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Abstract

Background: Parasitoids are insect parasites whose larvae develop in the bodies of other insects.
The main immune defense against parasitoids is encapsulation of the foreign body by blood cells,
which subsequently often melanize. The capsule sequesters and kills the parasite. The molecular
processes involved are still poorly understood, especially compared with insect humoral immunity.

Results: We explored the transcriptional response to parasitoid attack in Drosophila larvae at nine
time points following parasitism, hybridizing five biologic replicates per time point to whole-
genome microarrays for both parasitized and control larvae. We found significantly different
expression profiles for 159 probe sets (representing genes), and we classified them into 16 clusters
based on patterns of co-expression. A series of functional annotations were nonrandomly
associated with different clusters, including several involving immunity and related functions. We
also identified nonrandom associations of transcription factor binding sites for three main
regulators of innate immune responses (GATA/srp-like, NF-kB/Rel-like and Stat), as well as a novel
putative binding site for an unknown transcription factor. The appearance or absence of candidate
genes previously associated with insect immunity in our differentially expressed gene set was
surveyed.
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Conclusion: Most genes that exhibited altered expression following parasitoid attack differed
from those induced during antimicrobial immune responses, and had not previously been
associated with defense. Applying bioinformatic techniques contributed toward a description of the
encapsulation response as an integrated system, identifying putative regulators of co-expressed and
functionally related genes. Genome-wide studies such as ours are a powerful first approach to
investigating novel genes involved in invertebrate immunity.
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Background

Drosophila melanogaster is an important model organism
for studying the mechanistic basis and evolution of immunity
and pathogen defense. The two main classes of parasites
against which it must defend itself in the wild are pathogenic
microorganisms (bacteria, viruses, microsporidia and fungi)
and parasitoids. Parasitoids are insects whose larvae develop
by destructively feeding in (endoparasitoids) or on (ectopara-
sitoids) the bodies of other insects, eventually killing their
hosts. They are ubiquitous in natural and agricultural ecosys-
tems and can have major impacts on the population densities
of their host, which makes them a valued agent for biocontrol.
Most species that parasitize Drosophila are endoparasitic
wasps (Hymenoptera) that attack the larval stage, or are spe-
cies that feed externally on the pupae but inside the pupar-
ium. It is well known that host insects including Drosophila
have evolved potent immunologic defense responses against
parasitoid attack, and that parasitoids have evolved counter-
strategies to subvert host defenses [1]. How these defense and
counter-defense responses are regulated is not well under-
stood, however. Here we report a microarray study of the
transcriptional response of Drosophila to parasitoid attack. It
is the first global expression analysis of the immunologic
defense of a host insect against parasitoids, and aims to pro-
vide a comprehensive description of the timing and sequence
of genes that signal during this innate immune response.

Like most animals, the innate immune response of Dro-
sophila consists of both humoral and cellular defense mecha-
nisms. Humoral defenses against bacterial and fungal
infection have been intensely investigated over the past dec-
ade and are now relatively well understood [2,3]. These
humoral defenses are activated when pathogen recognition
molecules detect conserved surface molecules on microor-
ganisms. This in turn activates the Toll and imd signaling
pathways, which upregulate expression of antimicrobial pep-
tides and many other genes [4,5]. Homologous signaling
pathways regulate antimicrobial defense in other animals
including vertebrates [6]. Cellular immune responses such as
phagocytosis and nodule formation are also very important in
defense against microorganisms [7]. The Janus kinase (JAK)/
signal transducer and activator of transcription (STAT) path-
way is closely involved in the cellular and humoral responses
as well [8].

The chief invertebrate defense against macroparasites such as
parasitoids is a cellular immune response called encapsula-
tion (Figure 1) [1]. An encapsulation response begins when
blood cells (hemocytes) recognize and bind to the foreign
body. Additional hemocytes then adhere to the target and one
another, which results in the formation of a capsule com-
prised of overlapping layers of cells. This response typically
begins 4-6 hours after parasitism and is completed by about
48 hours [9]. Capsules often melanize, 24-72 hours after
parasitism, and parasitoids are probably killed by asphyxia-
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tion or through necrotizing compounds associated with the
melanization pathway [10,11].

In Drosophilalarvae three types of mature hemocytes are rec-
ognized: plasmatocytes, lamellocytes and crystal cells. Plas-
matocytes and crystal cells are present in the hemolymph of
healthy larvae, whereas lamellocytes are only produced after
attack by parasitoids [10-12]. Capsules consist primarily of
lamellocytes, although crystal cells and plasmatocytes are
present. Crystal cells also release phenoloxidase and possibly
other factors that result in melanization of the capsule [13].
After parasitism the numbers of hemocytes increase via pro-
liferation of cells in the hematopoietic organs (lymph glands)
and hemocytes already in circulation. However, hematopoi-
etic responses vary with the species of parasitoid and the
stage of the host attacked [14-16]. The molecular basis for rec-
ognition of parasitoids is unknown, although experiments
with mutant stocks implicate a number of signaling pathways
(Toll, JAK/STAT and ras/raf/mitogen-activated protein
kinase [MAPK]) in hemocyte proliferation and capsule for-
mation [8,17,18].

Parasitoids have evolved several different strategies to over-
come host immune responses [1]. Wasps in the genus Aso-
bara (Braconidae) are important parasitoids of larvae of
Drosophila, including D. melanogaster. They evade encapsu-
lation by laying eggs that adhere to the fat body and other
internal organs of the host [19,20]. This often results in
incomplete formation of a capsule, which allows the parasi-
toid egg to hatch and escape encapsulation [9]. The parasitoid
larva then suspends development while its host grows in size
and only starts its destructive feeding during the host's pupal
period. The growth of parasitized Drosophila larvae is normal
until pupariation, irrespective of whether they successfully
encapsulate the parasitoid, except that the investment in
immune responses may incur slight delays in their speed of
development [21,22]. The fraction of D. melanogaster surviv-
ing parasitism varies with larval age at the time of attack, tem-
perature, geographic strain and parasitoid species [9,23]. D.
melanogaster can also be selected in the laboratory for
increased resistance to its parasitoids. For example, five gen-
erations of selection for resistance against Asobara tabida
increased the frequency of larvae that successfully encapsu-
lated parasitoid eggs from about 5% to about 60% [24,25].
Increased resistance was associated with higher densities of
circulating hemocytes, but also reduced larval competitive-
ness [26]. There are also differences in the degree to which
different Drosophila spp. can defend themselves against
parasitism, and this too appears to be correlated with hemo-
cyte densities [27].

