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Abstract

Background: The origin of the nuclear compartment has been extensively debated, leading to
several alternative views on the evolution of the eukaryotic nucleus. Until recently, too little
phylogenetic information was available to address this issue by using multiple characters for many
lineages.

Results: We analyzed 65 proteins integral to or associated with the nuclear pore complex (NPC),
including all the identified nucleoporins, the components of their anchoring system and some of
their main partners. We used reconstruction of ancestral sequences of these proteins to expand
the detection of homologs, and showed that the majority of them, present all over the nuclear pore
structure, share homologs in all extant eukaryotic lineages. The anchoring system, by contrast, is
analogous between the different eukaryotic lineages and is thus a relatively recent innovation. We
also showed the existence of high heterogeneity of evolutionary rates between these proteins, as
well as between and within lineages. We show that the ubiquitous genes of the nuclear pore
structure are not strongly conserved at the sequence level, and that only their domains are
relatively well preserved.
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Conclusion: We propose that an NPC very similar to the extant one was already present in at
least the last common ancestor of all extant eukaryotes and it would not have undergone major
changes since its early origin. Importantly, we observe that sequences and structures obey two very
different tempos of evolution. We suggest that, despite strong constraints that froze the structural
evolution of the nuclear pore, the NPC is still highly adaptive, modern, and flexible at the sequence
level.

Genome Biology 2005, 6:R85


http://genomebiology.com/2005/6/10/R85
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/

R85.2 Genome Biology 2005,

Volume 6, Issue 10, Article R85 Bapteste et al.

Background

In 1938, Copeland proposed to gather in a large but unnamed
natural group all the organisms (both multicellular and uni-
cellular) harboring a nucleus [1,2]. He considered that the
nucleus was too complex a structure to have appeared inde-
pendently several times [1,2]. The possession of a nucleus is
still commonly considered as a good synapomorphy for
eukaryotes. However, very little broad comparative analyses
of eukaryotic nuclei have been conducted in order to test the
homology of this structure. Very recently, Mans et al. [3]
investigated by BLAST searches the distribution of homolo-
gous proteins of the nucleus and of a few associated systems
in the three domains of life. Yet, apart from this stimulating
work, the nucleus is only well studied in vertebrates [4,5] and
in fungi [6-8], whereas little is known in protists or plants.
For this reason, the origin and evolution of this structure are
difficult to address and largely remain to be described.

The nuclear pore complex (NPC) is one of the most important
components of the nucleus. It is a gate between the nucleo-
plasm and the cytoplasm, mediating the nucleocytoplasmic
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transport of small molecules by either diffusion or active
transport of large substrates [9-15]. Recent works have sug-
gested that some components of the NPC may play a role in
the structural and functional organization of perinuclear
chromatin [16], in chromatin boundary activities [17] and in
interactions with kinetochores [18,19]. A role in numerous
pathways has also been observed, such as the control of gene
expression, oncogenesis and the progression of the cell cycle
[20-23]. The NPC is thus a fully integrated structure and its
evolution is likely very constrained.

The NPC is also one of the largest macromolecular complexes
in the eukaryotic cell (approximately 60 MDa and 125 MDa in
yeast [6] and vertebrates [24], respectively), composed of
more than 30 different interacting proteins generally referred
to as nucleoporins [5,6,15,25]. The nuclear pore exhibits an
octagonal symmetry around its cylindrical axis. It consists of
a cylindrical core, composed of eight interconnected spokes
(each spoke being composed of the Nup93, Nup205, Nup188
nucleoporins; Figure 1a), that surrounds the central channel.
Each spoke is connected on the nucleoplasm and cytoplasm
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The structure of the nuclear pore complex. Schematic representation of the position of the major nucleoporin subcomplexes in (a) unikonts and (b)
bikonts. The schematic organization of the NPC in unikonts is based on the schematic organizations of NPC in vertebrates published by Powers and Dasso
[15], completed accordingly with recent works [5,19]. Boxes delimited by dashed lines indicate proteins having unkown or no precise localization within or
around the NPC. Light gray boxes represent nucleoporins present in unikonts but having no homologs in bikonts. Protein names in black in (a) indicate
proteins having homologs in fungi, whereas those in red indicate proteins having no homologs but structural analogues in fungi. Lines between
subcomplexes indicate putative interactions whereas double lines indicate undisputable interactions.
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Table |

Distribution of homologs of the metazoan NPC and NPCa proteins across different lineages of eukaryotes and prokaryotes

Localization/Function Metazoa Fungi Microsporidia Green Rhodophytes Conosa Diplomonads Diatoms Kineto- Alveolates Archaea Bacteria
plants plastids

NPC proteins [5,6,39,40]

