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Summary

The photosensitive molecule rhodopsin and its relatives consist of a protein moiety - an opsin -
and a non-protein moiety - the chromophore retinal. Opsins, which are G-protein-coupled
receptors (GPCRs), are found in animals, and more than a thousand have been identified so far.
Detailed molecular phylogenetic analyses show that the opsin family is divided into seven
subfamilies, which correspond well to functional classifications within the family: the vertebrate
visual (transducin-coupled) and non-visual opsin subfamily, the encephalopsin/tmt-opsin subfamily,
the G -coupled opsin/melanopsin subfamily, the G,-coupled opsin subfamily, the neuropsin
subfamily, the peropsin subfamily and the retinal photoisomerase subfamily. The subfamilies
diversified before the deuterostomes (including vertebrates) split from the protostomes (most
invertebrates), suggesting that a common animal ancestor had multiple opsin genes. Opsins have a
seven-transmembrane structure similar to that of other GPCRs, but are distinguished by a lysine
residue that is a retinal-binding site in the seventh helix. Accumulated evidence suggests that most
opsins act as pigments that activate G proteins in a light-dependent manner in both visual and
non-visual systems, whereas a few serve as retinal photoisomerases, generating the chromophore

used by other opsins, and some opsins have unknown functions.

Opsins are membrane proteins with molecular masses of
30-50 kDa that are related to the protein moiety of the
photoreceptive molecule rhodopsin; they typically act as
light sensors in animals [1-4]. Photoreceptive proteins
similar to the animal opsins in three-dimensional structure
but not in amino-acid sequence have been found in archaea,
bacteria, fungi, and a green alga, Chlamydomonas rein-
hardtii [5,6]. These non-animal opsins function as light-
driven ion pumps or light sensors but there is no evidence
that they are structurally related to animal opsins, so they
are not considered further here.

Gene organization and evolutionary history

Since the first sequence of an opsin, bovine rhodopsin, was
determined by conventional protein sequencing in 1982
[7,8] and ¢cDNA sequencing in 1983 [9], more than 1,000
opsins have been identified. The molecular phylogenetic
tree shows three large clusters, and detailed analyses have
revealed that the opsin family is divided into seven

subfamilies; there is less than about 25% amino-acid simi-
larity between subfamilies but more than about 40%
among members of a single family (Figure 1). The division
into subfamilies corresponds well to functional classifi-
cation of opsins, which is based partly on the type of
G protein coupled to each of these G-protein-coupled
receptors (GPCRs). The seven subfamilies are as follows:
the vertebrate visual (transducin-coupled) and non-
visual opsin subfamily; the encephalopsin/tmt-opsin sub-
family; the G,-coupled opsin/melanopsin subfamily; the
G,-coupled opsin subfamily; the peropsin subfamily; the
retinal photoisomerase subfamily; and the neuropsin sub-
family. Members of the Gg-coupled opsin/melanopsin,
G,-coupled opsin, encephalopsin/tmt-opsin and retinal
photoisomerase subfamilies are found in both deuteros-
tomes (such as cephalochordates and vertebrates) and pro-
tostomes (such as molluscs and insects; Figure 1),
suggesting that diversification of the subfamilies occurred
much earlier in animal evolution than the deuterostome-
protostome split [10].
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A molecular phylogenetic tree of the opsin family. The tree was inferred by the neighbor-joining method [81]. It shows that members of opsin family are
divided into seven subfamilies, whose names are given on the right of the tree. Common names of species shown: Anopheles, mosquito; Branchiostoma,
amphioxus; Ciona, ascidian; Drosophila, fruit fly; Patinopecten, scallop; Platynereis, polychaete annelid worm; Procambarus, crayfish; Schistosoma, blood fluke;
Todarodes, squid. Abbreviations: LW, long-wavelength-sensitive opsin; SW, short-wavelength-sensitive opsin; MW, middle-wavelength-sensitive opsin; Rh,
rhodopsin; RGR, retinal G-protein-coupled receptor. Other abbreviations are protein names; where only a color is given for a protein name, it refers to
a cone opsin that detects that color.
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The visual and non-visual opsin subfamily contains verte-
brate visual and non-visual opsins. The visual opsins can be
further subdivided into cone opsins and rhodopsin, which
have distinct molecular properties arising from differences
in the residues at positions 122 and 189 of the amino-acid
sequence [11,12]. The cone opsins can be further divided
into four subgroups, which correspond well with their
absorption spectra: long-wavelength opsins (LW or red),
short-wavelength opsins (SW1 or UV/violet and SW2 or
blue), and middle-wavelength opsins (MW or green; see
Figure 1) [1,3,13]. Note that other nomenclatures are also
used to specify these four groups. Most vertebrates, includ-
ing the lamprey [14], have four kinds of cone-opsin genes,
whereas mammals lack the SW2 and MW genes. Interest-
ingly, humans have regained the green-sensitive opsin by
duplication of the LW gene, so the green cone opsins of
humans and lower vertebrates belong to different opsin sub-
groups (LW and MW) [15,16]. In the human genome, the red
and green opsin genes are localized in tandem.