Previous genome-wide studies of Drosophila immunity all
investigated responses against microbial pathogens [28-34].
Defenses against macroparasites such as parasitoids are
likely to be very different, and their study, like that of
responses to microbial pathogens, may reveal conserved
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(d)

Figure |

The Drosophila immune response after attack by parasitoids. (a) The parasitoid Asobara tabida stabs a second instar Drosophila melanogaster larvae with her
ovipositor and inserts a single egg. (b) The parasitoid egg is susceptible to nonself recognition by membrane-bound and noncellular pattern recognition
proteins in the larval hemolymph. (c) Hemocyte proliferation and differentiation is triggered, and the blood cells aggregate around the parasitoid egg. (d)
The hemocytes form a multilayered capsule around the parasitoid egg and melanin is deposited on the capsule. (e) The parasitoid egg dies when it
becomes fully melanized.

components of the innate immune system. As a first step  ingthe entire immune response. We used the Affymetrix Dro-

toward unraveling the genetic control of defenses against par-  sophila Genome 1 Array chip (Affymetrix, Santa Clara, CA,
asitoids, we designed a large-scale experiment to monitor the =~ USA) to study the transcriptional response of D. mela-
involvement and timing of differentially expressed genes dur-  nogaster to attack by A. tabida. Larvae of a Southern Euro-
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pean strain of fly that is partially resistant to this parasitoid
were exposed to parasitoid attack and then RNA was har-
vested at nine subsequent time points (from 10 minutes to 72
hours) and compared with RNA from control larvae of the
same age. We used bioinformatic techniques to look for pat-
terns of co-expression and for shared regulatory sequences.
We also used current knowledge of the molecular basis of
defense against parasitoids to identify a set of candidate genes
and molecular systems that might be involved in defense
against parasitoids, and explored whether they were present
in our transcription set.

Comparison with previous studies revealed many differences
in gene expression patterns between the antimicrobial and
antiparasitoid responses, and implicated several new genes in
insect immunity. Clusters of co-expressed genes were identi-
fied that we believe may be functional related components of
the immune response (for example, a series of serpins and
serine-type endopeptidases that may be involved in a proteo-
lytic cascade). We identified a putative transcription factor
binding site motif that has not hitherto been linked to any
known transcription factor. The transcription factor binding
sites of three known regulators of immunity were strongly
associated with several clusters of co-expressed genes. Some
genes known to be involved in encapsulation were identified
in our screens whereas others were not, indicating that they
are post-transcriptionally regulated.

Our work increases our understanding of the immunologic
defense responses in hosts to parasitoid attack, and paves the
way for further experiments to investigate the roles of genes
and pathways of particular interest. It suggests a variety of
new approaches to understanding the encapsulation process
and should help us to move toward a systems level description
of innate immunity in insects.

Antibacterial and antifungal immune

response
GO0:0006964, GO:0006965, GO:0006961, GO:0006963,
G0:0006966, GO:0006967, GO:0006960, GO:0016065,
G0:0006959, GO:0006955, GO:0045087, GO:0008348,
G0:0008368

Defense response

(/N
=/

Differential expression
after parasitoid attack

Figure 2

Venn diagrams of genes that changed expression after parasitoid attack
and known immunity genes. The differentially expressed genes after
parasitoid attack differed largely from those with a GeneOntology (GO)
annotation for immunity or defense (GO database September 2004; the
GO codes are also shown in the figure). Some of the probe sets in our set
matched to multiple genes (see additional data files), thus reporting on the
expression of potentially all of these genes. We included the multiple gene
annotations per probe set to define our set of differentially expressed
genes for the comparisons.
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Results

The expression profiles of 159 probe sets differed significantly
between parasitized and control larvae. Because we accepted
a 1% false discovery rate (see Materials and methods, below),
a small number of these probe sets (probably one or two)
could have been incorrectly identified. Our assignment of
genes to these probe sets, and the functional and structural
annotation of these genes are provided in Additional data file
1. Note that some probe sets matched more than one gene (see
Materials and methods, below) and some genes are repre-
sented by more than one probe set; thus, there are sometimes
differences between (sub)totals or percentages calculated for
probe sets and genes. Of all the differentially expressed genes,
55% had some information on 'molecular function', 55% on
'biologic process', and 46% on both in the GeneOntology
database. For 59 genes (37%) there was no functional annota-
tion in GeneOntology. These percentages did not differ signif-
icantly from their equivalents calculated for the full set of
genes represented on the Affymetrix Drosophila microarray
(P > 0.05, Fisher exact test). Thirty-three genes had GeneOn-
tology annotations that included immunity and defense func-
tions, which, as expected, was significantly more than
expected by chance (P < 0.001, EASE analysis). However,
more than 80% of the differentially expressed genes had not
previously been associated with an immune or defense
response in GeneOntology, whereas many known immunity
genes were not differentially expressed (Figure 2).

Patterns of co-expression

The pattern of expression of the 159 probe sets that
responded to parasitoid attack is shown in Figure 3a. The
clustering algorithm sorted the probe sets into a gene tree,
from which we defined 16 clusters that varied in size from one
to 35 probe sets. Of these clusters, seven contained five or
fewer genes, and because of this there is low statistical power
to detect over-represented annotation terms. However, 83%
of the probe sets were placed in eight clusters that each
included more than five genes. The mean expression profile
of genes in these clusters, as well as the GeneOntology anno-
tation terms that were significantly over-represented, are
shown in Figure 4; the individual gene expression profiles
and the full details of the annotation are provided in Addi-
tional data files 1 and 2.

In six of these clusters (clusters 1, 2, 4, 11, 12 and 14 in Figure
4; 92 genes in all) the genes tended to have higher expression
levels in parasitized than in control larvae, whereas in the
remaining two (clusters 9 and 10; 39 genes) the reverse pat-
tern was found. The clustering algorithm uses information
from both temporal changes in expression and differences
between treatment and control. The clusters with upregu-
lated genes in parasitized larvae fall into a group in which the
genes tend to be expressed more strongly for 3-6 hours after
parasitism before returning to the same levels as controls
(clusters 1, 2 and 4; 32 genes) and one in which the greatest
differences occur 6-72 hours after parasitism (clusters 11 and
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12; 44 genes), with the genes in the remaining more heteroge-
neous cluster 14 (16 genes) tending to be differentially
expressed at some of the intermediate time points. Of the two
clusters of downregulated genes, cluster 10 (21 genes) is
largely defined by reduced expression levels in parasitized
larvae throughout the course of the experiment, whereas clus-
ter 9 (18 genes) contains genes that are expressed at the end
of the experiment, and more strongly in control larvae.

We found highly significant over-representation of annota-
tion terms in four clusters. Half of the genes in cluster 1 (six
genes), which were expressed within 1-3 hours of parasitism,
are annotated as involved in both immune response and
response to bacteria. They included the two antimicrobial
peptides AttA and AttB. Cluster 2 (20 genes) had highly sig-
nificant over-representation of the category immune
response (five genes: CG15066, nec, Mtk, hop, dome) and of
its parent category defense response (including a further four
genes: IM1, IM2, CG13422, CG3066).

Cluster 12 (32 genes) contained a highly significant over-rep-
resentation of genes for the GeneOntology terms proteolysis
and peptidolysis (eight genes) and enzyme regulator activity
(seven genes), and the InterPro terms peptidase, trypsin-like
serine and cysteine proteases (12 genes), as well as proteins
with putative o,,-macroglobulin domains (three genes), which
may be involved in protease inhibition. These genes are
upregulated relative to controls, in particular between 6 and
24 hours after parasitism. Their annotations suggest that they
may be involved in a proteolytic cascade that might regulate
part of the immune response, such as the formation of the
melanized capsule. This hypothesis is supported by the occur-
rence of clip domains, which enable activation of proteinase
zymogens, in several of the serine-type endopeptidases
(CG16705, CG11313, CG3505).

