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Abstract  
Background 
Many different statistical methods have been developed to deal with two group 
comparison microarray experiments. Most often, a substantial number of genes may 
be selected or not, depending on which method was actually used. Practical guidance 
on the application of these methods is therefore required. We developed a procedure 
based on bootstrap and a criterion to allow viewing and quantifying differences 
between method-dependent selections. We applied this procedure on three datasets 
that cover a range of possible sample sizes to compare three well known methods, 
namely: t-test, LPE and SAM. 

Results 
Our visualization method and associated variability conformation rate (VCR) 
criterion show that standard t-test is appropriate for large sample sizes to allow 
accurate variance estimates. LPE borrows strength from neighboring genes to 
estimate the variances and is therefore more appropriate for small sample sizes 
whenever gene variances are similar for similar gene intensity levels. SAM has both 
advantages of considering gene specific variance like t-test and adjusting multiple 
tests by permutation based false discovery rate. However, for small sample sizes and 
in cases of numerous expressed genes, the distribution based on permutated datasets 
may not approximate the null distribution well, resulting in an inaccurate false 
discovery rate. Moreover, genes with low variances may be filtered because of the 
fudge factor. 

Conclusion 
We proposed using VCR to assess different statistical methods available for analyzing 
microarray data and developed a bootstrap method - on which our criterion is based - 
to estimate the 2-d distribution of treated vs. control gene intensity levels, under the 
null hypothesis that there is no difference between the treatment and control group. 
The biological evaluation of selected genes according to one or another method 
confirmed that this criterion is indeed appropriate to help identifying the most suitable 
method. 

Background  
Microarray technology has become a widely used tool in drug discovery and is 
becoming a powerful tool in drug development. One of the most widely used 
statistical designs in microarray experiment is two-group comparison: disease tissue 
versus normal, drug treated versus non-treated, etc. Associated with the large amount 
of data generated with microarray experiments, there are now many published 
statistical methods for analyzing such experiments, e.g. standard two sample t-test, 
SAM [12], LPE  [7], GEA [8], PFOLD [10]. Accompanying such an array of methods 
available to practitioners are the questions: when to use which methods? What are the 
pros and cons for different methods? Is there any consistency between different 
methods? We illustrate the issue using the following example.  
 
 In a study of the relationship between the activation status of the adoptively 
transferred T-cells and the migration and retention process of the CD8+ T-cells in the 



lungs (see below in the Results section), 2677 genes were selected through the SAM 
test using a 5% False Discovery Rate. We applied two other methods, t-test and LPE 
to the same dataset and selected the first 2677 genes with respect to the P-values 
given by the respective methods. A simple Venn diagram suggests the dramatic 
difference one might get when applying these three different methods (Figure 1). The 
difference is even more striking when the selected genes are represented on a 
scatterplot of averaged treated vs. control expression levels (Figure 2). Given such 
dramatic difference in the gene list generated, it is important to provide a criterion to 
help deciding when to use which method. 
 
In this paper, by examining the results of applying these three commonly used 
methods to three representative data sets, we aim to provide practical guidance on 
their application. To achieve this, we developed a visualization method based on 
bootstrap allowing one to view the difference with respect to the genes identified by 
different methods. 

Comparison criterion 
Under the null hypothesis that there is no difference between the treatment and 
control group, let’s first assume that a 2-d null distribution of treated vs. control gene 
intensity levels can be estimated (details of the estimation will be given later in the 
Methods). Contours of the 2-d null distribution can then be added to the scatterplot of 
Figure 2, at various alpha-levels (Figure 3). As will be later confirmed from a 
biological point of view (Discussion), selected points that fall beyond the outer 
contour, which have a very low probability density under the null distribution, 
correspond to genes that are most likely truly regulated. On the contrary, selected 
points that fall within the inner contour correspond to genes that are unlikely 
regulated, i.e. false positives. Thus, it is possible to compare different selection 
methods  using the  number of points that fall beyond the outer contour of the 2-d null 
distribution, the best selection being the one which yields the highest number of such 
points.  
 
To facilitate the comparison of the methods, we define the variability conformation 
rate (VCR) for each method m at a given false discover rate α of SAM and a given 
contour height : h

α

αα
K

K
hmVCR hm ,,),|( =  

with being the total number of genes identified by SAM as having FDR less than αK
α  and  being the total number of genes out of the top   genes for method m 
lying outside of the contour of 2-d null distribution with height h. VCR provides us 
with a quantitative metric to evaluate the methods. In the above example, among the 
2677 selected genes, VCR for LPE, T-test and SAM are 77%, 62% and 60%, 
respectively, suggesting that the LPE method is in this particular case performing 
best. 

hm ,,αK αK

Results  
In this section, we illustrate our method and describe the comparison results using 
three real examples. 



