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Codon usage effects on translation error<p>The analysis of codon usage in nearly 900 species of the three domains of life suggests that codon usage patterns in mRNA messages do not minimize the effects of translation error.</p>

Abstract

Background: Do species use codons that reduce the impact of errors in translation or
replication? The genetic code is arranged in a way that minimizes errors, defined as the sum of the
differences in amino-acid properties caused by single-base changes from each codon to each other
codon. However, the extent to which organisms optimize the genetic messages written in this code
has been far less studied. We tested whether codon and amino-acid usages from 457 bacteria, 264
eukaryotes, and 33 archaea minimize errors compared to random usages, and whether changes in
genome G+C content influence these error values.

Results: We tested the hypotheses that organisms choose their codon usage to minimize errors,
and that the large observed variation in G+C content in coding sequences, but the low variation in
G+U or G+A content, is due to differences in the effects of variation along these axes on the error
value. Surprisingly, the biological distribution of error values has far lower variance than
randomized error values, but error values of actual codon and amino-acid usages are actually
greater than would be expected by chance.

Conclusion: These unexpected findings suggest that selection against translation error has not
produced codon or amino-acid usages that minimize the effects of errors, and that even messages
with very different nucleotide compositions somehow maintain a relatively constant error value.
They raise the question: why do all known organisms use highly error-minimizing genetic codes,
but fail to minimize the errors in the mRNA messages they encode?

Background
Genetic codes are arranged in a way that is highly resistant to
errors, but whether the mRNAs that genomes encode also
resist errors has been largely untested. The standard genetic
code is found in most nuclear and mitochondrial genomes,

although some genomes have slight variations in the genetic
code (see [1] for review). The biochemical basis for many of
these variations is known, but their purpose remains unclear.
The extent to which a genetic code is resistant to errors (in
replication, transcription, or translation) can be defined by an
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'error value' [2,3], which is the sum of the differences in
amino-acid properties when changing from each codon to
each other codon that can be reached by a single-base substi-
tution (see Materials and methods). The standard genetic
code and all known variants resist error better (have a lower
error value) than do random codes for a wide range of differ-
ent amino-acid properties and models of random code gener-
ation [4-9], although the extent to which natural selection has
reached the best of all codes remains somewhat controversial
[10-13]. We now test the idea that organisms optimize their
codon usage as well as their genetic code: codons with low
error values might be used in preference to those with high
error values, to reduce the overall probability of error.

Different organisms use the four bases in varying amounts at
each of the three positions within the codon (that is, the aver-
age counts of each of the four bases in all the first positions of
all the codons in a genome are different from the counts in all
the second positions and the third positions) [1]. In particu-
lar, the first position is heavily biased towards purines, and
the second position is somewhat biased towards A and C.
These trends hold for all organisms in all three domains of
life. In addition, organisms vary extensively in GC content
(the fraction of bases that are G or C, as opposed to A or T) at
each of the three codon positions, which also affects the
amino-acid usage [1,14-16]. These features might be related
to the code's error-minimizing properties: organisms might
choose their codon and/or amino-acid usages in ways that
reduce errors during translation [17-20].

Previous research has suggested that the GC content of a
sequence can greatly affect its error-minimizing properties
[20], and that amino-acid and/or codon usage may be opti-
mized in Drosophila and mouse [19] but not in Escherichia
coli [18], but no global survey has yet been performed. If
mRNA messages are arranged in ways that minimize error, as
has been comprehensively established for the genetic code
itself (see for example [2,3,7]), this error minimization might
arise by adjusting the usage of individual codons or amino

acids, or by adjusting the overall base frequencies at each of
the three codon positions. In particular, the error values
might be especially stable against change in GC content, since
organisms have mRNAs that vary over a wide range of GC
content but vary little over the other two orthogonal axes of
nucleotide composition. However, it is also possible that the
genetic code was shaped under different selection pressures
than those acting in modern organisms, resulting in codon-
usage patterns that are random with respect to error
minimization.