Finally, cluster 9 contained a highly significant over-repre-
sentation of genes with the GeneOntology annotations molt-
ing cycle and puparial adhesion (six genes) and the InterPro
terms hemocyanin (N-terminal and C-terminal; three genes).
This cluster comprises genes expressed at 72 hours after para-
sitism, by which time the third-instar larva is preparing to
pupate; hence, the appearance of genes associated with molt-
ing and pupariation is not surprising. What is more interest-
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ing is the relatively reduced expression of these genes in
parasitized larvae. Even hosts that have successfully been
parasitized pupate (the parasitoid emerges from the pupar-
ium) and the low expression probably reflects delayed devel-
opment caused by parasitism. Two of the genes with
hemocyanin domains have monophenol mono-oxygenase
activity (CG8193, Bc), and the latter of these has been associ-
ated with the melanization stage of encapsulation. In our
assay, however, the expression profile suggests a closer
involvement in pupation than in capsule melanization.

Regulatory sequences

Our analysis identified a set of six putative transcription fac-
tor DNA-binding motifs (TFBMs) that were significantly
associated with genes in the different clusters. To these we
added the STAT motif, which did not quite meet all of our cri-
teria but which is known to be involved in the encapsulation
response [8]. The pattern of association of these seven motifs
is shown in Figure 3b. Three of the six putative TFBMs
matched sequences associated with known transcription fac-
tors: serpent and related GATA-factors, Relish and similar
nuclear factor-kB (NF-kB) factors, and TATA transcription
factors. Both serpent and Relish were previously associated
with the Drosophila immune response [35,36] and serpent
with hematopoiesis [37].

Table 1 shows in which clusters and at which times the seven
TFBMs are most strongly over-represented, and detailed
quantitative information is provided in Additional data files
2, 3, 4. We found strong associations between the serpent/
GATA-type motifs and the genes in cluster 2, many of which
had been annotated as being involved in immunity, and the
Relish/NF-xB-type motifs and the genes in cluster 12 associ-
ated with proteolysis and peptidolysis. A number of genes
that shared the Relish/NF-«B-like binding site motif are all
located in a cluster on the 2R chromosome (IMi1, IM2,
CGi15065, CGi15066, CGi15067, CG15068, CG16836,
CG16844, CG18107). The single most significant association,
however, was with the motif CCARCAGRCCSA (using IUPAC
Ambiguous DNA Characters [38]), which has not hitherto
been associated with any transcription factor. It was found to
be particularly often associated with genes in clusters 2 and
12, both upstream and in the first 50 base pairs after the start
codon.

Figure 3 (see following page)

Gene expression levels and distribution of regulatory motifs for the genes differentially expressed after parasitoid attack. (a) Expression levels for genes
(rows) at different sample time points (columns: |-9 parasitized larvae; 10-18 unparasitized larvae). The expression levels are given as multiples of the
median for that gene, using a color code illustrated at top right. At the left the dendrogram produced by the clustering algorithm is shown, with the 16
clusters discussed in the text depicted in different colors (with their code numbers; the final column on the right shows the clusters again using the same
color key). (b) The distribution of putative regulatory motifs in the -1,000 to +50 base pair upstream regions of the genes. The colors indicate the number
and strength of the matches for each motif (see code on upper right, in which a score of 0 is equivalent to no matches, 10 is equivalent to one strong or

two weak matches, and 20 is equivalent to multiple strong matches).
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Cluster 1
(6 genes)

Cluster 2
(20 genes)

Cluster 4
(6 genes)

Cluster 9
(18 genes)

Cluster 10
(21 genes)

Cluster 11
(12 genes)

Cluster 12
(32 genes)

Cluster 14
(16 genes)

0~
DrNOONTRN
(<]

Time since parasitism (hr)

T Only forclusters with >5 genes

Figure 4

Gene expression profiles and functional annotations for the eight largest clusters of co-expressed genes. On the left-hand side the average expression
levels for the genes in the eight clusters are shown (log,-transformed expression values, divided by the median for that gene across all time points and

treatments). Dashed lines represent parasitized and unbroken lines represent u

nparasitized larvae, and the bars indicate standard errors. Functional

annotations associated with clusters are shown along the top, and colors in the matrix indicate the strength of association (yellow = Ease scores (see text)
<0.05; red = after Bonferroni correction at P < 0.05; grey = at least one gene with this annotation). The full annotation for all probe sets is provided in

Additional data file 1.

We tested whether the genes for the transcription factors
associated with the TFBMs were themselves upregulated or
downregulated after parasitoid attack. The NF-kB-like factor
Relish was significantly upregulated 1 hour after parasitism

Genome Biology

before returning to the same levels as controls. There was no
evidence of changed expression for serpent or any of the other
GATA-like factors, Statg2E, or TATA factors. Interestingly,
serpent/GATA-type motifs were found to be over-repre-
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Putative regulatory motifs that were over-represented in the eight major clusters of differentially expressed genes

Motif Time point (hours)

Cluster, raw score and significancet

Relish/NF-kB-like 1, 3,48 Cluster |
Cluster 2
Cluster |1
Cluster 12
Cluster 14
serpent/GATA-like 1,2,3,6,72 Cluster |
Cluster 2
Cluster 9
Cluster 10
Cluster 12
Cluster 2
Cluster 12

Cluster |

STAT -

TATA-like 72
Cluster 9
Cluster 10
Cluster 2
Cluster 12
Cluster 4
Cluster 2
Cluster 14
Cluster 2
Cluster 12
Cluster 14

CCARCAGRCCSA 1,2,3,6

CAWTSKATTC 2,3

AMTCAGT 2,3,6,12,72

8.54 P <0.001
8.0l P =0.002
5.09 P < 0.006
17.3 P <0.001
12.4 P=10.001
7.13 P <0.001
21.2 P <0.001
17.5 P <0.001
843 P =0.009
10.5 P =0.001
4.88 P <0.001
4.83 P <0.001
5.57 P=10.001
13.9 P <0.001
6.21 P =10.002
56.1 P <0.001
27.8 P <0.001
14.3 P =0.001
17.5 P <0.001
8.39 P =0.008
16.6 P <0.001
10.9 P <0.001
8.99 P=10.001

Putative motifs were identified as described in the text. The table shows the motifs identified, the time points at which they were significantly
associated, and the clusters in which they appeared. For each cluster we give the raw score (a measure of the average occupancy in a set of
sequences) and the associated significance value. TOnly for clusters with more than five genes.

sented in clusters 1, 2 and 12 (upregulated genes that tend to
be associated with immunity) as well as in clusters 9 and 10
(downregulated genes that tend to be associated with devel-
opment and metabolism). The lack of differential expression
of this transcription factor might thus be explained by it being
present in both parasitized and unparasitized larvae but per-
forming different functions.

Candidate genes

We explored whether a variety of genes known to be involved
in the response to parasitoid attack had differential patterns
of expression. In particular, we looked for genes associated
with hemocyte proliferation and differentiation; cellular
defense, in particular capsule formation and melanization;
and the humoral response to microorganism infection and in
regulating coagulation and melanization (Table 2). The gene
expression profiles of a selection of candidate genes that were
differentially expressed are shown in Figure 5. The expression
profiles of all differentially expressed genes are provided in
Additional data file 2.

