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In his 2001 book ‘Cells, Gels and the Engines of Life’ [1],

Gerald Pollack gives a highly entertaining and accessible

account of cell biology from the standpoint of polymer chem-

istry. The cytoplasm is indubitably gel-like, he says, so we

must expect it to have similar properties to other non-living

gels: cells should swell and shrink depending on ionic condi-

tions and undergo dramatic phase changes associated with

sol-to-gel transitions. In the broad sweep of published litera-

ture on living cells there is indeed abundant support for this

thesis, and Pollack is not the first to advance such views. But

probably no one else has made the argument so forcefully, or

taken it so far. Too far, perhaps, for when Pollack challenges

the role of the phospholipid bilayer as a permeability barrier,

or offers new and dramatically simplified explanations for

such well-understood phenomena as action potentials,

muscle contraction and mitosis, he leaves most professional

biologists behind [2]. This is unfortunate, since there is much

we do not know about the physical conditions existing in the

cytoplasm, and here Pollack says much that is relevant - one

should not throw out the baby with the bath water.

Cytoplasmic gels are associated in my mind with long flexible

polymers, which is why I thought about Pollack’s book

recently when reading about unstructured regions of proteins.

We all learned as students that proteins are made as linear

chains of peptide-linked amino acids that fold up into stable,

evolutionarily-determined three-dimensional structures -

right? In fact, wrong! It now appears that enormous

numbers of proteins are significantly unfolded under physio-

logical conditions. Some well-characterized proteins appear

to be almost completely unstructured in solution, such as the

actin-binding protein thymosin and the nucleoporins

involved in nuclear transport [3,4]. But many more are now

known to contain significant lengths of polypeptide chain

that are ‘natively unfolded’ under conditions of neutral pH in

vitro [5]. Indeed, the true extent of this phenomenon is only

just being appreciated, with the introduction of search

engines such as PONDR [6,7] developed by Keith Dunker

and colleagues and more recently disEMBL [8,9] developed

by Linding et al. These predictors are based on neural net-

works trained to recognize features such as the absence of

regular structures, high B factors (‘temperature factors’ used

as a measure of how much an atom vibrates about a position

specified by a crystallographic model) and missing coordi-

nates in X-ray diffraction data sets. When applied to test sets

of known proteins, the predictors with significant accuracy

pick out a variety of regions referred to in other contexts as

protein ‘loops’ or ‘linkers’ or ‘tethers’. Set loose on entire

databases, the predictors find disorder everywhere.

The abundance of unfolded sequences is astonishing.

According to a recent survey, about 5% of proteins in

Escherichia coli, 23% in Arabidopsis and 28% in mouse are

mostly disordered [10]. Evidently many sequences of this

kind are disordered only part of the time, actually folding up

when they bind to their target in the cell (often another

protein, but sometimes a molecule of DNA or RNA) [11].

Flexible regions are useful if you have to assemble protein

molecules into a large structure, such as a ribosome or a bac-

terial flagellum, since they allow subunits to wriggle into

place rather than being forced into rigid holes. Flexibility is

also advantageous if you want to recognize another protein

quickly and without binding too tightly, since entropy

ensures that your dissociation will be highly favored.
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Another intriguing role for unstructured regions of proteins

is in intracellular signaling. Extended regions of polypeptide

chain allow a protein to recognize more than one target or to

be modified in multiple posttranslational forms: indeed, a

more specialized sequence predictor has been used to find

unstructured targets of phosphorylation [12,13]. There are

also many examples in which lengths of polypeptide appear

to exist solely as random chains in solution, serving as

tethers that constrain the diffusive encounter of different

proteins (or domains of the same protein), as elastic tethers

or entropic springs.

Given their abundance, you might suppose that virtually

every corner of a cell is full of writhing polypeptide chains.

Well, it could be so… at least if we are allowed to generalize

from one particularly well-understood volume of cytoplasm.