Codon and amino-acid usage statistics are now available for
thousands of species from the Codon Usage Tabulated from
GenBank (CUTG) database [21]. We tested whether species
preferentially use codons with low error values; that is,
codons that, if misread, would tend to substitute a more sim-
ilar amino acid. To do this, we compared the error value of the
code weighted by the actual codon usages against the error
values of codes in which the codon or amino-acid usages had
been randomized. Thus, we tested three specific hypotheses:
first, that organisms choose codon usages that produce fewer
errors than permuted or randomly chosen codon usages; sec-
ond, that organisms choose amino-acid usages that produce
fewer errors than permuted or randomly chosen amino-acid
usages; and third, that the discrepancy in composition in the
three nucleotide positions is caused by selection of codons
that minimize errors in translation.

Results and discussion
Messages are not optimized
We used two different methods to compare the actual codon
usages to randomized codon usages. First, we used 'shuffled'
codon usages. In shuffled codon usages, the codons, amino
acids, or positional-base frequencies were randomly per-
muted. This method preserves the relative frequencies of the
the different codons, amino acids, or positional-base frequen-
cies, but changes their meanings. For example, if the original
amino-acid usage was 5%A, 10%G, and 2%W, the usage after

Table 1

Error values for biological and random codon usages

Archaea Bacteria Eukaryotes

Natural codon usages 67.7 ± 3.42 64.7 ± 1.77 63.8 ± 2.14

Codon permuted 52.4 ± 4.92 52.2 ± 5.15 52.7 ± 3.61

Codon random 52.6 ± 3.76 52.6 ± 3.47 52.4 ± 3.16

Amino acid permuted 61.6 ± 8.74 61.0 ± 6.95 61.1 ± 6.35

Amino acid random 61.0 ± 7.37 61.8 ± 6.96 61.7 ± 6.72

Positional base permuted 51.7 ± 6.49 52.3 ± 6.91 52.2 ± 5.44

Positional base random 52.1 ± 10.5 53.4 ± 12.6 52.1 ± 12.9

Mean ± standard deviation for each set of codon usages. The natural codon usages invariably have higher error values and lower standard deviations 
than any of the random or randomized codon usages: this pattern is consistent for all three domains of life.
Genome Biology 2005, 6:R91
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shuffling might be 5%A, 2%G, and 10%W. Second, we used
random codon usages that did not preserve the relative fre-
quencies of codons, amino acids, or positional-base frequen-
cies, but instead assigned each codon, amino acid, or
positional-base frequency a random number from a uniform
distribution, followed by normalization so that the frequen-
cies summed to one (see Materials and methods). We ana-
lyzed species in the three domains of life separately: 33
archaea, 457 bacteria, and 264 eukaryotes for which at least
50 genes were available.

From the distributions of code-error values for real and rand-
omized codon usages (Figure 1 first column, and Table 1), we
make three observations. First, the actual distribution of
error values in organisms was much tighter than in any of the
randomized usages (63.8 ≤ mean ≤ 67.7 and standard devia-
tion ≤ 3.42 for all domains). Second, both the permuted and
random codon usages produced code-error values signifi-
cantly lower than the corresponding values for actual codon

usages (P ≤ 0.05 by two-tailed paired t-test between actual
and shuffled or random codon usages). Finally, the shuffled
and random codon usages produced almost identical results
(P > 0.05 in all cases by two-tailed paired t-test).

The variance of the actual codon usages is significantly
smaller than the shuffled and random usages under each ran-
domization model and for all domains of life. The P-value
ranges are as follows: for archaea from 7.7 × 10-9 to 0.59
(where 0.59 is the only non-significant value), for bacteria
from 3.9 × 10-257 to 1.1. × 10-43, and for eukaryotes from 8.5 ×
10-131 to 5.5 × 10-10. The significance of the difference in vari-
ance between a shuffled and random usage varies considera-
bly (no consistent trend in P-values), probably depending on
each specific random sample.