Integral membrane Gp210 Pom152 Pom152
(Pom210)
POMI 21 Pom34
Ndcl
Spokes Nup93 ¥ Nic96p ook ok
Nup205 %k Nup192p ook ok
Nup188  *** Nup|88p bk
Central transporter Nup62 *#* Nsplp ok ok
Nup582 * Nup49p ok
Nup54 ** Nup57p ok
Nup452 ** Nup49p ok
Nuclear side Nup133 *#k Nup133p ook
Nup96b sk . otk
nup 145p¢
Nup 107 *# Nup84p ok
Nupl60  ** Nup|20p ok
Nup37 [5] ok ok sotok * otk
Nup43 Holok detoke sofok
Nup75 *# Nup85p el ok ook ol
Sehl #55 Seh | p otk sotok sofok sofok otk * otk
(secl3L)
Sec | 3R ek Sec | 3P ek ek ek ek £ £ ok stk * ks
Cytoplasmic fibrils Nup35 (MP-  ** Nup59p ok ok
44) Nup53p

Nup214  ** Nup|59p
(Cain) (Can)

Nup88 % Nup82p sl sk sk
Ran-Gapl bk Hofok ook * * ok
Nup358 ok *ok %
(Ranbp2)
(Rbp2) -
Ubc9 (Ube2l) ** Ubc9p ook ok solok oo Aotk otk %
Nucleoplamic fibrils (basket) Nup98 otk N- Hofok ok solok 3
Nup145p¢ 2
Nupl 16p -
Nup 100pd 2
o . N ®
Rael (gle2)  ** Gle2p soiok ook oo sk oot ik stk * sk %
Tpr ** Miplp ok >
Mip2p
Nup153 NupIp
Nup50 Nup2p ok
(Npap60L)
Other Nup36¢ ohok Aol
Nup 100pd
Cgl (NIpl)  ** Nup42p ok
(Riplp)
Nup 155 % Nup 170p Hofok Hofok solok sofok solok otk
Nup157p
Aladin [5] ok Hofok sofok solok oo
NPCa proteins
Nuclear periphery [5] p30 ok ok
SUMO-| protease [55,56] Senp2 ok Hofek ol sofok
Nuclear mRNA export Tap wohk olok
factor [57]
Nuclear export [58] Recl otek sokok sefok % %
Nuclear Import Importin(s) sotok otk ook sk ook sotok ook ook stk
Nuclear mRNA export [59] Ddx|9 Dbp5  *** Dbp5 ok otk ook otk * * Hofok Hohk
Nuclear mRNA export [60] Glel ok Glel ook ok
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Table | (Continued)
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Distribution of homologs of the metazoan NPC and NPCa proteins across different lineages of eukaryotes and prokaryotes

Nuclear export [10] Ranbp| ok ok ok
Nuclear import Importin 7 Ranbp7 ok ok
[e1]
Nuclear import Importin 8 Ranbp8 ok ok
[e1]
[62] Mad| ik Mad | st
(MadIL)
(Madla)
[62] Mad2 *#% Mad2 ok
(Mad2Ll)
(Mad2a)
Nuclear export [10] Crml ok ok
Nuclear mRNA export [63] HnRNPF ok
Nuclear mRNA export [63] HnRNPH o
Nuclear mRNA export [63] HnRNPM olok okok
Nuclear export [58,64] Ran ok ok oo
Homolog of unc-84 in C. Unc-84B ok ok
elegans [42]
Inner nuclear membrane Ha95
protein [65]
Inner nuclear membrane Luma
protein [42]
Inner nuclear membrane Emerin
protein [66]
Inner nuclear membrane Nurim
protein [42,67]
Inner nuclear membrane Manl
protein [42,65]
Lamin B receptor [65] Lbr ok
Peripheral protein of the Otefin
inner nuclear membrane [68]
Ring finger binding protein Rfbp
[65]
Lamina [65] LaminaA/C bk
Lamina [65] LaminaB|
Lamina [65] LaminaB2
Protein co-localized with the Narf
nuclear lamina [69]
Lamina associated polypeptid Lapl
[65,70]
Lamina associated Lap2

polypeptide [65,71]

otk sokok ook
otk sokox otk
*
ik stk soiok ol stk
etk sefek ek sefek ek etk
sokok ook
ok
ek
* * sokok * *
* otk soick ok stk sk
etk sekk sefek * * ek sk

aNup58 and Nup45 proteins are generated by alternative splicing of the nup58/nup45 gene mRNA. ®°Nup96 and Nup98 are cleaved from a 186 kDa
precursor protein. °N-Nup145p and C-Nup 45p are cleaved from the Nup145p precursor protein. INup36 showed 96.8% identity with the carboxy-
terminal region of Nup100p. ***, indicates proteins for which the homology with metazoan proteins seems indisputable and allows good alignments;
** indicates proteins with a likely homology; *, indicates proteins for which a putative homology has been detected by BLAST, but for which no
alignment was possible; italic font corresponds to proteins for which no sequence homology was detected but for which structural analyses revealed
similar positions within the nuclear pore complex (NPC); underlined font indicates sequences identified using the reconstruction of ancestral

sequences.

sides to a Nup160 subcomplex (Nup133, Nupg6, Nup107,
Nup37, Nup43, Nup160, Nupys) that binds to the Sec13R and
Seh1 proteins (Figure 1a; Table 1). The Nup160 complexes
form a plane pseudo-mirror symmetry running parallel to the
nuclear envelope. From the central ring, 50 to 100 nm fibrils
extend into the nucleoplasm, where they conjoin distally to
form a basket-like structure (Nup153, Nup98/Rae1, Nup5o0,
Tpr; Figure 1a; Table 1), spreading outwards into the cyto-
plasm (Nup214, Nup88, Nup358, Ubcg, RanGap1, Nup3s;
Figure 1a; Table 1). The Nup62 subcomplex, also called the

central transporter, may be involved in transport across the
NPC (Figure 1a; Table 1). In vertebrates, the NPC is anchored
to the nuclear envelope by the Gp210 and the Pomp121 pro-
teins (Figure 1a) and is connected with the nuclear lamina, a
meshwork of lamins and lamin-associated proteins that form
a 15 nm thick fibrous structure between the inner nuclear
membrane and peripheral chromatin (Figure 2).