Lower vertebrates, including lampreys, have several non-
visual opsin genes that are members of the same subfamily
as the vertebrate visual opsins. The first non-visual opsin to
be discovered was pinopsin [17], which is involved in pho-
toreception in the pineal organs of birds [17,18] and lizards
[19]. Parapinopsin was first found in the pineal complex of
the catfish [20], and it has also been found in zebrafish and
Xenopus and more recently in the lamprey pineal [21]. ‘Ver-
tebrate ancient’ opsin (VA-opsin) was first found in the
salmon retina [22]; the lamprey also has an ortholog of VA-
opsin, called P-opsin [23]. The ascidian chordate Ciona has
an opsin (Ci-opsini) that is closely related to the vertebrate
non-visual opsins [24].

Within the other six subfamilies of opsins, members of the
encephalopsin/tmt-opsin subfamily were first found in
mouse and human [25], and homologs were recently identi-
fied in the teleosts [26] and interestingly in invertebrates,
the mosquito Anopheles [27] and the marine ragworm
Platynereis [28]. Phylogenetic analysis shows that
encephalopsin/tmt-opsin subfamily probably clusters most
closely with the vertebrate visual and non-visual opsin sub-
family (see Figure 1). Melanopsin is an important vertebrate
non-visual opsin, but because it is more similar in amino-
acid sequence to invertebrate G -coupled visual opsins, it is
not classified as a member of the vertebrate visual and non-
visual opsin subfamily (see Figure 1); melanopsins have been
found in many vertebrates, from fish to humans [29,30].
Members of the G,-coupled opsin subfamily have been
found in molluscs and in the chordate amphioxus [10,31] but
not in human, mouse, zebrafish or Drosophila. Neuropsins,
recently identified in mouse and human [32], are phylo-
genetically distinguishable as a subfamily but little is known
about them. Peropsins are known from a range of verte-
brates, from fish to human [33], and an ortholog was
recently found in amphioxus [31]. Finally, members of the
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Table |

Chromosomal locations and numbers of introns of the nine
human opsin genes

Opsin Chromosomal location Number of introns
Rhodopsin 3q22.1 4
Blue opsin 7q32.1 4
Red opsin Xq28 5
Green opsin Xq28 5
Encephalopsin 1q43 3
Melanopsin 10g23.2 9
Peropsin 4q25 6
RGR 10q23.1 6
Neuropsin 6pl2.3 6

retinal-photoisomerase subfamily, which includes retinal
G-protein-coupled receptor (RGR) and retinochrome, are
found in vertebrates and molluscs [34,35]; an RGR homolog
has also been found in an ascidian [36].

The gene organization of different vertebrate opsins pro-
vides further information about relationships among the
subfamilies [32,37,38]. The numbers of introns in the
human opsin genes are shown in Table 1 as an example.
Three of the four or five introns in the vertebrate visual and
non-visual opsin genes are shared at conserved positions
with encephalopsin/tmt-opsin genes, consistent with the
close relationship between these subfamilies found by phylo-
genetic analysis. The peropsin, retinal photoisomerase
(RGR) and neuropsin subfamily genes have six introns,
which are at positions different from those of vertebrate
visual and non-visual opsin genes. Two and three of the per-
opsin introns are conserved in the RGR of the retinal photoi-
somerase subfamily and the neuropsin gene, respectively,
again confirming a close evolutionary relationship between
these subfamilies. The melanopsin gene has nine introns at
positions different from those of other opsin genes.