The most dramatic initial response to parasitoid infection
involves proliferation of hemocytes and differentiation of
lamellocytes in the larval lymph glands, and recent work has
shown that this involves the Toll and the JAK/STAT signaling
pathways, which are both also implicated in responses to
microorganism infection [8,39]. Activation of the Toll path-
way in the lymph glands results in hemocyte proliferation,
whereas in the fat body it results in the transcription of anti-
microbial peptides [39]. Because relatively little is known
about this pathway in the lymph glands, we discuss the Toll
pathway in relation to its antimicrobial humoral response
(see below). The os and Upd-like genes for the ligands that
activate the JAK/STAT pathway in flies were not differen-
tially expressed in our assay. The receptor dome and a similar
but shortened version of this receptor, CG14225, as well as the
Drosophila Jak hop, were all significantly upregulated 2-6
hours after attack. The transcription factor Statg2E (for dis-
cussion of the STAT TFBM, see above) is associated with pro-
teins in the Tep and Tot families, whose functions are
involved respectively in enzyme regulation and severe stress

Genome Biology 2005, 6:R94
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Table 2

Survey of candidate genes previously implicated in Drosophila defense and immunity

Functional classification of proteins or genes Differentially expressed candidate gene Cluster number

Hemocyte proliferation and differentiation?
JAK/STAT pathway

Ligands -
Receptors dome (CG14226), CG14225
JAK hop (CG1594)
STAT -
Possible effector molecules Tepl (CG18096), Tepll (CG7052), TeplV (CG10363) 12
TotB (CG5609) 8
Toll pathway (in lymph glands)
Ligands -
Regulators of pathway nec (CG1857)
Receptors Tl (CG5490) 3
Intracellular signaling elements -
NF-xB transcription factor Relish (CG11992) 4
Ras/Raf/MAPK pathway -
Notch pathway -
VEGF receptor pathway -
GATA factor homologs (e.g. srp) -
RUNX/AMLI-like proteins (/z) -
Cellular defense, in particular encapsulationb
Recognition/surface binding factors
Extracellular matrix (ECM) proteins (e.g. laminin, collagen IV, dome (CG14226) 2
fibronectin)
prc (CG5700) 14
Hml (CG7002) 10
CG6788/CG32496 I
Integrins aP$4 (CG16827) I
Immunoglobulin superfamily members Pxn (CG12002) 6 %
CG8100 10 p
CG14225 E a
Scavenger receptors (CD36-like) CG12789 4 g
CG2736 10 E
Tequila (CG4821) 12 =
Possible pattern recognition receptors lectin-24A (CG3410) 12
G-protein type receptors mthl2 (CG17795) I
Surface helper molecules
Vinculin, talin, paxillins -
Surface-associated signaling molecules
Integrin-linked focal adhesion kinases (FAKs) -
Integral membrane proteins rost (CG9552)
Tsp42Ek (CG12841) 9
Intracellular signaling pathway factors
Phosphotidylinositol 3-kinase (PI3K) -
GTP-binding proteins (Ras/Rho family members) -
Protein kinase C (PKCs) or PKC regulators CG5958 (PKC transporter) 10
Protein tyrosine phosphatase (PTPs) dome (CG14226)

Serine/threonine kinases -
Scaffolding proteins (RACK) -
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Table 2 (Continued)

Survey of candidate genes previously implicated in Drosophila defense and immunity

Cytoskeletal proteins (actins, tubulins, for example) oTub85E (CG9476), oTub84D (CG2512), oTub84E I
(CG1913), fTub60D (CG3401)

Eicosinoid pathway elements -
Effector molecules

NO pathway factors -

PPO pathway factors Dox-A3 (CG2952), CGI 1313, I
G8193, Bc (CG5779), 9
Fmo-2 (CG3174) 15

Porferins or related molecules -
Tumor necrosis factor (TNFs) CGI3559 2
Humoral defenseb

Humoral pattern-recognition receptors PGRP-SBI (CG9681) |
lectin-24A (CG3410) 12
Hml (CG7002) 10
Serine proteases CG3066 2
CG30414, CG30086, CG30090, Tequila (CG4821), 12

CG16705, CG31780 / BG:DS07108.1 (CG18477),
CG6639, CG3117, CG31827/BG:DS07108.5
(CG18478), CG18563, CG4793, CG4259

CGII313 I
CGlé6713
Serpins and other protease inhibitors nec 2

CG6687, CG16712, CG16705, Tepl (CG18096), Tepll 12
(CG7052), TeplV (CG10363)

BcDNA:SD04019 (CG17278) 14
CG16704 I
Known ligand-like molecules (e.g. spz) -
Surface receptors
Toll and associated family members Tl (CG5490) 3
Toll or imd pathway (in fatbody)
Intracellular signalling elements (e.g., tube, Pelle, DTRAF, DECSIT) -

NF-xB transcription factor Rel (CG11992) 4
Effector molecules or antimicrobial peptides AttA (CG10146), AttB (CG18372) |
Mtk (CG8175), IMI (CG18108), IM2 (CGI8106), 2
CG13422, CG15066
IM4 (CG15231), CG18279, CGI6844 14
Related apoptotic regulators
Dredd -
Ubiquitins -
PPO and associated pathway molecules Dox-A3 (CG2952) I
Melanin and free-radical intermediates Fmo-2 (CG3174) 15

The table lists the different functional classes of genes and protein surveyed, any genes in these classes that were differentially expressed, and the
cluster the gene was assigned to. Note that some genes with multiple annotations can appear in more than one category.
aBased on [17,66,90,91]; bbased on [11,92] (MR Strand, personal communication).

responses [8]. The genes Tepl, TeplIl, TepIV and TotB were  characterized TotA [40]) were not represented on the Affyme-
differentially expressed after attack by parasitoids (with the  trix Drosophila Genome 1 Array. The JAK/STAT pathway is
peak of expression later than dome and hop), whereas TotM  also thought to crosstalk with the ras/raf/MAPK pathway
and TepIII were not. The other Tot genes (including the best
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Figure 5 (see previous page)

Expression profiles of genes from pathways and processes known to be involved in immunity. Each graph depicts the log, expression values for a single
gene at different time points (in hours) after parasitoid attack. The blue circles and red triangles show the individual replicates of the control and
parasitized larvae, respectively. The lines denote the average expression at each time point. See text for a discussion of the selected genes.

during hemocyte proliferation [41], but no genes associated
with the latter were significantly affected by parasitism.

The encapsulation process that results in the death of the par-
asitoid egg involves cell adhesion and melanization [9].
Lectins and integrins are two important classes of protein
that mediate cell adhesion in immune responses [42]. The
gene lectin-24A was massively upregulated in parasitized lar-
vae 6-48 hours after parasitization at the time when the
capsule is formed (10-fold to 16-fold at the peak of expres-
sion). Lectins can function as adhesion ligands for inverte-
brate hemocytes [42]. The gene aPS4, which encodes an o
integrin subunit, was upregulated at 48-72 hours, at about the
time when the multilayered capsules are completed and mel-
anization occurs [9]. Also at this time, a gene for an immu-
noglobulin-like protein with haemocyanin domains and
predicted monophenol mono-oxygenenase activity (Dox-A3),
and a serine-type endopeptidase with predicted monophenol
mono-oxygenase activator activity (CG11313) were upregu-
lated. Both are likely to be involved in melanin deposition.
Two other genes in our list encode proteins with predicted
monophenol mono-oxygenase activity (Bc, CG8193), but the
expression profiles of these genes suggested a role in pupa-
tion and/or metamorphosis rather than in melanization.