To further highlight the origin and the evolution of this essen-
tial structure in eukaryotes, we investigated the evolutionary

Genome Biology 2005, 6:R85



http://genomebiology.com/2005/6/10/R85

history of its components using a classic phylogenetic
approach. Beyond detection of homologs by BLAST, we stud-
ied the phylogenies, the evolutionary rates, and the domain
organization of all the known nucleoporins and of a selection
of their main partners involved in nuclear transport or com-
posing the nuclear envelope. We subsequently propose some
hypotheses on the origin of the nucleus and its evolution.

Results and discussion

Identification of the core of homologous NPC and
NPCa proteins present in all extant eukaryotes

Our first goal was to test the widely but a priori accepted
hypothesis that the NPC is homologous in all extant eukaryo-
tes by investigating the distribution of homologs of the meta-
zoan NPC and NPCa proteins across eukaryotic lineages. We
retrieved the sequences of 65 metazoan NPC and NPCa pro-
teins and searched for their homologs in all eukaryotic phyla
for which sequences are available in current databases, such
as fungi, green plants, Rhodophytes, Conosa, and Diplomon-
ads (Table 1; Additional data file 1).

Two different phyletic patterns are expected depending on:
whether the NPC was a very recent evolutionary innovation
and the outcome of independent evolutionary processes in
different eukaryotic lineages; or whether it originated before
the last eukaryotic common ancestor (LECA [3]). In the first
case, very few metazoan NPC and NPCa proteins would have
homologs in all eukaryotic lineages; and in the second case,
the vast majority of metazoan NPC and NPCa proteins would
have homologs in all eukaryotic lineages [26].

Retrieving homologs for NPC and NPCa proteins was unex-
pectedly difficult, despite the apparent structural conserva-
tion of the NPC between fungi and metazoa [8]. The ability to
identify and successfully retrieve homologs by BLAST and
PSI-BLAST approaches is notably dependent on the evolu-
tionary rates of sequences. For example, attempts to retrieve
a rapidly evolving Arabidopsis thaliana sequence using a
slowly evolving Homo sapiens sequence, or vice versa, may
be unsuccessful if these homologous sequences have evolved
beyond recognition. To overcome this limitation, we multi-
plied the seeds for our BLAST searches. Interestingly, we
observed that 40 of the 65 NPC and NPCa proteins studied
were present in at least the fungal, animal and plant lineages
(Table 1). Furthermore, mining of protist EST databases,
notably of stramenopiles, expanded this taxonomical distri-
bution (Table 1), revealing that 48 of the 65 proteins under
study were present in bikonts (the grouping of plants and all
protists excepted conosa [27]) and in unikonts (the grouping
of opisthokonts: metazoa and fungi, and conosa). Among
these 48 proteins, 27 of the 33 components of the NPC (Table
1; Figure 1) and 16 of the 17 proteins involved in nucleocyto-
plasmic transport were conserved in unikonts and bikonts
against only four of the 14 proteins associated with the
nuclear envelope (Lbr, Narf, Rfbp and Man1; Table 1). Thus,
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Figure 2

Schematic representation of the putative inner nucleus membrane
organization. All the proteins (Nurim, Emerin, Lap-1, Lap-2, A-type lamins
and B-type lamins) except Lbr are found only in metazoa (for more details,
see [65]). Distant homologs of rfbp and Man| have been found in some
bikont protists (Table I).

we did not observe any of the outcomes of the two a priori
models, but we obtained an intermediate picture, in which
most but not all of the metazoan NPC and NPCa proteins have
homologs in other eukaryotic lineages. A unique and ancient
origin of the NPC and, by extension, of the nuclear compart-
ment itself would be favored because similar patterns of dis-
tribution would be better explained by an inheritance from
the LECA than by multiple convergent recruitments. This
claim would be strengthened if phylogenies of these eukaryo-
tic ubiquitous proteins are all in agreement with the eukaryo-
tic tree [26]. Indeed, phylogenetic analyses of these proteins
led to trees in which the relationships between the eukaryotic
lineages were generally well preserved; most of the trees dis-
playing apparent phylogenetic oddities could be easily ration-
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alized by reconstruction artifacts due to heterogeneity of
evolutionary rates (not shown).

Interestingly, the ubiquitous homologs are broadly located on
the NPC structure (Figure 1), suggesting that a large fraction
of the genes for NPC components originated once, prior to the
LECA (27 of the 33 nucleoporins have homologs in unikonts
and bikonts), and that the LECA likely had a complex nucleo-
plasmic transport system (16 of the 17 proteins have
homologs in unikonts and bikonts) and possibly a large and
modern-type nucleus.