The polar cluster of receptors that in Escherichia coli and

related bacteria detects attractants and repellents contains

five kinds of chemotaxis receptors associated on their cyto-

plasmic domains with six other proteins involved in down-

stream signaling. All of the proteins are known (we have a

complete inventory), all have been sequenced, and atomic

structures are available for all of the major domains [14].

The protein molecules - perhaps 20,000 in number - form a

distinct ‘compartment’ of the cell, about 300 nm in diameter

and perhaps 30 nm deep; and many of them have unstruc-

tured regions. The histidine kinase CheA, a large protein by

bacterial standards, has two tethers per monomer (four per

dimer) which link different domains and undoubtedly play a

crucial part in the catalytic cycle. The recently discovered

structure of CheZ, the protein that dephosphorylates CheYp

and is associated with the receptor cluster, includes two

unstructured regions, one long and the other short. Most

impressive of all, the carboxy-terminal regions of the major

receptor types, Tar and Tsr, consist of a length of perhaps 30

amino acids that so far as anyone can tell are without struc-

ture. These provide flexible tethers for enzymes involved in

receptor methylation, namely CheR and CheB (Figure 1)

[15].

Quite apart from the functions of these various lengths of

polypeptide there is the issue of how they are all crammed

together. The concentration of proteins in the cytoplasm

(20-30% by weight) is close to that at which some globular

proteins crystallize. If these molecules are in addition flexing

and writhing through the effects of thermal energy then a

rich set of possible behaviors emerges. For example, if flexi-

ble polymer chains come close enough to make contact and

restrict each other’s motion then the ‘solution’ will inevitably

become gel-like. Given the density of receptors and associ-

ated proteins in the polar cluster, it seems unavoidable that

this criterion will be fulfilled, in at least some regions. It also

follows that if, in the course of signal transmission, these

same flexible chains move from a randomly diffusing state to

one in which they fold up against a neighboring globular

protein, physical conditions might change very quickly.

Local regions of gel could rapidly transform into a sol-like

state, and vice versa. The consequences of such transforma-

tions are difficult to predict, but they could be quite dra-

matic. We should at least consider some of the phenomena

rehearsed in Pollack’s book [1], such as changes in ionic

balance, or the generation of localized currents of fluid.

A reversible association of flexible regions might also con-

tribute to receptor function, allowing influences to spread

across the cluster. Recent experiments show that the chemo-

taxis receptors in E. coli are not independent agents but that

they cooperate, one consequence being that the sensitivity,

or gain, of the system to small increments of attractants is

much higher than it would otherwise be [16]. Various theo-

ries have been proposed to account for this effect, including

models based on conventional allostery - the idea that the

conformation of one receptor can influence that of its neigh-

bors, rather like the influence of one domain of a hemoglo-

bin molecule on another [17]. Another idea that has been

suggested is that the signaling capabilities of receptors might

depend on a change in the flexibility, or degree of order, of

the receptors. An analysis of X-ray diffraction patterns of the

bacterial serine receptor suggests that this is more highly

ordered when completely methylated than in the half-

methylated state [18]. Given that methylation normally

accompanies an increase in activity in the system, this led to
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Figure 1
Flexible tails in chemotaxis receptors. Bacterial chemotaxis receptors
such as Tsr and Tar are transmembrane homodimers with long �-helical
coiled-coil domains. Sets of three dimers are associated at their
cytoplasmic ends with downstream signaling proteins such as CheA and
CheW. Carboxy-terminal regions of the receptors consist of about 30
amino acids with no obvious secondary structure and are thought to
serve as flexible tethers for the methylating enzyme CheR and the
demethylating enzyme CheB (not shown). Methylation sites are indicated
by small circles. A typical cluster of receptors on the bacterial surface
might contain several thousand such receptors in close proximity.
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the suggestion that structural order and signaling activity

are correlated. Binding of a ligand could therefore cause a

change in receptor flexibility that then spreads within the

cluster like discrete conformational changes. 