The Drosophila response to microorganism attack involves,
among others, the production of antimicrobial peptides con-
trolled by the Toll and imd pathways [43]. The primary recep-
tors are peptidoglycan recognition proteins that bind
specifically to different classes of microorganism, and of the
13 genes of this family known in Drosophila two were signifi-
cantly upregulated (PGRP-LB, PGRP-SB1). However, only a
few components of the Toll (71 and nec) and imd (Rel)
pathways were significantly upregulated in response to para-
sitoid attack. Out of the 14 antimicrobial peptides known in
Drosophila, only three (Mtk, AttA and AttB) showed signifi-
cantly increased expression in parasitized larvae. The first of
these acts against filamentous fungi and Gram-positive
bacteria, and the latter two against Gram-negative bacteria
[44]. All of these genes showed their greatest relative increase
in expression soon after parasitism. Parasitoid attack involves
wounding and penetration, and it is possible that the produc-
tion of antimicrobial peptides is associated with damage to
the exoskeleton and low-level exposure to microbial factors
on the surface of the fly larvae or ovipositor of the wasp.

Discussion

We still have a relatively poor understanding of the genetic
mechanisms that underlie host defense to parasitoid attack,
despite the immense importance of parasitoids to the popula-

tion dynamics and control of many insects. A full understand-
ing will require extensive experimental investigation, but we
believe that the dataset described here provides a first and
important step toward unraveling the genes and pathways
involved and their sequence of action.

We investigated the transcriptional profile of D. mela-
nogaster larvae during the 72 hours after they had been par-
asitized by A. tabida. The Drosophila strain we used was
highly immunocompetent and was able to encapsulate about
75% of parasitoid eggs. Furthermore, the counter-resistance
strategy of the parasitoid species we used is thought to consist
of evasion rather than manipulation of host defenses [19,20].
We were thus able to study a strong and uninterrupted
defense response to parasitoid attack. The 72-hour period we
studied, which covers the full immune response from detec-
tion of the parasitoid egg to completion of the capsule, lasts
from the late second instar to just before pupation, which is
just over half the length of the host's total larval stage. As
expected, a very large number of genes exhibited differences
in expression over time (over 8,000 genes with a 1% false dis-
covery rate). A much more restricted set of genes (repre-
sented by 159 probe sets) differed significantly in their
transcription profiles between the control and parasitized
groups. We analyzed patterns of co-expression and shared
regulatory motifs within this set of genes, and then asked
whether they encoded proteins previously associated with
defenses involved in the response to parasitoid attack. The
majority of differentially expressed genes in our study had not
previously been associated with innate immunity, which is a
reflection of the substantial differences in immunologic
responses to pathogens and macro-parasites.

Based on our clustering algorithm we identified 16 clusters,
the eight largest of which contained 83% of the probe sets. Six
included genes (70%) that tended to be more highly
expressed in parasitized larvae, whereas two contained genes
(30%) that tended to be more highly expressed in nonparasi-
tized larvae. Not all clusters had a clear temporal signature,
but we identified groups of genes expressed during the first
few hours after parasitoid attack and then later at the time of
capsule formation. One cluster contained genes that had
reduced levels of expression in parasitized larvae only at the
final sampling point, 72 hours after attack. The genes in
almost all clusters exhibited significant changes in expression
through time in both parasitized and control larvae, which
reinforces the importance of having controls of the same age
rather than comparing transcription profiles before and after
parasitoid attack. Moreover, it indicates that most genes are
not exclusively involved in immunity and defense, but also in
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other processes while the fly larva grows and readies for
pupation.

We annotated all the genes in each cluster and then tested sta-
tistically for over-represented GeneOntology and InterPro
terms. For relatively small clusters of genes, as present here,
this procedure does not have very great statistical power, yet
we were able to associate potential functions with four clus-
ters: (i) two clusters of genes expressed soon after parasitoid
attack were associated with immune functions, (ii) a cluster of
genes that were expressed later after parasitism was associ-
ated with functions involved in proteolytic cascades, and (iii)
the cluster of reduced-expression genes at 72 hrs was associ-
ated with preparation for pupation. The first two observations
are consistent with an initial "front-line" reaction to parasite
challenge, followed by a slower response, perhaps involving
the consolidation of the capsule. The last observation is prob-
ably a reflection of another consequence of parasitism, a
reduction in the rate of development, perhaps a cost of
mounting the defensive response [21,22]. At the last sampling
point unparasitized larvae were further developed and had
begun to express genes associated with pupation.

Our search for potential TFBMs identified six potential
sequences, three of which represented already well known
transcription factors. The most significant sequence, CCAR-
CAGRCCSA, was not associated with a currently recognized
factor, and might represent a new regulatory mechanism
involving a novel transcription factor. To screen for such a
transcription factor, one could use a yeast 1-hybrid system
and protein purification with affinity columns. Interestingly,
two clusters of relatively highly expressed genes with signifi-
cant annotation associations also had strong associations
with TFBMs; an immune-related cluster and the possible reg-
ulatory-cascade cluster were both significantly associated
with serpent/GATA-type motifs, Relish/NF-xB-like motifs,
the STAT motif, and the novel sequence just discussed. The
transcription factor Rel itself was significantly upregulated
immediately after parasitism, but not any of the other tran-
scription factors identified in our screen. These data contrib-
ute toward a description of the encapsulation response as an
integrated system rather than a simple collection of individ-
ual genes.

A number of biochemical systems and signaling pathways are
known to be involved in the response to parasitoid attack or
the formation of melanotic capsules. The JAK/STAT and Toll
pathways have been implicated in regulating hemocyte prolif-
eration. Several components of these signaling pathways, as
well as a number of target genes they regulate, exhibited sig-
nificantly increased expression levels in parasitized larvae
compared with controls. We hypothesize that upregulated
expression of lectins and integrins, and genes with functions
associated with melanin deposition are involved in capsule
formation. The Toll and imd pathways have a well known
association with microbial defense, and Toll has also been
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implicated in regulating immune responses toward macro-
parasites [18]. Two peptidoglycan recognition proteins and
three antimicrobial peptides were significantly upregulated
soon after parasitism. Because parasitoid attack involves
puncturing the body wall, with the obvious possibility of
microbial infection, we suggest that upregulation of these
genes reflects low level exposure to microorganisms at para-
sitoid oviposition. Overall, however, parasitism by A. tabida
induced relatively few changes in expression of antimicrobial
effector genes under Toll and imd pathway control.

As with other microarray studies, there are limitations to
what our work can tell us about the Drosophila response to
parasitoid attack. Although the Affymetrix Drosophila
Genome 1 Array chip contains a large fraction of Drosophila
genes, about 8.5% are missing and so cannot be included in
any analysis. More seriously, much of the response to parasi-
toid attack likely does not involve de novo gene expression
but post-transcriptional and translational events. This may
be particularly true of any initial, rapid response to parasitoid
attack, where any delay in protein synthesis would be mala-
daptive. Several genes previously implicated in melanization
were not differentially expressed, which also indicates the
importance of post-transcriptional and post-translational
regulation of gene expression. Finally, there is always the
danger of false-positives in testing numerous hypotheses
simultaneously. Fortunately, because of the large number of
microarrays used in this study, we had relatively high statisti-
cal power, and we corrected for multiple hypothesis testing
using Storey's false discovery rate method. This meant that of
the 159 probe sets we identified for further study, we estimate
that only one or two are likely to have been erroneously
included.