The pattern was similar for shuffled and random amino-acid
usages, and for shuffled and random positional-base usages.
In all cases, the means for the shuffled and random distribu-

Code-error values for actual and permuted codon usagesFigure 1
Code-error values for actual and permuted codon usages. The usages are displayed for three randomization algorithms and each domain of life. Rows: 
archaea, bacteria, and eukaryotes. Columns (randomization algorithms): codon, amino acid, positional base. Black, biological (unpermuted); red, permuted; 
green, random. Variability is always much less in the biological codon usages (black lines) than in any of the random or randomized usages, and the mean is 
always higher, suggesting that the biological codon usages are constrained to a narrow band but are not optimized for error minimization.
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tions were similar to each other and lower than the mean for
the actual distribution (Figure 1, columns 2 and 3). The simi-
larities across domains are striking: the error values for codon
usages in all three domains of life fall in the same narrow
region.

Code error is not correlated with composition
To test whether the error value varied systematically with
nucleotide composition, we plotted the error value as a func-
tion of position in the tetrahedron of possible base composi-
tions (see Materials and methods for discussion). If the error
value of a message depended on the composition of the
codons, we would expect to see no correlation along the GC
axis, because the amount of natural variation along this axis
suggests that all values are selectively neutral and that there-
fore the code error is approximately the same. In contrast, we
would expect to see increasing error values with increasing
distance from the GC axis, constraining the biological varia-
tion in these other directions. However, contrary to these pre-
dictions, we find that for the real, permuted, and random
positional-base usages, there are clear differences both in
composition and in error at the three positions, but there is no
systematic variation of error with composition.

Figure 2 shows the composition of each of the three codon
positions and of the total in composition space, where the vol-
ume of a sphere is proportional to its error value. As expected,
we observe clear differences in composition between the
three codon positions. We can also see that the different
codon positions contribute very differently to the total error

value of the message. The second codon position determines
about 70% of the total error value, the first codon position
another 29%, and the third codon position less than 1%.

To highlight possible changes in code-error value along the
three compositional axes, which are difficult to see in the sim-
plex, we plotted code-error value versus composition along
each of the three axes separately. Figure 3 shows the code-
error values for the actual codon usages of bacteria along the
UC, UG, and UA axes. In the left column, the error values have
been scaled relative to the maximum value for each codon
position independently to demonstrate relative changes,
while in the right column the absolute values are displayed.
Results for archaea and eukaryotes are very similar to those
for bacteria (data not shown).

We applied the same analysis to permuted and random posi-
tional-base usages, which allowed us to examine the correla-
tions along a wider compositional range on all of the axes.
These codon usages form spherical distributions around the
center of the tetrahedron (Figure 4). For permuted usages,
the original compositional values are redistributed over the
three axes; the random usages show equal distributions for
each of the three codon positions with equal variation along
each axis. Figure 5 shows the corresponding scatterplots for
the permuted and random usages.

We found highly significant correlations between (total) code
error and position on each of the three orthogonal composi-
tion axes, except for the eukaryotes along the UG axis (Table
2). For total code error, the significant P-values averaged
0.0042 (range 1 × 10-6 to 0.03), explaining an average of 0.19
(range 0.020 to 0.37) of the variance in code error. However,
the correlation along the GC axis was not, in general, less than
the correlation along the other axes. In addition, we found no
significant correlations along the UG and UA axes for random
and permuted data sets (in a single case the correlation was
significant, but only explained 0.023 of the variation). Along
the UC axis, the correlations in random and shuffled bacterial
and eukaryotic usages are of similar magnitude to the corre-
lations in the natural usages. Together with the observation
that actual usage errors are typically higher than random
usage errors, these observations suggest that selection
against errors caused by variation along the different compo-
sition axes cannot explain observed trends in codon usage.

Conclusion
If organisms were under strong selection to minimize errors
in replication and translation, we would expect them to
choose codons that are less prone to error. Consequently, we
would expect that the actual codon, amino-acid, and posi-
tional-base usages would have lower error values than would
permuted versions. However, we found exactly the opposite:
the actual codon, amino-acid, and positional-base usages
produce more errors than randomly chosen compositions.