We reckon that one has to be cautious when making conclu-
sions about the lack of homologs in some lineages, such as
conosa, for which no complete genome was available when we
conducted this study (Table 1; Figure 1). This reduced our
ability to shed light on several steps of NPC evolution. In
organisms with complete genome sequences available, such
as metazoa, fungi, and green plants, an absence may be inter-
preted as either a true loss, but also as the outcome of evolu-
tion beyond recognition. For example, the absence of a
metazoan and fungal Nup214/Nupi59p homolog in green
plants (despite the presence of the homolog of its partner
Nup88/Nup82p) may well reflect a true loss of this gene in
the green plant lineage or an innovation in the opisthokont
lineage (metazoa and fungi). If this absence is proven to be
true, it could suggest some limited structural reorganization
of the NPC. However, this apparent absence could also simply
reflect a fast evolutionary rate for this protein in green plants
or in opisthokonts, or both.

Interestingly, eight proteins (Pom121, Gp210, and the lam-
ina-associated proteins Emerin, Otefin, Lamina A/C, Lamina
B1 and B2, Lap1 and Lap2) were found only in metazoa,
whereas five proteins (Pom152, Pom34, Ndci, Nupip and
Nup2p) appeared as fungi specific (Table 1). Could this reflect
lineage-specific innovations? In metazoa, Pom121 and Gp210
are involved in the anchoring of the NPC to the nuclear mem-
brane [5]. The lack of apparent homologs of these genes in
fungi indicates that they likely have an analogous anchoring
system. Indeed, structural analyses have shown that three
analogous proteins (Pom152, Pom34, and Ndc1) that do not
display any sequence similarity with Pom121 and Gp210 per-
form this function in fungi [6]. These observations favor the
hypothesis of a lineage-specific innovation with non-homolo-
gous replacement, followed by loss of the ancestral anchoring
system in one of the two lineages. Additional information
about the NPC anchoring structure in other opisthokonts,
and in conosa (for which no homologs of those genes have
been detected) may help to determine in which lineage (fun-
gal or metazoan) this replacement occurred. A similar
hypothesis could be formulated for the metazoan-specific
nucleoporins Nupi153 and Nups0. Structural analyses
revealed that fungi possess analogues of Nup153 and Nup50
called Nup1p and Nup2p, respectively [5]. As plants harbor a
candidate homolog of Nup50, a replacement of these proteins

http://genomebiology.com/2005/6/10/R85

may have occurred specifically in fungi. An alternative expla-
nation would be that they have evolved beyond recognition.
Further investigations of structural data, especially from pro-
tists and plants, will be required to further test these
hypotheses.

Heterogeneity of evolutionary rates and domain
evolution of NPC and NPCa proteins

To understand the evolution of NPC protein sequences, we
compared evolutionary rates: between markers for all the
species (Figure 3); between markers for three given lineages
independently (Figures 4 and 5); and within lineages (Figure
6). We produced a very conservative estimate because we
considered only the 22 datasets composed of unambiguously
aligned sequences having multiple representatives in green
plants, fungi, and/or metazoan groups (the datasets used are
available in Additional data file 2). Other markers presented
too little sequence conservation and/or too limited taxonomic
samples in the three lineages analyzed. We show that these 22
ubiquitous proteins present important differences in their
rates of evolution (Figure 3a). For instance, some proteins
(Nup160 or RanGAP1) displayed on average six times more
substitutions than others (Lap2) (Figure 3a). The position
within the NPC structure did not explain these differences in
evolutionary rates as proteins evolving at either rapid or aver-
age rates are uniformly distributed across the NPC and found
in almost all of the NPC subcomplexes (Figure 3b). However,
such a global average rate of evolution, because it is estimated
for all species altogether, is not the most accurate way to
describe the evolution of protein sequences, which might be
lineage-dependent. Thus, we estimated the evolutionary rates
in fungi, metazoa, and plants separately (Figures 4 and 5).
This analysis revealed that the markers were not homogene-
ously slowly or rapidly evolving. In fact, they evolved at differ-
ent rates in the different lineages, without any general rule
and without any obvious correlation with their structural
location (Figures 4 and 5). For instance, Nupg3 and Nups4
evolved at average rates in metazoa and in fungi, but slowly in
plants (Figures 4 and 5). Some markers such as RanGAP1 are
slowly evolving in the green plants and in metazoa but evolv-
ing at an average rate in fungi, while Importin is slowly evolv-
ing in fungi but rapidly evolving in plants and at an average
rate in metazoa (Figures 4 and 5). Rae1 protein displays
slowly evolving evolutionary rates within fungi and metazoa
and average evolving evolutionary rates in plants; Nup133
and Nup160 evolve at average rates within metazoa but very
rapidly in fungi, and so on. Evolutionary rates were also
sometimes heterogeneous within a given lineage. For
instance, Rae1 evolves faster than average in Drosophila
melanogaster but slower than average in Mus musculus and
H. sapiens (Figure 6).