In interpreting our results, two further more specific issues
must be considered. First, with the combination of host and
parasitoid strains used here, we estimate that about three-
quarters of the flies parasitized in the experiment will mount
a successful immune response and survive parasitism, but
that about a quarter will succumb. Some hosts fail to encap-
sulate completely the parasitoid egg because it is partially
embedded in host tissue. However, parasitized host larvae
almost always show some signs of capsule formation and mel-
anization, irrespective of whether they succeed in killing the
parasitoid egg (unpublished data). This suggests that much of
the transcriptional response to parasitoid attack will be the
same in hosts that will or will not survive, although we cannot
exclude the possibility that especially some of the later differ-
ences in gene expression are pathologic responses to parasi-
toid attack.

Second, it was not feasible to dissect out the parasitoid eggs
from the larvae. Were we to have done this in live larvae, it
would have resulted in changes in gene expression due to the
major trauma involved, whereas in frozen larvae the eggs
become firmly attached to larval host tissue and are very
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difficult to remove. It is thus possible that there might have
been cross-reactivity between parasitoid transcripts and the
probe sets on the microarray. However, we think this
unlikely, both because the volume of RNA in the parasitoid
egg is small compared with that in the host larvae, and
because the specificity of the probes means that they are
unlikely to cross-react with nucleic acid from an insect as evo-
lutionarily distant as a hymenopterous wasp. The high specif-
icity of the probes was substantiated when we blasted the
sequences of the 159 Drosophila probe sets from our study to
the genome scaffold of honeybee (Apis melifera, another
hymenopteran). Over 75% of the probe sets gave no match at
all, and those in the remaining probe sets were very poor (one
or two probes per probe set, with at least three errors to the
perfect match (PM) sequences).

Microarrays have been used to study the transcription profile
of Drosophila adults or cells subject to attack by microbial
pathogens. DeGregorio [5,30], Irving [28] and Boutros [32]
and their coworkers challenged flies by wounding them with
needles dipped in suspensions of bacteria or by shaking them
with spores of the pathogenic fungus Beauveria bassiana.
Roxstrom-Linquist and colleagues [31] compared the tran-
scription profiles of adult flies orally infected by bacteria,
microsporidia (Octosporea muscaedomesticae) and Dro-
sophila C virus per os, or through shaking them with Beauve-
ria spores. Irving [34] and Johansson [33] and their
coworkers recently measured gene expression at 5-6 hours
after microbial infection in, respectively, the hemocytes of
third-instar larvae and a hemocyte-like cell line of Dro-
sophila. Overall, 43% of the genes in our study appeared in
one or more of the lists of genes identified as being involved
in immunity in the microbial pathogen studies in adults, and
only 8-10% of the genes in our study were also listed as upreg-
ulated or downregulated in the studies of cells. The overlap
with individual studies was low, ranging from 8% to 32%. The
genes that did consistently appear in the antimicrobial stud-
ies were predominantly those in the Toll and imd pathways,
and some of the serine-type endopeptidases. However, the
signaling in the Toll and imd pathways in response to parasi-
toid attack was atypical compared to the antimicrobial
response, with the expression of many intracellular signaling
elements and effector genes remaining unaffected. Thus,
although there appears to be limited overlap, the innate
humoral response to microorganisms and the innate cellular
response to macroparasites are substantially different.

Irving and coworkers [34] also explored the transcriptional
profile of larval hemocytes from mutant stocks differing in the
abundances of plasmatocytes, crystal cells, and lamellocytes.
Interestingly, some of the genes we identified as upregulated
after parasitoid attack (for example, the integrin PS4, the
monophenol monooxygenase Dox-A3 and the G-protein cou-
pled receptor mthl2) were associated in their study with the
presence of lamellocytes, specialized hemocytes that are
involved in capsule formation.

Wertheim et al.

http://genomebiology.com/2005/6/1 1/R94

Genes involved in immunity against microbial pathogens and
parasites have also been studied in genome-wide screens of
the mosquito Anopheles gambiae, which is one of the main
vectors of the human malaria parasite Plasmodium [45]. The
Anopheles genome contains families of immunity genes that
are partly orthologous to those in Drosophila [46]. Mosqui-
toes can mount a melanotic encapsulation response against
the ookinete stage of Plasmodium in the insect's gut. This kills
the parasite and disrupts the transmission cycle [47,48]. In
contrast to the cellular encapsulation response by Dro-
sophila, the melanotic encapsulations of the single-celled
malaria parasites by Anopheles do not contain hemocytes and
result from a humoral melanization of the ookinete [49,50]
Gene silencing studies in the mosquito revealed that two C-
type lectins and a leucine rich-repeat immunity protein were
pivotal in the melanization response, with the former two
averting melanization and the latter inducing it [51]. Parasi-
toid attack induced strong upregulation of a gene encoding a
C-type lectin (lectin-24A) and the slight downregulation of a
leucine-rich repeat gene (Pxn).

Compared with our results from Drosophila, there is a greater
overlap in Anopheles between genes involved in microbial
challenge and parasite infection [45]. A probable explanation
for this is the difference between Plasmodium and parasi-
toids as targets for the immune system. Mosquito immunity
against Plasmodium is mostly a noncellular response [49,50],
and indeed there is evidence in Anopheles for pattern recog-
nition receptors that both respond to bacteria and Plasmo-
dium [46,52]. In addition, the natural history of the infection
is different, with Plasmodium having a variable but relatively
minor affect on mosquito fitness [53], whereas the parasitoid
is invariably fatal if it is not destroyed. There may also be
differences between the defense response of larval and adult
insects.

Previous work has shown that there are geographic clines in
the degree to which Drosophila melanogaster can defend
itself against Asobara tabida [23], and that it is possible to
artificially select D. melanogaster for enhanced resistance
against this parasitoid [24]. Orr and Irving [54] demon-
strated that differences in parasitoid resistance between sev-
eral field populations were largely restricted to genes on
chromosome 2. Three of our clusters with upregulated
expression in parasitized larvae contained significantly more
genes located on chromosome 2 than expected by chance (for
clusters 2, 4 and 12, y2 with five degrees of freedom: P < 0.05)
and, more specifically, a significant over-representation of
differentially expressed genes located at chromosomal band
55C (EASE analysis: P < 0.001). Previous studies have
suggested the occurrence of two loci in this region that might
be related to parasitoid resistance, although the genes at these
loci await further characterization [55]. An interesting evolu-
tionary question is whether the differences in resistance, both
geographical and before and after selection, are reflected in
changes in transcription profile, and whether the genes
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involved are the same as those identified in the present study.
Much evolutionary theory of host-parasite interactions pre-
dicts complex dynamics of alleles at loci involved in host
defense, but has proved hard to test in the absence of firm
information about the genes involved. Microarray studies
offer a valuable tool for identifying these genes and making
progress on this question.

