GGT1 or that are modified by
both (less affected by FTIs).

We would like to mention here one example prediction of
PrePS for a protein that would be a candidate for a previously
unknown FTT target. The human nucleosome assembly pro-
tein I-like protein [47] (NAP1-like (GenBank:NP_004528))
has a CKQQ farnesylation motif that is further retained in
mouse, rat, frog, fish, fungi and plants, as predicted by PrePS.
This taxonomically widespread evolutionary conservation
would rather indicate a relevance of the lipid anchor for the
function of this protein, which is part of a family involved in
transcriptional activation and chromatin formation, includ-
ing histone binding [48] and nucleocytoplasmic shuttling
[49]. The lack of the ability to be alternatively prenylated by
GGT1 and, hence, being a unique FT substrate and putative
FTI target, is also conserved in the other organisms, possibly
pointing to the importance of the specific farnesyl anchor
length. It should be noted that this protein is not predicted by
the Prosite pattern PS00294 nor by the pattern derived from
the rules of a few substrate-enzyme structures [23], but there
exist other experimentally verified examples where the same
CaaX box motif CKQQ has been shown to be farnesylated
(yeast Pex19p [50] and human serine/threonine kinase 11

[51]).

While this paper was in preparation, farnesylation of the
NAPi-like protein has been suggested experimentally
through a special tagging and purification technique [52], giv-
ing support to the PrePS prediction. The same analysis, how-
ever, also suggests farnesylation of annexin A2 (GenBank

Genome Biology 2005, 6:R55

-
o,
o
]
o
o
[=§
]
o
w
[]
Y
5
fal
=



http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=P01112
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_004528

R55.10 Genome Biology 2005,

Volume 6, Issue 6, Article R55

Table 3

Maurer-Stroh and Eisenhaber

http://genomebiology.com/2005/6/6/R55

Comparison of prediction performances

FT GGTI
Prosite PS00294 Beese, Casey and PrePS FT Prosite PS00294 Beese, Casey and PrePS GGTI
colleagues' rules colleagues' rules

Sensitivity | 85%* 72% 100% 95%* 67% 100%
Sensitivity Il NA NA 92.6/97.9%t NA NA 98.6%
Probability of false positive 17.1%* 9.9% 6.3% 17.19%* 10.0% 1.2%
prediction (POFP) for -CXXX

motifs (GenBank sequences)

POFP -CXXX 'cytoplasmic'# 18.2%* 8.9% 5.1% 18.2%* 8.6% 1.4%
POFP -CXXX 'nuclear'* 13.9%* 10.5% 5.5% 13.9%* 9.6% 1.1%
POFP -CXXX 'membrane't 17.5%* 10.3% 3.8% 17.5%* 12.0% 0.8%
POFP --CXXX 'extracellular'$ 8.6%* 7.9% 3.3% 8.6%* 9.0% 0.2%
Overall probability of false positive 0.29%* 0.16% 0.11% 0.29%* 0.17% 0.02%

prediction (GenBank sequences,
assuming 1.7% with -CXXX)

*Prosite pattern PS00294 does not distinguish between prenylation by FT and GGTI.

Sensitivity rises to 97.9% when the exceptional motif CRPQ of hepatitis delta antigen is removed. For details see Materials and methods. Sensitivity
| is the rate of finding known substrates from described learning set = self-consistency. Sensitivity Il is the rate of finding known substrates after their
exclusion (including homologs) from the learning set = cross-validation (see Materials and methods). Probabilities of false-positive predictions (POFP)
complement the specificities to 100% (Specificity = 100 - POFP). The first listed POFP estimates the rates of false positives among query proteins that
have a canonical -CXXX motif (which corresponds to 1.7% of all sequences). Below are estimations of POFPs for subsets of Swiss-Prot proteins that
differ in their annotated subcellular localization (see Materials and methods). The final POFP is the estimate for false-positive predictions for all
sequences (for example, when analyzing complete proteomes or large databases), independent of existence of a -CXXX motif. Formatting signifies:

best (bold), intermediate (plain text), worst (italic) performance.