Relationship between base composition and code errorFigure 2
Relationship between base composition and code error. Bacterial codon 
usages are chosen to illustrate this relationship by plotting the base 
composition and code-error value for each codon position in the 
tetrahedral simplex (composition space). The error value for each species 
is plotted as a sphere with volume proportional to the error. Two 
perspectives are given. On the left is an oblique view to show variation 
along Chargaff's axis (G = C and A = T) and the relative contribution of 
each codon position to the error value. On the right is a view down 
Chargaff's axis to show the bias of each codon position. First position, 
yellow; second position, red; third position, blue; and total, green. As 
expected, the error value is always lowest at the third position (blue) as 
result of interconversion among synonymous codons and codons for 
similar amino acids.
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Consequently, our hypothesis that genetic messages (as well
as genetic codes) are optimized for error minimization was
not supported by the data. However, the low variance in
codon-usage error values in organisms suggests the intrigu-
ing alternative possibility that mRNAs are selected for a spe-
cific level of errors, rather than to minimize errors overall.
Because the rate of evolution is limited by mutation, it is pos-
sible that the ability to tune the rate of protein sequence evo-
lution by using error-prone codons has provided a selective
advantage to modern organisms. Intriguingly, recent
research suggests that the canonical genetic code allows tar-
get protein sequences to evolve far more rapidly than do the
alternative genetic codes [22]. Codon usage may also be tuned
for evolvability rather than for error minimization.

Another possible explanation for the limited variability in
error-minimization properties is that the genetic code was
shaped under very different selection pressures than those
acting in modern organisms. Today, other factors, including
directional mutation or selection for translation speed, may
greatly outweigh the benefits that could be obtained by using
error-minimizing codons or amino acids. However, such an
explanation would predict that modern usages would be ran-
dom with respect to code error, and would not predict the
near constancy of error values in actual organisms. This work
is consistent with the previous observations that messages
within E. coli are not optimized for error minimization at the
codon level [18] and that codon usage can greatly influence
error minimization [20], and extends the analysis to a sample
of over 700 bacterial, archaeal, and eukaryotic species. How-
ever, it does not confirm the observation that the amino-acid
usage in some species is chosen in a way that minimizes
errors [17,19]. This latter discrepancy could be due to the dif-
ferent sampling of genes or the different methods used to
calculate the error value (single-step versus multi-step
mutations).

As previously observed, we confirm that the three nucleotide
positions differ greatly in nucleotide composition [1] and in
error minimization [3]. However, we find no evidence for a
relationship between these two properties. The universal
maintenance of these patterns across species suggests that
some kind of selection is involved, but the factors influencing
this selection remain undefined. In particular, positional
base-composition patterns orthogonal to the actual base-
composition patterns, and occupying regions of composition
space in which no organism has ever been observed, have
errors no worse than do the actual usage patterns. This simi-
larity strongly suggests that selection for error minimization

Variation in code error along the three axes in composition space: G+A, G+C, G+UFigure 3
Variation in code error along the three axes in composition space: G+A, 
G+C, G+U. Scatterplots of variation in code-error value along each of the 
three axes that make up the composition space. Top row, UC content; 
middle row, UG content; bottom row, UA content. Left column, error 
value at each codon position individually scaled relative to the maximum 
value for that position (maximum = 1.0). Right column, absolute error 
values for each codon position. First position, yellow; second position, red; 
third position, blue; and total, green. Data shown are for bacteria, though 
results were similar for the other two domains (data not shown). 
Although substantial correlations are revealed in the scaled data, these 
correlations contribute little to the overall error value, which is 
dominated by the second codon position.
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Base composition by codon position for randomized base usagesFigure 4
Base composition by codon position for randomized base usages. Left: 
permuted by positional bases, where the variability at each position is 
preserved, but the direction of the variability is rotated by 90 degrees 
around an arbitrary axis. Right: randomly chosen positional bases, where 
the amount of variability and the size of the correlations between axes at 
each position are destroyed. First position, yellow; second position, red; 
third position, blue; and total, green. Compare this figure with biological 
codon usages in Figure 2.
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does not play a role in keeping genomes within a narrow
region of composition space. The nucleotide composition of a
message has relatively little effect on its error value, suggest-
ing that other factors maintain the systematic biases in com-
position at the three codon positions that are observed in all
species and domains of life.