Drosophila are attacked by several groups of parasitoids in
addition to A. tabida and its relatives. In particular, parasi-
toids in the genus Leptopilina (Figitidae = Eucoilidae) have
widespread distributions and can cause high levels of mortal-
ity in field populations of Drosophila [56-58]. Leptopilina
boulardi is more specialized than A. tabida and exclusively
parasitizes species of the melanogaster group. Artificial
selection experiments showed that enhanced resistance to L.
boulardi (increasing from about 0.5% to about 45% over five
generations) also confers better resistance to A. tabida but
not vice versa [59]. Leptopilina spp. have evolved a very dif-
ferent strategy to overcome the host immune response com-
pared with that of A. tabida. At oviposition virus-like particles
from the long (or venom) gland are injected into the host, and
disrupt the immune system by altering hemocyte function
[15,60,61]. Comparative microarray studies of flies exposed
to the two parasitoids might help to explain the asymmetric
cross-resistance and may also tell us whether the apparently
very different counter-resistance mechanisms of Asobara
and Leptopilina are reflected in different responses to para-
sitism by the host. Comparative microarray studies may also
help to explain the curious observation that some species of
Drosophila (D. subobscura is the best known example) never
mount a defense response against a parasitoid egg, despite
suffering high levels of attack in the field [62]. Finally, the
strong selection pressure found in parasitoid-host interac-
tions, in which one of the two participants invariably per-
ishes, has resulted in a wide diversity of defense and counter-
defense strategies in different species [1]. Comparative gene
expression profiling of different parasitoid-host systems may
help to reveal the unique and shared processes that underlie
these defense and counter-defense strategies.

Conclusion
We believe that this is the first genome-wide study of the
immune response of a host insect to attack by a parasitoid.

Genome Biology 2005,
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Our study is relatively unusual in that we used 90 microarrays
to produce a highly replicated and densely sampled time
series in order to study the events that follow parasitoid
attack. In Figure 6 we summarize our results and compare the
expression profiles, functional annotations, and transcription
factor binding motifs of the major gene clusters we identified.
Different groups of co-expressed genes are associated with
distinct phases of the response to parasitism identified by
morphologic and previous molecular studies. We believe that
further investigation of the genes identified here will help us
to understand invertebrate cellular defense. Most genes
whose expression changed in response to parasitoid attack
differed from those induced during the antimicrobial
immune response, and had not previously been associated
with immunity and defense functions. We applied a combina-
tion of bioinformatic techniques to analyze our data, which
contributed toward a description of the encapsulation
response as an integrated system, identifying putative regula-
tors of co-expressed and functionally related genes.

Parasitoids are major sources of mortality for Drosophila as
well as many other types of insects. They are also of signifi-
cant economic importance as biocontrol agents, and largely
because of this the physiology of defense against parasitoids
has been intensively studied for many years. Genome-wide
expression studies such as ours provide a uniquely powerful
approach to investigating new genes involved in invertebrate
immunity and will complement these earlier approaches.
Much current molecular work on insect immunity has con-
centrated on the humoral response to microorganisms, and
our molecular understanding of cellular immunity is not as
well developed. Improving the latter is important if we are to
achieve a more balanced appreciation of how insects defend
themselves from pathogens and parasites. Invertebrates do
not have an adaptive immune system, as in vertebrates, but
elements of the innate immune system are strongly conserved
across the two groups of animals [6,63,64]. This is clearly so
for the humoral immune response, but recent work has
revealed unexpected homologies involving components of
cellular innate immunity [65,66]. A better understanding of
cellular defense in Drosophila thus may also be useful in the
investigation of topics such as vertebrate lymphopoiesis and
hematopoiesis.

Figure 6 (see following page)

Overview and summary of our findings. The two left-hand columns show the time elapsed since parasitoid attack and a diagrammatic summary of major
cellular and metabolic consequences of parasitism. The three right hand columns show the results of this study and the gene clusters that we hypothesize
are associated with the different processes sketched on the far left. These three columns show the following: over-represented transcription factor
binding motifs arranged by cluster (with code number) ordered by their time of maximum expression; average expression profiles of genes in these
clusters (parasitized larvae in red, unparasitized larvae in blue) with marked temporal restricted expression; and functional annotations associated with
genes in these clusters, in the same order as in the first of the three columns. A group of genes with relatively constant levels of reduced expression in

parasitized larvae is shown separately at the bottom.
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Materials and methods

Insect strains

Drosophila melanogaster used in the study were collected in
Avigliano, Italy, in July 2001, and were subsequently cultured
in the laboratory on yeast-sugar Drosophila medium [25], at
20°C under a 16:8 light:dark cycle. The parasitoid strain was
originally collected in Sospel, France and had been main-
tained in the laboratory for over 20 years on D. subobscura.
On average, 73% of Sospel parasitoid eggs were successfully
encapsulated by our experimental strain of fly.

Collection of parasitized and control hosts

A single parasitoid was observed searching for 30 host larvae
in a patch of yeast placed on an agar base in a Petri dish. The
host larvae were in their late-second instar, and the parasitoid
had had experience of oviposition during the previous 24
hours. When a larva was seen to be parasitized, it was trans-
ferred to a fresh Petri dish, where it was allowed to develop at
20°C for a fixed period of time before harvesting for RNA
extraction. Ten parasitized larvae were collected per female,
and larvae attacked within a short time frame (within 1-30
minutes, depending on the time point that was being
collected) were reared together in the same dish. Larvae
attacked by the parasitoid but rejected (defined by the ovipos-
itor inserted for <10 s [67]) were not used in the study. We
collected larvae at nine different times after parasitism: 10-15
minutes, 1 hour, 2 hours, 3 hours, 6 hours, 12 hours, 24 hours,
48 hours and 72 hours. To control for handling trauma, any
variation in developmental stage across replicates, and the
effect of the circadian rhythm on gene expression, a second
pair of Petri dishes was set up in parallel, and the larvae
treated identically except that they were not exposed to the
parasitoid. At harvest, larvae were carefully teased from the
medium with a spatula, snap-frozen in liquid nitrogen, and
then stored at -80°C until RNA extraction. Sample collection
for the study took 7 weeks.

RNA isolation and array hybridizations

Microarray hybridizations (Affymetrix Drosophila Genome 1
Array) were performed for five biologic replicates per time
point for both parasitized and control larvae (9o chips used in
total). Because of circadian patterns in gene expression and
possible changes in experimental conditions over the 7 weeks,
the RNA used for each hybridization was pooled from flies
harvested at different times of day and from over the com-
plete collection period. In preparing samples, the paired sets
of control and parasitized larvae continued to be handled
together. To avoid large differences in RNA concentrations in
the sample pools, the number of fly larvae used per biologic
replicate depended on their age (less than 12 hours post-para-
sitism, 120 larvae; 12 hours, 100 larvae; 24 hours, 50 larvae;
48 and 72 hours, 30 larvae).

Preparation of material for the microarray analysis largely
followed the Affymetrix manual. Briefly, samples were
homogenized in 1 ml Trizol in FastPrep tubes (Lysing Matrix
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D; Q-Biogene, Morgan Irvine, CA, USA) using a bead mill
(Hybaid RiboLyser; Hybaid, Teddington, UK). Total RNA was
isolated using Trizol reagent (Invitrogen, Carlsbad, CA, USA)
and the RNeasy (Qiagen, Hilden Germany) kit, following the
manufacturers' instructions. For the RNA precipitation step
in the Trizol protocol, 700 ul 70% diethyl pyrocarbonate-
treated H,O-ethanol was used, and this volume was then
applied directly onto RNeasy mini columns. The RNeasy pro-
tocol was then followed from the RW1 wash step onward. For
each sample, double-stranded cDNA was synthesized from
20 ug total RNA using a commercially available kit (Roche
Biochemicals, Basel, Switzerland). Biotin-labeled cRNA was
then transcribed using T7 RNA polymerase and the BioArray
Transcript labelling kit (Enzo, Farmingdale, NY, USA), fol-
lowed by probe hydrolysis in 5 pl buffer (200 mmol/] Tris-
acetate, pH 8.1, 500 mmol/1 KOAc, 150 mmol/1 MgOAc). The
quality of total RNA and cRNA, and the fragmentation were
checked using an Agilent Bio-analyzer (Agilent Technology,
Palo Alto, CA, USA). The fragmented cRNA samples were
stained, hybridized, and scanned by the Affymetrix microar-
ray service at MRC Geneservices (Hinxton, UK).