These irregular rates of evolution, at all levels of analysis
(between markers, between lineages and within a lineage)
suggest multiple independent adaptations to independent
constraints. Because NPC and NPCa proteins are involved in

Genome Biology 2005, 6:R85
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Figure 3

NPC and NPCa protein evloutionary rates. (a) Comparison of the evolutionary rates for several NPC and NPCa proteins. The evolutionary rate for a
marker corresponds to the average distance estimated between species. (b) The evolutionary rates mapped onto the NPC structure with a color code:
green, slowly evolving marker (average distance < 1); yellow, marker evolving at an average rate (| < average distance < 2); red, rapidly evolving marker (2
< average distance < 3); dark red, very rapidly evolving marker (average distance > 3).

very diverse functions, the contrast between their ubiquitous
distribution, their lack of sequence conservation, and their
heterogeneity of evolutionary rates probably reflects a higher
plasticity of sequences than for NPC structure, which could
thus have become frozen very early in eukaryotic evolution.

Yet, if the evolutionary rate of NPC protein sequences is very
heterogeneous, the domains detected in 43 proteins by query-
ing the SMART database [28] were generally conserved
(Additional data file 10 and Figure 7); 7 out of 43 of the pro-

teins tested presented no domain organization. We found no
loss or gain of domains for 23 of the remaining proteins over
NPC evolution in four organism representatives of three
majors phyla, metazoa, fungi and green plants. Only 12 pro-
teins displayed less than 90% of identical domains between
plants, fungi and metazoa, and only half (Narf, Nup214,
Luma, Ranbp7, Ranbp8, p30 and Nup35) showed a signifi-
cant change. For example, Narf has either lost an iron-only
hydrogenase domain in H. sapiens and Schizosaccharomyces
pombe or gained it in D. melanogaster and A. thaliana.

Genome Biology 2005, 6:R85
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Figure 4 (see legend on next page)
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Figure 4 (see previous page)

NPC and NPCa protein evloutionary rates within lineages. Comparison of the evolutionary rates of three lineages for several NPC and NPCa proteins,

calculated for a marker as the average distance between species of a particular lineage: (a) metazoa in red; (b) fungi in blue; and (c) green plants in green.

The evolutionary rate for a marker corresponds to the average distance estimated between species of a given lineage. The evolutionary rates were
mapped onto the (d) metazoan, (e) fungi and (f) green plant NPC structures with a color code: green, slowly evolving marker (average distance < I);
yellow, marker evolving at an average rate (| < average distance < 2); red, rapidly evolving marker (2 < average distance < 3); dark red, very rapidly

evolving marker (average distance > 3).
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Figure 5

Alternative representation of the evolutionary rates presented in Figure 4a,b,c, allowing a better comparison of the evolutionary rates of several NPC and
NPCa proteins between the three lineages (metazoa in red, fungi in blue and green plants in green).

Conversely, other proteins (Aladin, Nup43, Rae1, RanGAP1
and Seh1) show variation only in the number of repeated
domains. For example, if we take H. sapiens as a reference,
Aladin seems to have gained two WD domains in S. pombe,
and one in D. melanogaster, and to have lost two such
domains in A. thaliana.

This strong domain conservation for NPC proteins all over
the NPC structure and despite the multiple changes in the rest
of the sequence illustrates the strength of the structural con-
straints acting on NPC and NPCa proteins, probably since
LECA.

Thus, while the presence of NPC and NPCa proteins seems to
be necessary, most of their sequences can be highly adapted
and plastic. These differential evolutionary constraints
between sequences and NPC structure are an example of tink-

ering in eukaryotic evolution, a trick to overcome the frozen
structural evolution (that is, the structure and complexes in
interaction are preserved, but the sequences of their compo-
nents vary). Thus, while the global structure of the NPC seems
mostly preserved and rigid, it is also strikingly flexible outside
the preserved domains, enough to accommodate multiple dif-
ferent functions and to interact with an indefinite number of
partners.

Looking for origins: a possible prokaryotic connection

The age of the NPC structure - as ancient as LECA - raises the
question of its origin. The possibility of a pre-LECA NPC
deserves consideration. Indeed, a structure comparable to a
nucleus (membranes surrounding and isolating the DNA
from the rest of the cytoplasm) has been observed in some
members of the Planctomycetales, possibly one of the most
ancient bacterial phyla [29,30]. However, available data
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The species evolve FASTER than average

The species evolves SLOWER than average

Bl Arabidopsis thaliana

B Drosophila melanogaster
Ll

B Mus musculus

B Schizosaccharomyces pombe

Figure 6

Relative evolutionary rates of several NPC and NPCa proteins for several species (H. sapiens, M. musculus, D. melanogaster, S. pombe and A. thaliana),
corresponding to the average distance to a given species minus the average distance to any species.

concerning the nature, the composition, the structure, and  cetales have not yet established whether they were homolo-
the function(s) of these nuclear-like structures in Planctomy-  gous to the eukaryotic nucleus. Importantly, some
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% Nup96 Nup75
‘ Nup107
Cytoplasm

Nuclear envelope

Nucleoplasm Nup133 Nup160
Nup96 Nup75
Nup107
Figure 7

Domain conservation of the proteins constituting the NPC. The color
code is: proteins exhibiting the same domain organization in the four
species are in green; proteins presenting less than 90% similarity in their
organization in domains are in orange; proteins presenting no PFAM
domain are in red; proteins for which the structural organization was not
studied are in gray.