Recent genome studies have also provided us with informa-
tion on the loss of opsin genes during animal evolution. No
opsin gene has been found in Caenorhabditis elegans
[39,40]. Drosophila has seven opsin genes, all of which
belong to the G -coupled opsin/melanopsin subfamily [41].
In comparison, humans have nine opsin genes (Table 1),
which are spread over six of the seven subfamilies (Figure 1).
A PCR study [31] revealed that amphioxus has at least six
opsin genes from four subfamilies (Figure 1); deuterostomes
therefore appear to have opsins from more subfamilies than
do protostomes.

Characteristic structural features
Opsins share several amino-acid motifs, including seven
transmembrane helices, with other G-protein-coupled
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receptors (GPCRs) of the rhodopsin superfamily. The first
primary sequence of a member of the rhodopsin superfamily,
the B-adrenergic receptor, was determined in 1986 [42], and
since then, the opsin family has been considered one of the
typical members of the superfamily. As shown in Figure 2a,
several amino-acid residues are highly conserved among the
opsin family members; about half of these are conserved in
all GPCRs of the rhodopsin superfamily [43]. All opsins bind
a chromophore: the vertebrate visual and non-visual opsins,
the invertebrate G -coupled opsins, and the G,-coupled
opsins all bind 11-cis-retinal, whereas the photoisomerases
and the peropsins bind all-trans-retinal (Figure 2b). The
chromophores of the other opsins are uncertain.

The crystal structure of bovine rhodopsin has been solved
[44-46] (Figure 2c¢). K296 (in the single-letter amino-acid
code) in helix VII binds retinal via a Schiff-base linkage, in
which the nitrogen atom of the K296 amino group forms a
double bond with the carbon atom at one end of the retinal
(Figure 2d). The key residue K296 is important for light
absorption and its presence or absence can be used to judge
whether or not a newly found rhodopsin-type GPCR is really
an opsin. The counterion is another important residue: it is a
negatively charged amino acid that helps to stabilize the pro-
tonated Schiff base (see below). In the vertebrate visual and
non-visual opsin subfamily, the highly conserved residue
E113 serves as the counterion [47-49], whereas in other
opsins position 113 is occupied by other amino acids (tyro-
sine, phenylalanine, methionine, or histidine) and the highly
conserved E181 serves as the counterion. This difference
suggests that counterion replacement has occurred during
the molecular evolution of vertebrate visual and non-visual
opsins [50,51].

Localization and function

Functions of the vertebrate visual and non-visual
opsins

Two photoreceptor cells are involved in vision in most verte-
brates - rod and cone cells - and they are distinguishable by
their shapes. The rod and cone cells contain different opsins:
rods have rhodopsin, which underlies twilight vision, and
cones have cone opsins, which underlie daylight (color)
vision [1]. When excited by light in rod and cone cells,
rhodopsin and cone pigments drive an enzyme cascade
involving G proteins and their effectors: the excited pig-
ments activate the G-protein transducin, which stimulates
c¢GMP phosphodiesterase, resulting in a decrease in intracel-
lular cGMP concentration. This decrease leads to closure of a
cGMP-gated cation channel, leading to the hyperpolarization
of the visual photoreceptor cell. In general, rods and cones
contain distinct sets of phototransduction molecules (trans-
ducin, phosphodiesterases and channels) [52]. It should be
noted that the visual opsins are also expressed in non-visual
photoreceptor cells, including the pineal photoreceptor cells
that are found in most non-mammalian vertebrates.