Microarray analysis

Initial manipulation of the raw intensity data from the
hybridizations was performed using the 'affy package' [68] of
the Bioconductor Project [69,70]. An estimate of the logarith-
mically transformed expression level of each gene based on
the intensity of the different probe sets was obtained using
the RMA method (robust multi-array analysis [71]) with
standard settings (for example quantile normalization and
calculation of expressions levels using median polish).

We analyzed gene expression levels using the R statistical
package [72]. For each of the 14,010 probe sets on the Affyme-
trix chip, we had 9o data points representing five replicate
measurements of expression levels in (paired sets of) control
and parasitized larvae at each of nine time points (after para-
sitism). We knew that expression levels would vary with time
because host larvae molted from the second to the third instar
and initiated metamorphosis during the 72 hours of study. To
detect effects of parasitism, we therefore carried out a mixed-
model analysis of variance for each gene by first fitting a nine-
level fixed 'time factor' and a random 'pair factor', and then
testing for significance by adding the nested treatment x time
interaction. This nested interaction term allowed us to test
whether variation in expression values could be attributed to
treatment (that is, attack by a parasitoid) across all time
points or during a subset of time points. Analysis of variance
makes specific assumptions about the distribution of the sta-
tistical error terms, and we confirmed that this method was
appropriate by checking the form of residual plots of all genes
with a significant treatment interaction effect and, for a sub-
set of 25 genes, by repeating the analysis using an empirical F
distribution constructed using random permutation [73].
Because we were conducting a large number of statistical
tests, we could not rely on simple P values as a measure of
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statistical significance. Instead we used the positive false dis-
covery rate method of Storey [74] and Storey and Tibshirani
[75] and identified a set of significant genes while accepting a
rate of false positives of 1%.

Within the set of genes that exhibited a significant response to
parasitoid attack, we identified subsets with common pat-
terns of expression using a clustering algorithm based on
Pearson correlation coefficients and implemented in Gene-
Spring (version 6.2; Silicon Genetics, now acquired by Agilent
Technology). Greater weights were assigned to later time
points and to parasitized samples, which is where the largest
variation in expression patterns was observed. The threshold
for defining clusters was initially chosen by eye, although we
checked that the clusters were reasonably robust by varying
the parameters of the clustering algorithm.

The complete set of raw and normalized microarray data from
this study is accessible through the public repository
ArrayExpress at the European Bioinformatics Institute
(accession number E-MAXD-6) [76]. Data produced during
this project is also catalogued in EnvBase (accession number
egcat:000031) [77]. The normalized data of the probe sets
that exhibited a significant response to parasitoid attack are
provided in Additional data file 5.

Bioinformatics
We used bioinformatic tools to annotate the probe sets with
significantly different expression profiles in parasitized and
control larvae, and to look for patterns indicating functional
relations and co-regulation in the major clusters of co-
expressed genes.

The probes on Affymetrix microarray chips are arranged in
probe sets, and we first associated these with the genes listed
in the Drosophila genome project (FlyBase [78]), which we
accessed through the Ensembl project web portal (version
16.3 [79]). Every individual probe sequence (usually 14 per
probe set) was aligned against all available transcript
sequences and matches (allowing for one error) recorded.
Cases in which four probes from a probe set matched more
than one gene, and those in which fewer than 10 probes
matched the same gene were excluded, which meant that
some probe sets remained unannotated. For 22% of the probe
sets whose expression was influenced by parasitism, the
probe set matched more than one transcript sequence, and in
these cases annotation information from all peptides is pro-
vided. In our analyses, we used information on molecular
function and biologic process from GeneOntology (Septem-
ber 2004 annotation [80]), and protein families, domains
and functional sites from InterPro (version 7.1 [81]).

To determine whether sets of co-expressed genes identified
using the clustering algorithm shared structural or functional
traits, we asked whether genes in a cluster shared a particular
annotation more often than expected by chance (using the
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program EASE [82]). EASE calculates the exact probability of
randomly sampling a given number of genes with any partic-
ular annotation in relation to the total number of genes with
this functional or structural annotation on the gene chip.
Thus, it searches for annotations or 'biologic themes' that are
statistically enriched in a group of genes as compared with the
whole genome. Using EASE annotations for each probe set,
the one-tailed Fisher exact probabilities and Bonferroni cor-
rections were used to determine which particular annotation
categories were over-represented.

We explored whether genes in the same cluster shared
upstream motifs, including TFBMs, which might indicate
coordinated expression. To do this we used the program
MotifRegressor [83,84] to define a set of candidate motifs in
the -1,000 to +50 base pair region of the differentially
expressed genes after parasitoid attack, and then used the
program Clover [85,86] to test for significant over-represen-
tation of these motifs in co-expressed genes. To define the set
of candidate motifs information from individual time points
were analyzed separately, and from each we retained the 20
top motifs that the program MotifRegressor identified using
a regression strategy based on differential gene expression
and the number and strength of match of the motif. Basically,
the program searches for any sequence that is significantly
associated with upregulated (or downregulated) genes. To
test for over-representation of these motifs in gene clusters,
the program Clover generates a score for each motif/cluster
combination based on data on presence and strength of asso-
ciation. Initial screening identified more than 100 candidate
motifs at the different time points. However, this list was
reduced to six in a two-step approach: first, by merging
degenerate motifs that aligned at more than half of the DNA
bases per sequence, using IUPAC Ambiguous DNA Charac-
ters [38] to designate more than one DNA base at a given
position within a sequence; and second, by requiring that
motifs should be over-represented at multiple time points.
Matches to known binding sites were identified using the
TFBM databases Transfac 8.1 [87] and Jaspar [88,89], and
from the list of immunity-related TFBMs presented by Senger
and coworkers [36]. The significance of the associations was
tested using scores generated from the -1,000 to +50 base
pair regions of 1,000 randomly selected genes present on the
Affymetrix Drosophila Genome 1 Array. Only clusters with
more than five genes were included in the analysis.

Additional data files

The following additional data are included with the online
version of this article: A table annotating the probe sets with
significantly different expression profiles in parasitized and
control larvae (Additional data file 1); a figure showing the
expression profile and upstream motifs of all genes per clus-
ter (Additional data file 2); a table providing a full list of puta-
tive regulatory motifs that were significantly over-
represented in our clusters of genes (Additional data file 3); a
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diagrammatic representation of the degenerate motifs of the
putative TFBMs (Additional data file 4); and a table providing
normalized data for the probe sets with significantly differen-
tial expression profiles in parasitized and control larvae
(Additional data file 5).
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