accession number P07355) terminating in a CGGDD motif,
which is not at all predicted by PrePS as it is mechanistically
unlikely to be processed by farnesyltransferase. Another
rather surprising prediction resulting from the tagging exper-
iment is the farnesylation of Rab21 (Q9UL25), which has a
double cysteine motif followed by three additional residues
(CCSSG) which, at least formally, resembles a CaaX box. Rab
proteins with CaaX boxes such as Rabs (CCSN), Rab8 (CVLL/
CSLL), Rab11 (CQNI) and Rab13 (CSLG) are usually modified
by GGT2 in vivo [6,53,54] but Rab8 and Rab11 were shown
also to be modified by GGT1 and FT in vitro [6,55]. PrePS pre-
dicts Rab21 to be geranylgeranylated by GGT2, but the pre-
diction limit for farnesylation is not missed by far. The
evOluation shows that the Rab21 orthologs in Xenopus (Gen-
Bank AAH60498.1) and Drosophila (AAH60498.1) share the
double cysteines but their motif is different and shorter by
one residue, pointing to a higher importance of the conserva-
tion of the cysteine doublet than the rest of the motif. The
evOluation, furthermore, shows that Rabs is the most closely
related prenylated Rab-family member. Interestingly, both
cysteines in the CCSN CaaX box motif of Rabs were shown
not only to be geranylgeranylated by GGT2 in vivo but are
also required for proper localization and function of the
GTPase [54]. Hence, a similar scenario for the two cysteines
of the Rab21 prenylation motif cannot be excluded.

A complete analysis of large-scale predictions of prenylated
proteins ranked by functional importance as estimated by

evolutionary motif conservation and medical implications
will be published in a follow-up work.

Materials and methods

Correlation of positional amino-acid frequencies with
physical property scales

We identified physicochemical requirements for each motif
position by correlating 20-dimensional vectors filled with the
positional frequencies of occurrence of the 20 amino-acid
types in the carboxy-terminally aligned learning set with a
library of over 650 amino-acid physical properties [20,21].
This has been done over a largest subset of the learning set
with removed redundancy of greater than 40% identity in the
last 30 positions (nonredundant learning set = nrLS) and
over positional vectors filled with frequencies derived from
the profile (= prof) that has been corrected for redundancy
with the position-specific independent counts (PSIC) method
[56]. Such correlations have been estimated previously [12] to
be significant for confidence levels & = 0.0025 and &= 0.001
if the values are greater than 0.62 and 0.7, respectively.

Fisher criterion to find interpositional correlations
The Fisher ratio F of the sum of variances of single positions
with the variance over multiple positions for pairs and triplets
of positions is calculated, allowing gaps of up to two residues
between pairs.
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FTb Hs RPWLCYWI P FCG GRCNKLVBGCYSFWQ LEx
FTb Tn RPWLCFWI FCG GRCNKLVBGCYSFWO L8k
FTb Dm SBRAWCVYWI FCG GRTNKLVBGCYSFWV IBK
FTb Ag SBRPWMVYWI FCA GRTNKLVBGCYSFWO IBK
FTb Ce RSWMCYWG I FCA GRTNKLVBGCYSFWQ K
FTb Sp RAWMV YWE S FCA SGRSNKLVEG WV K
FTb Sc PWMLYWI FCA CGRSNKLVBGCYSFWV K
FTb At ANRPWLCYWI cG GRTNKLVBGCYZIFWO K
GGT1b At  RVDKDVVAKWV ca GRTNKPS FWI SKF
GGT1b Sc  GDHLGWMRKHY DSDBLRFC sca GRENKE. FWC SKN
GGT1b Sp [BDDRKSWIEWI S FCA NGRTNKD Wy SKT
GGT1b Ce  PERROAYIDWI SHsS FCA HGRAHKPD, FWI €KY
GGT1b Ag [PTFRQDICNWI S FCA IGRP KP FWI SKW
GGT1b Dm  PQLRODIIDWI S FCA IGRPNKP FWI BKW
GGT1b Tn  [--KNVMIEWI S ca HGRPNKP FWV AKW
GGT1b Hs N--KDDIIEWI S FCG HGRPNKP FWV AKW
GGT1b Mm  N--KDDIIEWI S FCG HGRPNKP FWV AKW
GGT1b Rn  N--KDDIIEWI S FCG HGRPNKP FWV AKW
68 76 120 168 226 261 276 310 312 322
Figure 6