Thus, organisms do not choose their codon, amino-acid, or
nucleotide composition in a way that minimizes the effects of
errors. This observation is highly unexpected in light of the
great extent to which the genetic code itself is arranged in an
error-minimizing fashion, and suggests that some factor
underlying the near-constant error values of codon usage
across genomes in all three domains of life remains to be
discovered.

Materials and methods
We addressed our first and second hypotheses, that genetic
messages are optimized for error minimization either at the
codon or amino-acid level, by comparing the actual codon
usages from organisms to first, permuted codon usages, in
which the codon counts were preserved but the codons to
which those counts applied were randomized, and second, to
completely random codon usages. We addressed our third
hypothesis, that the code error is robust to variation in GC
content but not robust to other compositional variation, by
examining the correlation between composition along each of
the three compositional axes (GC, GU, and GA) and the code-
error values for real, permuted, and random codon usages.

Data source
We used the CUTG database as source for codon usages found
in organisms [21]. We repeated the analysis separately for the
three domains of life (archaea, bacteria, and eukaryotes). The
species were classified according to the NCBI Taxonomy. We
analyzed the 754 species for which at least 50 genes were
available: 33 archaea, 457 bacteria, and 264 eukaryotes.
Mitochondrial sequences were excluded.

Calculating the error value of a message
The process of calculating an error value for a message (or
codon usage) uses the basic method for calculating an error
value for a genetic code [2,3], with the addition that the error
value of a change from one codon to another is weighted by
the frequency of the starting codon [18]. To maintain consist-
ency with previous work [2,3], we measured the distance
between amino acids using polar requirement, a measure of
hydrophobicity [23].

The error value of a code is given by:

For all possible mutations b at each of the three codon posi-
tions p in all 64 codons c, we sum the weighted size of the
change in amino-acid property, for example, hydrophobicity.
The change is given by the difference in the amino-acid prop-
erty of the amino acids encoded by the old and new codons,
νold - νnew, weighted by the abundance of the codon wc, the
effect of the base position wp, and the probability of mutation
to the new base given the codon and position wb|(c,p). A
'mutation' from a codon to itself does not add to the error
value, because the same amino acid is present before and
after the 'mutation'. Stop codons are excluded from the calcu-
lation. Codon frequencies were taken from the codon usage
database or assigned at random. We used a range of transi-
tion/transversion biases from 1:1 to 10:1, although there was
no qualitative effect on the results. Results shown are for a
transition/transversion bias of 4:3, and equal weighting for
the three base positions.

Absolute error values for permuted bacterial codon usagesFigure 5
Absolute error values for permuted bacterial codon usages. The variation 
in code-error values is shown along the three compositional axes. 
Compare this figure with biological codon usages in Figure 3. Top row, UC 
content; middle row, UG content; bottom row, UA content. Left column, 
permuted positional-base usages. Right column, random positional-base 
usages. First position, yellow; second position, red; third position, blue; 
and total, green. Lack of correlation along any axis and wide range suggests 
that constraints on positional-base usage do not explain the pattern of 
codon usage error values in organisms.
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Creating permuted and random codon usages
We can calculate the amino-acid usage and positional-base
usage from a given codon usage. The frequency of an amino
acid is the sum of the frequencies of each of its codons. A posi-
tional-base usage is the frequency of each of the four bases at
each of the three codon positions. For example, the frequency
of U at the first codon position is the sum of the frequencies
of all codons that start with a U. Thus, each codon usage is
associated with one unique amino-acid usage and one posi-
tional-base usage.