http://genomebiology.com/2005/6/3/213

The lower-vertebrate non-visual opsin genes are expressed
in photoreceptor cells other than rods and cones. For
example, pinopsin is involved in photoreception in the
pineal organs of birds [17,18] and lizards [19]. It is suggested
to activate both transducin and the G-protein G,, and there-
fore to drive two different phototransduction cascades
[53,54]. The parapinopsin recently found in the pineal organ
of the lamprey [21] is a UV-sensitive and bistable opsin with
stable dark and light-activated states. VA-opsin is found in
the salmon retina [22] but in amacrine and horizontal cells
(two kinds of neural cell in the retina), not in rod and cone
visual cells [55]. A splice valiant of VA-opsin called VAL-
opsin is localized to deep parts of the brain and the horizon-
tal cells of the zebrafish [56].

Functions of other subfamilies

The visual opsins of arthropods and molluscs belong to the
G,-coupled opsin group, which is different from the verte-
brate visual opsin group. They are localized to the microvilli
of the rhabdomeric photoreceptor cells, which are typical
visual cells of arthropods and molluscs and are morphologi-
cally different from vertebrate rods and cones. These opsins
are coupled to the signal-transduction cascades involving the
G protein G, and phosopholipase C [2,57-60] and leading to
depolarization of the cells in response to light. The different
subgroups of insect opsins have distinct absorption spectra;
this underlies insect color vision. Vertebrate melanopsins
are very similar to the Gg-coupled invertebrate opsins
[29,30]; mouse melanopsin has been reported from knock-
out studies to be involved in the response of the pupil to light
[61] and in the entrainment of circadian rhythm by light
[62]. As suggested by their close relationship to the
Gg-coupled opsins, melanopsin can be coupled to a
G,/phosopholipase-C cascade, similar to that used by the
invertebrate opsins [63-65].

Mouse encephalopsin (also called panopsin) is strongly
expressed in the brain and testes and weakly in other tissues
[25], and the teleost homologs are localized to multiple
tissues (they are therefore named teleost multiple tissue
(tmt) opsins) [26]. The functions of the encephalopsins and
tmt-opsins are unknown, but their close but distinct position
in the phylogenetic tree relative to the vertebrate visual and
non-visual opsins may mean that they are more likely to
have distinct functions.

Some invertebrates have photoreceptor cells - distinct from
the rhabdomeric photoreceptors - that are called ciliary
photoreceptors because their photoreceptive portions origi-
nate from cilia. Interestingly, the scallop (a bivalve mollusc)
has both kinds, and in the ciliary photoreceptor cells a novel
opsin has been found that is different from the G -coupled
one [10]. It colocalizes with a large amount of G -type
G protein and is thought to activate G, in vivo; it is therefore
named G, -coupled rhodopsin (or G, -coupled opsin). Elec-
trophysiological evidence suggests that scallop G -coupled
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Structures of opsins and of the chromophore retinal. (a) A model of the secondary structure of bovine rhodopsin. Amino-acid residues that are highly
conserved in the whole opsin family are shown with a gray background. The retinal-binding site (K296) and the counterion position (EI 13) are marked
with bold circles, as is EI81, the counterion in opsins other than the vertebrate visual and non-visual ones. CI10 and C187 form a disulfide bond.

(b) The chemical structures of the | |-cis and all-trans forms of retinal. (c) The crystal structure of bovine rhodopsin (Protein DataBank ID: 1U19 [PDB:
1U19]). The chromophore | | -cis-retinal, K296 and E|l |3 are shown in stick representation in the ringed area. (d) The structure of the Schiff base linkage
formed by retinal within the bovine opsin, together with the counterion that stabilizes it.
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rhodopsin elevates the intracellular ¢cGMP concentration
through light-dependent activation of G,, which leads to
hyperpolarization of the cell [66].