Alignment of FT and GGT | beta subunits (FTb, GGT Ib) in the regions of binding-pocket residues (marked with arrow) using ClustalX [57]. Residue ranges
shown above and below correspond to the numbering in the PDB structures of rat FT beta (PDB 1D8D) and GGT| beta (PDB IN4Q), respectively.
Accession numbers are as follows (GenBank unless indicated otherwise): Hs (Homo sapiens) FTb, NP_002019; GGT b, NP_005014; Mm (Mus musculus)
NP_666039; NP_766215; Rn (Rattus norvegicus) PDB ID8D; IN4Q; Tn (Tetraodon nigroviridis) CAG09215; CAF904630; Dm (Drosophila melanogaster)
NP_650540; NP_525100; Ag (Anopheles gambiae) XP_321357; XP_317045; Ce (Caenorhabditis elegans) NP_506580; NP_496848; At (Arabidopsis thaliana)
NP_198844; NP_181487; Sp (Schizosaccharomyces pombe) NP_594251; NP_594142; Sc (Saccharomyces cerevisiae) P22007; NP_01 1360. Standard ClustalX

coloring (according to conserved amino acid type).

i (1)
F=—1 1
o (iipe )

The Fvalues for probabilities p = 0.05 are taken as thresholds
for evaluating significance of interdependence of physical
properties between motif positions. These are 1.288 for the
FT and 1.355 for the GGT1 nonredundant learning set,
respectively.

Enzyme-specific binding pocket residue conservation

To identify regions in the FT and GGT1 binding pockets that
are characteristic for the respective enzyme, we analyzed the
pattern of residue conservation in vicinity to the CaaX sub-
strate peptide and the prenylpyrophosphate (Figures 2 and
5). Alignments were created with FT and GGT1 beta subunits
of a diverse subset of organisms (see legend of Figure 6) using
ClustalX [57]. The conservation of alignment positions was
measured using al2co [58] with the Henikoff-weighted vari-
ance-based options. The enzyme-specific conservation was
calculated as conservation values in the FT or GGT1 align-
ments minus conservation values in a joined FT+GGT1 align-
ment (Figure 6) and then mapped to the binding pocket
surface using a customized script in Swiss-Pdb Viewer [59].
Color transitions from white to yellow to red represent
increasing conservation difference, where red signifies the
highest enzyme-specific conservation. White parts are not
characteristically different between FT and GGT1, but might
also be well conserved between the two enzymes. As the
observed differences in the binding pocket conservation
relate to features of the enzyme and not the substrates, this

information could not be taken directly into account in our
scoring scheme. Indirectly, however, the resulting image mir-
rors the requirement for conservation also for the substrate
peptides and, thereby, confirms the relative importance of
motif positions as estimated by the Shannon entropy (see
below).

Prediction score function

Construction and calculation of the scoring function essen-
tially follows the methodologies [7,16,60] applied to the pre-
diction of GPI anchors [8], myristoylation [9] and PTS1
peroxisomal targeting [10] and is summarized shortly below
with emphasis on additions and problem-specific variations.

The composite score function consists of a profile and physi-
cal property term.