Methanogens (Archaea) also display intriguing inner mem-
branes [31,32]. Could these structures in prokaryotes and
eukaryotes have a common origin or did they appear inde-
pendently in the three domains of life? Moreover, could
viruses have played an important role in the origin of the
nucleus and of the NPC as sometimes suggested [33]?

To address this, we tested whether some phylogenetic con-
nections between the eukaryotic NPC components and some
putative prokaryote and viral homologs may be proposed.
This may provide some answers, even though the absence of
a convincing rooting of the Tree of Life does not allow any
obvious temporal polarization [34]. For instance, if homologs
of the NPC genes were found in prokaryotes, and in particular
in Planctomycetales, this could be an argument in favor of a
very ancient origin of the genes constituting the NPC (before
the separation of the three domains), consistent with a very
ancient origin of the nucleus itself. On the other hand, if no
prokaryotic homologs are found, the hypothesis of a strictly
eukaryotic construction of the NPC (and nucleus) might be
most parsimonious.

Hence, we specifically looked for homologous sequences in
prokaryotes and viruses, even if they were at first not
retrieved when multiple extant eukaryotic seeds were used.
Clearly, the large evolutionary distances between eukaryotes
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and prokaryotes and the heterogeneity of evolutionary rates
in sequences complicate such analyses [35,36]. Ancestral
sequences inferred using Codeml [37], software taking into
account the heterogeneity of rates of evolution, for genes with
sufficiently long unambiguously aligned regions provided us
with additional seeds. Interestingly, BLAST searches seeded
with these ancestral sequences systematically recovered pre-
viously identified eukaryotic sequences (a positive control on
the quality of ancestral sequences) and sometimes retrieved
new prokaryotic sequences that were otherwise undetected
(Tables 1 and 2).

We found seven proteins with such additional prokaryotic
homologs, leading to a total of 15 proteins with prokaryotic
homologs: 9 are NPCa proteins (p30, Nurim, Importins,
Hags, Luma, Lbr, Rfbp, Ddx19 and Narf), whereas only 6 are
NPC proteins (Nup37, Nup43, Sehi, Rae1, Aladin, Seci3R)
(Table 2; Figure 8). All the NPC proteins with prokaryotic
homologs detected have WD repeated domains, suggesting
that this domain, if not convergent, may be very ancient and
would have originated before the separation of the tree
domains of life. Five of these NPC proteins are involved in the
anchoring system (Hags, Luma, Nurim, Lbr, Narf). Interest-
ingly, all NPC proteins are localized on the nuclear side,
except Aladin, which locates near Nup358 on the cytoplasmic
face of NPCs [38]. In addition, two of the NPCa proteins are
involved in nucleocytoplasmic transport (Importins and
Ddx19). This result is very suggestive because our
phylogenetic approach was very conservative: only 31 pro-
teins were used to infer ancestral sequences (see Materials
and methods), and the evolutionary distances and the heter-
ogeneity of the evolutionary rates are obviously larger
between prokaryotes and eukaryotes than inside eukaryotes
alone. This search could then be improved when additional
eukaryotic sequences are known.

From these results, an exciting hypothesis may be that an
ancient universal system of transmembrane transport was
recruited during early eukaryotic evolution (before LECA) to
form the NPC. However, too little is currently known about
the function of these proteins in prokaryotes to test this
hypothesis.

It was interesting to find homologs in Methanosarcinales
since those Archaea could display inner membranes. Yet, the
absence of undisputable homologs in Planctomycetales, even
if the complete genome of Pirellula were available, does not
support a relationship between their nucleus-like structure
and the eukaryotic nucleus. In the detail, the taxonomical dis-
tribution of prokaryotic NPC protein homologs is intriguing
(Table 2; Additional data files 3, 4, 5, 6, 7). The species har-
boring these proteins are mainly members of Cyanobacteria
for Bacteria and Methanosarcinales for Archaea. The
prokaryotic homologs of NPCa proteins are more patchily dis-
tributed than those of the NPC proteins. They are mainly
present in various phyla of Bacteria such as Proteobacteria,
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2

Taxonomic affiliation of NPC and NPCa prokaryotic homologous proteins

Protein name Archaea Bacteria Virus
Ddx19 Euryarchaeota/Crenarchaeota Proteobacteria, Gram positives, Green non sulfur bacteria...
Importin Methanosarcina barkeri Anabaena
Lbr Coxiella burnetii (gamma-Proetobacteria), Parachlamydia sp. (Chlamydiales)
Ha%95 Nostoc fragment
Luma Mezorhizobium loti
Aladin Methanosarcina acetivorans Cyanobacteria mainly (some Planctomycetales and Proteobacteria)
Methanosarcina barkeri
Nurim a-Proteobacteria mainly (some Cyanobacteria and Gram positives)
Narf Firmicutes, Proteobacteria, CFB group, Green-non sulfur Bacteria
Nup37 Methanosarcina acetivorans Cyanobacteria
Nup43 Cyanobacteria
P30 Proteobacteria
Cyanobacteria
Rael Methanosarcina acetivorans Cyanobacteria
Rfbp Methanosarcina barkeri, Short poorly conserved fragments
Methanosarcina acetivorans
SecI3R Methanosarcina acetivorans Cyanobacteria
Sehl Methanosarcina acetivorans Cyanobacteria

Homologs detected by BLASTP are in bold, whereas homologs detected using ancestral sequences as seed for BLASTP searches are indicated with a
standard font.