Neuropsins are localized to the eye, brain, testes and spinal
cord, but their functions are unknown. Peropsin was first
found in the RPE of the mammalian eye [33]. It binds all-
trans-retinal as a chromophore, and light isomerizes it to the
11-cis form [31] (Figure 2b). This photochemical property
indicates that peropsin may serve as a retinal photoiso-
merase, like retinochromes and RGRs [34,35].
Retinochrome and RGR, the members of the retinal-photoi-
somerase subfamily, bind all-trans retinal (Figure 2b) as a
chromophore [67,68] and are not coupled to G proteins,
unlike the visual opsins, which bind the 11-cis form of
retinal. Retinochrome and RGR have been identified in the
mollusc and vertebrate retinas, specifically in the inner seg-
ments of the visual cells [69,70] and in the retinal pigment
epithelium (RPE) [34], respectively. Irradiation of these two
pigments causes the isomerization of all-trans retinal to the
11-cis form [67,68], suggesting that these opsins enzymati-
cally generate the chromophore and supply it to the visual
opsins [70,71].

Mechanism

The function of most opsins except for the photoisomerases
can be divided into two parts: light absorption and G-protein
activation. Most opsins function through absorption of visible
light, but the chromophore retinal itself has an absorption
maximum in the UV region, not in the visible region. This
potential problem is solved by the opsins as follows. As previ-
ously described, retinal binds to K296 in helix VII through the
protonated Schiff base (Figure 2d); the protonation, which
results in the delocalization of  electrons within the retinal
molecule, shifts its absorption spectrum towards visible light.
In the protein, the proton on the Schiff base is unstable and a
counterion, a negatively charged amino-acid residue, there-
fore needs to be present in order to stabilize it.

Absorption of light (a photon) by retinal results in its pho-
toisomerization from the 11-cis to the all-trans form (Figure
2b). This is followed by a conformational change of the
protein moiety, eventually resulting in activation of the
G protein. Photochemical studies have identified some
spectroscopically distinguished intermediates that form
during bleaching of the vertebrate rhodopsin - ‘batho’,
‘lumi’, ‘meta I’, and ‘meta II’ - which appear on the picosec-
ond, nanosecond, microsecond and millisecond timescales
after light absorption, respectively [1]. Many biochemical
and biophysical studies have focused on the question of
what conformational changes take place in the protein
moiety during the formation of the active state of opsins,
especially the meta II intermediate of bovine rhodopsin.
The most notable hypothesis is that light triggers the rela-
tive outward movement of helices III and VI [72,73] to form
meta II, most likely following flipping-over of the retinal
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ring [74]. This movement of the helices could expose
G-protein-binding sites, such as the cytoplasmic loop
between helices V and VI [75,76]. This loop varies in
sequence among the different subfamilies and underlies
their selective coupling to different subtypes of G protein
[77,78]. It is believed that a similar helix motion occurs in
most members of the rhodopsin superfamily.

Frontiers

There are many unanswered questions concerning the func-
tions of the different opsins. Recently, genetic approaches
using knockout and/or transgenic animals have been used to
understand the function and/or the expression mechanism of
some opsins. Recent progress with RGR knockout mice con-
cluded that RGR serves as the photoisomerase of retinal in vivo
[71], and the function of melanopsin in the circadian clock has
been studied with mutant mice lacking photoreception through
rods and cones [62]. One interesting approach for investigating
why there are so many kinds of opsins is functional replace-
ment of one opsin with another and observing the altered phe-
notype. The first example of this approach was the
experimental replacement of rhodopsin with cone opsin in
transgenic Xenopus, by selective stimulation of the cone opsin
in a single rod cell that contained both cone opsins and
rhodopsins [79]. The knock-in’ technique could be most useful
for this kind of opsin-replacement experiment (H. Imai and Y.
Shichida, unpublished observations).

GPCRs are important targets for drug discovery, and the opsin
family is currently a good subject for such studies because it is
the only family for which the structure of a member has been
solved at high resolution. Structural studies of opsins could
provide valuable information for understanding how GPCRs in
general activate G proteins. Okada et al. [45] have investigated
the photochemistry of the rhodopsin crystal, which raises the
possibility of solving the structure of an active form of
rhodopsin (meta II) at high resolution (2.5A). The crystal
structure of the meta I photointermediate of rhodopsin has
recently been solved to around 5.5 A resolution [80]. The
crystallization of a complex of active rhodopsin (meta IT) with a
G protein could be one of the breakthroughs that help to
elucidate the G-protein-activating mechanism.
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