S= Sproﬁle + Sppt (2)

The profile term S, 5

The profile matrix is calculated using the PSIC algorithm to
account for redundancy in the learning set. The frequency of
occurrence f{a,i) of an amino acid type a at a given alignment
position 7 is down-weighted proportionally to the number of
other positions that are identical in sequences sharing a at 1,
resulting in subscores Spgc(a,?) representing the natural log-
arithms of these redundancy-corrected frequencies. These
are summed over the respective regions (+3, +2, +1 and -1 to
-11)

Y. Sesic(ai) (3)

ieregion

Sregion =
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Relative weightings of motif positions in profile term

Position(s) FT GGTI

-11 to -1 0.07 0.07

+1 0.15 0.14

+2 0.29 0.41

+3 0.17 0.42

before they enter S, ge: The physical property term S,
The primary role of the physical property term is to exclude
query sequences that do not fit into the determined physical

Sprofile = Z @profileCregionSregion ( 4) propert}.r Proﬁle of the motif (§ee Figure 1). Hence, }t does got

regions add positive scores for compliance but only penalizes devia-

Orofile 18 @ normalization factor to compensate for differing
lengths of the regions and is derived from:

a;rlome - profilelength = 2 Ciegion - regionlength (5)

region

Cregion 1S 2 relative weighting of motif regions. We propose a
rational basis for its approximated computation. C,, is
derived from the average Shannon entropies of the regions in
the alignment of the nonredundant learning set sequences.
Shannon's information theoretic entropy has already previ-
ously been investigated as measurement of sequence
variability in alignment positions and residue conservation
[61]. We calculate the average of the exponential of the nega-
tive Shannon entropy as conservation measurement

» exp(

ieregion

§ LLVR log Ng;
N N

a=1

Cregion -

, (6)

regionlength

where n, ;is the number of occurrences of amino-acid type a
at the investigated position i of the region and N the total
number of sequences in the alignment. Only amino-acid types
that occur at least once (n,; > 1) are included in the sum. In
order to avoid overly precise values, the final values are
rounded up to the last decimal that showed variation in the
conservation measure when comparing the small learning set
based on Swiss-Prot annotation with the larger learning set
described in this work. The position of the absolutely
conserved cysteine in the CaaX box would have the maximum
conservation value of 1. Table 4 lists for the regions +1,
+2, +3 and -11to -1.

Cregion

tions from physical property requirements of the motif. These
requirements have been identified as described above (listed
in Tables 1 and 2; including rationale for inclusion into Sppr)
and the biophysical meaning discussed earlier.

As an example, a penalty for a physical property P of the query
being greater than the average physical property P; over the
nonredundant learning set (with o; being the corresponding
standard deviation of a Gauss-like distribution) can be
defined as follows:

o if P<P;

Ti(P)= ~(P-P;)/(203) if P>P; 7)

The natural logarithms (to be comparable to the profile score)
of these single terms enter S, as a sum with a term-specific
weighting factor ¢;that emphasizes varying importance of the
single terms.

13
Sppt: ZajTJ (8)
Jj=o
As part of S, the FT and GGT1 score functions also include

a penalty for query proteins when the carboxy terminus
appears inaccessible as a result of structural constraints. For
example, helices with strongly hydrophobic sides are either
buried in the structure or fold back to the protein core and
reduce the flexibility and accessibility of the carboxy termi-
nus. We recognize these if hydrophobic residues (LIVMFYW)
appear in patterns like 1,i+3,i+6 (hXXhXXh) or i,i+3,i+7
(hXXhXXXh) or i,i+4,i+7 (hXXXhXXh) within 20 residues
preceding the cysteine of the CaaX box.

Cross-validation (jackknife) tests

We have performed three jackknife tests to validate the
robustness of our predictors. First, cross-validation over the
whole scoring function (Sp.me + Sy recalculated after

Genome Biology 2005, 6:R55
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removal of the entry to be validated from the learning set)
resulted in sensitivities of 99.4% for FT and 99.8% for GGT1,
respectively. This generally indicates that the learning sets
are large enough for the method not to suffer from removal of
individual entries and, hence it should also be able to find
valid motifs not yet included in the learning set. At the same
time, we acknowledge that the similarity of sequences within
homologous groups in the learning set influence the above
estimated sensitivity. However, we emphasize that the values
calculated for the profile matrix vary even when only one
sequence from a group of homologs is left out, since the
method used for profile extraction [56] does take into account
such redundancy with both sequence- and position-specific
weightings.