Changes in protein flexibility associated with ligand binding

have now been reported in a wide variety of other systems.

The binding of the small molecule biotin to the bacterial

protein streptavidin, for example, occurs with enormous

affinity (estimated at 1013-1014 M). Analysis of this interac-

tion using deuterium exchange with backbone hydrogens

shows that as binding occurs, the streptavidin structure

becomes better packed: there is a benefit in enthalpy but a

cost in entropy [19]. In fact, from a thermodynamic stand-

point, biotin binds very tightly precisely because it promotes

better packing of the streptavidin structure. Moreover, a

review of ligand-protein associations shows that a trade-off

between enthalpy and entropy is very widespread. Some

receptors work like the biotin-streptavidin system in that

binding promotes the protein structure; the catalytic effi-

ciency of many enzymes can also be increased in this way.

But there are also instances in which a ligand binds to a

protein with unfavorable enthalpy but favorable entropy

change. Examples include delta opioid and thyrotropin

receptors, adenosine G-protein-coupled receptors, and ionic

channels receptors gated by 5-HT, serotonin, and GABA

[20]. In all these cases, protein structure is in fact loosened

by ligand binding, and a relatively weak association is driven

mainly by entropic changes. Williams and colleagues [20]

relate these changes to a previously described ‘thermody-

namic discrimination’ shown by many different kinds of

receptors: if agonist binding is predominantly enthalpy-

driven then antagonist binding will be entropy-driven, and

vice versa. Put simply: if you want two ligands to bind to the

same receptor but produce radically different effects, you

can achieve this through their effects on the structure of the

receptor. Allow one to tighten up the structure, leading to

better packing within the protein itself and conceivably

increasing the degree of oligomerization; let the other ligand

loosen the structure and perhaps reduce oligomerization. 

I was sternly rebuked by a referee of an earlier version of this

article for terminological inexactitude in using the terms

‘flexibility’, disorder’, ‘unstructured chains’ and so on. Yes, I

admit it: crystallographic temperature factors are not the

same thing as structural disorder; nor are atomic vibrations

about a fixed point the same as the writhing motions of flexi-

ble chains. But I would have thought them different parts of

the same fish. Surely an amino acid with a less well-defined

position in a protein in a crystal is more likely to flail around

if that same molecule is diffusing freely in solution? And

surely all kinds of motion will contribute to that long balance

sheet of movements that constitutes changes in entropy? In

the case of bacterial chemotaxis receptors, for example, we

not only have an increase in apparent order with methyla-

tion, but cross-linking studies also indicate that periplasmic

domains form a tighter structure in the absence of attractant

[21]. Taken together with the extensive evidence from other

kinds of receptors, this is at least consistent with the idea

that attractant binding is entropy-driven whereas repellent

binding is enthalpy-driven. Following this thread, we see

that attractants might loosen up the structure not only of the

receptor itself but also of any complexes made by the recep-

tors and neighboring proteins. In particular, we can imagine

interactions between receptors and the crucial kinase CheA

being lessened, thereby accounting for the dramatic fall in

downstream signaling produced by attractants. (There is

indeed experimental evidence that the binding of CheA to

receptors is reduced by attractant [22].) Repellents, in this

picture, would do the opposite: lateral interactions between

receptors should be strengthened and the activity of CheA

associated with the receptors should rise. It is all very differ-

ent from the conventional view of conformational changes

between rigidly defined structures - it is more coarse-grained

and mesoscopic. But perhaps propagating regions of disor-

der are a useful way to think about these large multiprotein

structures? It would certainly encourage investigators to find

out exactly what regions of the proteins are involved in

entropic changes and whether, in the case of the bacterial

polar cluster, the various unstructured loops linkers and

tethers play a part. It is hard to say conclusively what

happens at this point - but it all does seem reminiscent of the

sol-to-gel transitions championed by Pollack [1].
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