However, many different codon usages correspond to the
same amino-acid usage. To predict the codon usage associ-
ated with an amino-acid usage, we used the assumption that
all codons coding for the same amino acid occur with equal
frequencies, so that each gets an equal share of the amino-
acid frequency. Consequently, blocks of codons (coding for
the same amino acid) are assigned the same frequency. The
prediction of the frequency of a codon from a positional-base
usage is calculated as the product of the positional-base fre-
quencies of its bases at the three codon positions. This
method reflects the idea that if a species were under selection
for amino-acid usage only, there would be no a priori reason
to assign different frequencies to the different codons for a
given amino acid. Similarly, to predict the codon usage asso-
ciated with a particular positional-base usage, we take the
product of the frequency of the appropriate base at each of the
three codon positions. For example, the frequency of the
codon AUG is the product of the frequency of A at the first
position, U at the second position, and G at the third position.

With the above transformations in mind, we can shuffle fre-
quencies or choose random frequencies at three levels:
codons, amino acids, and positional bases. After creating a

permuted or random amino-acid usage or positional-base
usage, we calculate the corresponding codon usage as
described above (because the error value calculations require
codon usages as input).

Statistics
We used the two-tailed paired t-test to compare the means of
the various distributions, because we examined the same
sample before and after randomization. Differences in vari-
ance between the error values of the actual usages and the
permuted and random usages were calculated by a two-tailed
F-test.

Visualization
The (positional) composition of the codon usages can be con-
veniently visualized with the program MAGE [24], using a
presentation scheme in which the volume of a sphere is pro-
portional to the error value at a particular codon position. The
base frequency of a set of bases, such as a sequence of nucle-
otides or all bases at a particular codon position, can be visu-
alized as a point in composition space. The base frequency is
described as a vector of the fraction of each of the four bases
(U, C, A, and G) in the set. These fractions form the four coor-
dinates to describe sequence composition. When visualizing
the space of all possible compositions, we only have three
dimensions to work with. Three unique ways divide the four
bases into sets of two, which provide an orthogonal coordi-
nate system. The three axes are the lines where G+C equals
A+U, G+U equals A+C, and G+A equals U+C. The GC (or AU)
axis is also called Chargaff's axis, because it is the line where
all perfectly Watson-Crick base-paired regions would reside.
Composition space can thus be visualized as a tetrahedral
unit simplex [25].

Table 2

Correlations between composition and code-error value

UC (or AG) UG (or AC) UA (or GC)

Bacteria Natural 0.23 (1 × 10-6) 0.14 (1 × 10-6) 0.023 (0.0012)

Permuted 0.017 (0.0055) 0.0020 (0.35) 0.023 (0.0011)

Random 0.23 (1 × 10-6) 0.0026 (0.28) 0.00064 (0.59)

Eukaryotes Natural 0.21 (1 × 10-6) 0.0021 (0.46) 0.12 (1 × 10-6)

Permuted 0.14 (1 × 10-6) 0.00012 (0.86) 0.0033 (0.35)

Random 0.20 (1 × 10-6) 0.0014 (0.55) 0.0069 (0.18)

Archaea Natural 0.14 (0.029) 0.28 (0.0016) 0.37 (0.00017)

Permuted 0.073 (0.13) 0.016 (0.49) 0.029 (0.34)

Random 0.10 (0.071) 0.00056 (0.90) 0.025 (0.38)

Coefficient of determination (r2) and P-value for natural and representative randomized usages. Because of the much smaller sample size in archaea, 
the significance of the correlations is generally much lower than in the other two domains (n = 33 for archaea, 264 for eukaryotes, and 457 for 
bacteria).
Genome Biology 2005, 6:R91
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Additional data files
The Python code and the raw data to perform the described
code-error analysis are available as an Additional data file
with the online version of this paper. Additional data file 1 is
a tar archive containing the used CUTG records, separated for
archaea, bacteria, and eukaryotes, the data used to produce
the histograms in Figure 1, the kinemages used to produce
Figures 2 and 4, and the data used to produce the scatterplots
in Figures 3 and 5.
Additional data file 1The Python code and the raw data to perform the described code-error analysisA tar archive containing the used CUTG records, separated for archaea, bacteria, and eukaryotes, the data used to produce the his-tograms in Figure 1, the kinemages used to produce Figures 2 and 4, and the data used to produce the scatterplots in Figures 3 and 5.Click here for file
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