To address the role of homologous sequences remaining in
the learning set for jackknife tests, we have extended the
cross-validation to the more stringent case where not only the
sequence to be predicted is excluded from the learning proce-
dure but also its close homologs (estimated by a threshold of
40% sequence identity over the 30 carboxy-terminal
residues). We find that in the case of the predictor for GGT1,
the sensitivity of 98.6% is very close to the first jackknife test.
For the FT predictor, a sensitivity of 92.6% is obtained in this
test, which is only slightly lower than in the other jackknife
procedures. The decrease can be almost exclusively attributed
to the large group of highly similar sequences of hepatitis
delta antigen that all share the uncommon motif CRPQ with
both arginine at position +1 and proline at +2 being rather
exceptional amino acids. Hence, the CRPQ sequences remain
below the prediction threshold in the jackknife test if no
example of this motif is present in the learning set. When
leaving the CRPQ group out of the cross-validation, the FT
predictor is calculated to have a sensitivity of 97.9%.

A third cross-validation test aims to elucidate whether the 39
parameters (13 terms with weightings, averages and vari-
ances, see Equations 7 and 8) introduced through the physical
property terms in S, are overfitting the learning data. To
exclude bias through similar sequences in homologous
groups, the test was executed only over the learning set after
removing redundancy (see section on correlation analysis
above). Sppt alone is recalculated after removal of the entry to
be validated from the parameter calculation procedure. The
obtained sensitivities of 100% for FT and 99.8% for GGT1
indicate that the parameterizations of physical property
terms in S, are not overfitting the learning data.

Probability of false-positive prediction

To estimate probabilities of false-positive prediction, a set of
sequences had to be defined whose carboxy-terminal amino-
acid pattern should not be subject to selection for a valid CaaX
prenylation motif. This is fulfilled for sequences in the NCBI
nonredundant database lacking a cysteine at the fourth posi-
tion from the carboxy terminus. Hence, any compliance with
motif restrictions of such sequences apart from the fourth last
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position could only be attributed to random or at least pre-
nylation-independent appearance. Following earlier experi-
ence with GPI- and myristoyl-anchor prediction [8,9], a
polynomial extreme-value distribution function has been fit-
ted to the scores obtained for the described sequence set when
ignoring the requirement of a CaaX box cysteine in the proce-
dure. The probability of obtaining a score S greater than a
threshold score S, can be formulated as follows:

P(§>Sp)=1-¢¢ "

(9)

f(sth>=§1z1~<sth—u>" (10)

A polynom of the sixth degree was used to improve the resid-
ual fit. Polynoms with degrees higher than six would not
result in an increase of the relative improvement of the resid-
ual. The probabilities of false-positive prediction for scores at
the prediction threshold are extrapolated to 6.3% for FT and
1.2% for GGT1 for sequences that contain a cysteine at the
fourth-last position (canonical CaaX box). Given that appear-
ance of a cysteine at this position is rare in databases (1.7%),
the independent general probabilities of false-positive predic-
tion by FT and GGT1 for all protein sequences are as low as
0.11% and 0.02%, respectively. This corresponds to specifici-
ties 0f 99.89% and 99.98%.

Since the subcellular context of a protein can be relevant to
judging the likelihood of in vivo prenylation when a corre-
sponding motif has been predicted, we also tried to estimate
probabilities of false-positive prediction for differently local-
ized subsets of proteins. These subsets were retrieved from
the Swiss-Prot database [22] and assigned according to the
following keywords in the 'Subcellular Location' comment
lines: 'cytoplasmic' (24,284), nuclear' (9800), 'membrane’
(24,823) and 'extracellular' (509). Parentheses indicate the
number of unambiguously annotated examples per subset.
Again, only proteins lacking a -CXXX motif were taken into
account, to ensure prenylation-independent selection of car-
boxy-terminal amino-acid residues. Although there appear to
be some subcellular localization-specific fluctuations of the
probabilities of false-positive prediction (partly due to limited
or differing subset sizes), the relative advantages among the
methods evaluated seem to remain stable (see Table 3).
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