Nup133 Nup160
Nup96 Nup75
Nup107

Cytoplasm Nup37

Nuclear envelope Gp210
Pom121

Nucleoplasm Nup133 Nup160

Nup96 Nup75
Nup107

Nup37
Nup43

Nup98
Rae1

Cyanobacteria, Green non sulfur bacteria or the
Cytophagales-Flavobacteria-Bacteroides group. This patchy
taxonomical distribution could be explained by multiple inde-
pendent losses, the proteins being kept in some species for
different purposes, but also - and more likely - by several
independent gene transfers from eukaryotes to prokaryotes.
For Hags, Luma and Nurim, the hypothesis of lateral gene
transfers between metazoa and prokaryotes seems the most
likely explanation (see for instance the phylogenies of Luma,
found only in metazoan and in Mesorhizobium loti and of
Nurim, found in some Cyanobacteria plus a-Proteobacteria;
Additional data files 5 and 6). These examples of transfers
from eukaryotes (and sometimes specifically from metazoa)
to prokaryotes suggest that NPC and NPCa proteins can be
functional in a prokaryotic cellular context even in the

absence of a nuclear compartment. In any case, this illus-

trates the plasticity, flexibility, multitasking and recruitment
potential for these NPC/NPCa proteins, already suggested by
their highly specific rates of evolution.

Conclusion

Figure 8

Localization of the six NPC proteins having prokaryotic homologs. The
names of those six proteins are in red. All except Aladin are part or

associated with the Nup 160 subcomplex on the nuclear side.

Our study confirms that most of the metazoan proteins con-
stituting the NPC and involved in nuclear transport have
homologs in all eukaryotic lineages, as recently pointed out by
Mans et al. [3]. Only the main partners of the NPC that local-

ize to the inner membrane appear specific to metazoa. As
most of the ubiquitous proteins observed in green plants,
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fungi, animals and protists are located in all the structural
subcomplexes of the NPC, we conclude that the majority of
the NPC is homologous in all extant eukaryotes. A core of
interacting proteins seems to have been preserved for at least
1.5 billion years, their association being at least as ancient as
LECA. How and when this NPC structure originated, how-
ever, remains unclear.

At present, most nuclear proteins seem to have no identified
prokaryotic homologs. This does not mean, however, that
these genes are strictly eukaryotic. They might well have
prokaryotic homologs that are too distantly related to be rec-
ognized, especially if the origin of eukaryotes involved some
sort of quantum evolution [27], with an acceleration of the
rate of evolution in the branch leading to extant eukaryotes.
Indeed, we found distant prokaryotic homologs of several
NPC and NPCa proteins. Some of them were likely recruited
by lateral gene transfer from eukaryotes, and it will be inter-
esting to understand the way they adapted their function to a
prokaryotic environment. Intriguingly, the presence of
prokaryotic homologs of NPC components of the nuclear side
may imply the existence of a pre-eukaryotic fragment of the
nuclear pore structure.

Finally, our study illustrates that even if NPC and NPCa com-
plexes are built from the same proteins, they display two tem-
pos of evolution, one at the structural level, which became
mostly frozen early in eukaryotic evolution, and another, very
dynamic, one at the sequence level. The poor conservation of
their sequences, the varied evolutionary rates observed in
various genes and lineages, the recent replacement of the
anchoring system in either the fungi or the metazoa, and the
evidence for successful lateral gene transfer (LGT) of these
genes, bespeak for this dual evolution of the NPC and NPCa
components: structurally rigid but very adaptable in their
sequences, a likely reason for the success of the nuclear
structure.

Materials and methods

Construction of the data sets

Homologous sequences of all the identified nucleoporins in
vertebrates and in fungi [5,6,39,40] (completed by the list of
proteins published in the Nuclear Protein Database [41]), of
proteins involved in the NPC anchoring system [5,6,42], and
of several important protein partners in and around the
nuclear envelope (Table 1) were retrieved from the National
Center for Biotechnology Information [43] with the programs
BLASTP, TBLASTN, and PSI-BLAST [44,45]. To avoid incor-
rect assignment for non-homologous sequences containing
the phylogenetically weakly discriminant WD domains and
FG repeats, we considered as homologous only those
sequences with long stretches of sequence homology outside
of these regions with repeats. When no homologous
sequences were retrieved outside metazoa, additional
searches were performed using each new sequence as a seed
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to complete the retrieval phase and initiate new searches.
Homologous proteins were aligned with ClustalW [46] and
the alignment was then manually refined with the ED pro-
gram of the MUST package [47]. Regions of unambiguous
alignment were manually selected using the program NET
from the MUST package [47]. All the alignments are available
upon request from CB or EB.

Eukaryotic EST databases were mined for each gene with a
satisfactory phylogenetic alignment. The EST databases we
used (Additional data file 8), included more species than in
Mans et al. [3] because they notably contained stramenopiles.
This approach is far from being ideal, however, because the
absence of an EST in a given lineage does not mean that these
species do not harbor the corresponding homologs in their
genome. In addition, many homologs were probably not
retrieved because of the limited size of the databases. Indeed,
the largest database (diatoms and conosa, a group including
Dictyostelium and Entamoebae species) provide the largest
number of hits.

Phylogenetic analyses

All protein alignments were used to calculate phylogenetic
trees by maximum likelihood (ML), maximum parsimony
(MP) and Neighbor Joining (NJ) methods with the programs
PHYML version 1.0 [48] (JTT+F+I' model taking into
account among-site rate variations), PMBML (JTT+PMB
model) [49] and TREE-PUZZLE version 5.1 [50], PAUP ver-
sion 4.0 beta [51] and MUST [47].

We selected a few proteins for further in-depth phylogenetic
analyses by maximum likelihood (PROML; nine user defined
categories) [52] when they presented a broad taxonomic dis-
tribution and enough unambiguously aligned sites. Bootstrap
values were calculated with an exact procedure (100 repli-
cates were generated using SEQBOOT [52], and trees were
inferred by an ML method with T" distribution using PUZZLE-
BOOT) to estimate the robustness of phylogenetic inference.

Estimation of rates of evolution

For 22 proteins with a good alignment and a comparably
broad dataset, two conservative estimates of the evolutionary
distances between species were deduced from distance
matrices, calculated using TREE-PUZZLE version 5.1 with a
JTT model corrected by a I law and eight categories of rates
of evolution [50]. First, the average rate of evolution of a given
species in reference to the whole dataset shows if a given spe-
cies X was evolving slower, faster, or at an average rate rela-
tive to other species for this gene. This measure allows the
identification of rapidly evolving species. Second, the relative
rate of evolution compared only with species of the same lin-
eage (when there are at least three) indicates if a given species
X was evolving slower, faster, or at an average rate relative to
other members of its lineage. This measure provides an
insight into the heterogeneity inside a lineage, and allows one
to test, for instance, if the acceleration of rates are phyloge-
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netically consistent. These estimates were calculated by
Evospeedometer [53].

Analysis of domain conservation

The presence of domains in the sequences was investigated
using the SMART server [28]. This also allows, in addition to
the HMMER searches of the SMART database, which is the
default option, detection of outlier homologs and homologs of
known structures, signal peptides, internal repeats, intrinsic
protein disorders, and PFAM domains. All NPC and NPCa
proteins present in at least two of the three lineages, metazoa
(H. sapiens, D. melanogaster), fungi (S. pombe) and green
plants (A. thaliana) were investigated.

Reconstruction of ancestral sequences

Ancestral sequences were reconstructed for 31 proteins. Only
regions of proteins with significantly long, contiguous and
unambiguously aligned regions (>200 successive positions)
were used (Additional data file 9). A maximum likelihood tree
for each of these proteins was calculated by PMBML
(JTT+PMB model), with user-defined categories. The topol-
ogy of this tree was provided as an intree to CODEML [37]
(WAG model, pre-estimated alpha parameter by TREE-PUZ-
ZLE version 5.1 [50], for eight categories of rates of evolu-
tion), which infers the ancestral sequences for each node of
the tree. Ancestral sequences were extracted from the outfile
of CODEML using ancestRetrieve [54].

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a table contrast-
ing our phylogenetic-ancestral reconstruction results with
those (BLAST-COG based) published in [3]. Additional data
file 2 is a zip file containing the 22 datasets we used to com-
pare the evolutionary rates between markers for all the spe-
cies, between markers for three given lineages independently
and within lineages. Additional data file 3 is a PDF file show-
ing the ML tree of the Aladin protein (209 sites). The boot-
strap proportions are reported only when they are greater
than 75%. Additional data file 4 is a PDF file of the ML tree of
the Lbr protein (282 sites). The bootstrap proportions are
reported only when they are greater than 80%. Additional
data file 5 is a PDF file of the ML tree of the Luma protein (349
sites). The bootstrap proportions are reported only when they
are greater than 75%. Additional data file 6 is a PDF file of the
ML tree of the Nurim protein (228 sites). The bootstrap pro-
portions are reported only when they are greater than 75%.
Additional data file 7 is a PDF file of the ML tree of the Ddx19
protein (282 sites). Purple circles indicate bootstrap propor-
tions greater than 90%. Additional data file 8 is a PDF file
including the website addresses of the EST under study. Addi-
tional data file 9 is a zip file containing the datasets we used
to compute ancestral sequences. Additional data file 10 is a
table listing the domains present in the NPC and NPCa pro-
teins in the two metazoa Homo sapiens and Drosophila mel-
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anogaster, the fungus Schizosaccharomyces pombe and the
green plant Arabidopsis thaliana.
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