Examples  
Yeast 
 
In parallel experiments, CA10/pCD63 (an acetyl pregnenolone producing strain) and 
Fy 1679-28c (an non producing strain) were submitted to a fermentation process. The 
process classically comprises three phases: batch phase, fed batch phase and 
stationary phase. CA10/pCD63 is described in Duport et. al. [3]. Fy 1679-28c is 
described in Thierry et al. [11]. The transcription profiles in stationary phase (the 
production phase) were compared using Affymetrix technology with two duplicated 
points at the beginning and the end of the stationary  phase. The data obtained from 
the Affymetrix software MAS 4.0 were transferred to the Gecko  software [10] with 
minor modification. The marginally present or absent calls were replaced by present 
or absent calls respectively.  
T-cell Immune Responses Microarray Study 
In this study, Hafezi-Moghadam and Ley [4] studied the relationship between the 
activation status of the adoptively transferred T-cells and the migration and retention 
process of the CD8+ T-cells in the lungs. Affymetrix murine chip, MG-U74vA, was 
used to study the three groups of immune exposure: naïve (no exposure), 48h 
activated, and CD8+ T-cell clone D4 (long term mild exposure). Each group has three 
replicates. Signal intensity values were obtained from MAS 5.0. In this paper, we 
compare two groups, naïve and 48h activated. 
Breast Cancer Study 
Huang et. al. [5] investigated the association between the lymph node metastasis, 
cancer recurrence and gene expression data. We used a subset of patients with one to 
three positive lymph nodes and studied the recurrence three years after primary 
surgery. The data set provided expression profiles for 52 cases in this lymph node 
category (34 non-recurrent, 18 recurrent). We identified the differentially 
expressedgenes between recurrent and non-recurrent patients. 

Generation of a 2-d null distribution: Bootstrap results 
(See Methods for details on the Bootstrap procedure) 
 
In the Yeast and T-cell Immune Responses studies, for which the number of replicates 
is low (=3), we used a bin size of 10 to allow resampling within a reasonably large 
sample (20^3=8000) 
 
On the contrary, in the Breast Cancer study, it was possible to use the smallest 
possible bin size (2) thanks to the very large number of replicates, which allowed 
resampling within a sample of size 4^34. 
 
The Breast Cancer study was also used for validation purpose; Bootstrapped 
controls based on 17 real controls selected randomly played the role of a learning 
dataset to calculate the contours of the 2-d null distribution of the average of 17 
controls vs. the average of 17 other controls. These contours were further drawn on 
the plot of averaged real controls that were left out of the learning dataset vs. the 
averaged real controls that were used to generate the bootstrapped ones. This 
comparison clearly shows that both distributions almost perfectly overlap (Figure 4). 



Generating differential analysis results and comparing difference  
We applied three methods, t-test, LPE, SAM to the three datasets to identify 
differentially expressedgenes. For t-test and LPE, the log2-transformed expression 
intensities were used. For SAM, both the log2-transformed expression intensities and 
the untransformed data were used to study the difference. 
 
To make all the tests comparable, for a given false discovery rate, we first counted the 
number of expressedgenes based on SAM for transformed data. Then we selected the 
same number of expressedgenes from other tests based on their p-values. 
 
For the T-cell immune responses microarray study, given a false discovery rate of 5%, 
2677 genes were selected by SAM. At the same time, we selected the first 2677 most 
significant genes from t-test, LPE based on the p-values. The identified genes from 
different methods are plotted in Figure 5. Larger version of Figure 5 can be found in 
the additional files (additional figures 1-4). As we can see, the genes identified by 
LPE followed the variability plot very well; Genes identified by SAM fell outside two 
45 degree parallel lines; Genes identified by t-test and SAM with raw data were more 
similar, and followed the variability plot less well than LPE. Table 1 summarized the 
number of points outside of the estimated contour of the 2-d null distribution at 
various alpha levels.      
 
Overall, the percentage of identified genes outside the contour is higher based on 
LPE. As the density level of the contour get bigger, for example, 0.1, the percentage 
of genes outside the contour from different methods get closer. Similar conclusions 
can be drawn from the yeast data (Table 2) and the breast cancer data (Table 3).  
Additional Table 1 gives the number and percentage of overlapped genes identified by 
t-test, LPE, SAM, and SAM using untransformed intensities for the yeast data, which 
also suggests that SAM using raw data and t-test are more similar than LPE. 
 
Summary of results 
We compared t-test, LPE, SAM using the proposed visualization tool based on 
bootstrap, and the results from three datasets illustrated the difference of the genes 
identified by each method.  
 
Tables 1-3 summarize the VCR for all the three different methods on three different 
data sets. One consistent trend is that the LPE tends to have larger VCR measures 
than the other two methods.  
We summarized the advantages and disadvantages of each method in Table 4, and 
provided practical suggestions. 
Standard t-test considers gene specific variance, and it is a good choice if the sample 
size is large. However, if the sample size is small, the variance estimate may be 
inaccurate. T-test does not perform the multiple test adjustment. 
LPE borrows strength from neighboring genes to estimate the variances, and it is a 
good choice if the sample size is small and the gene variances are similar for similar 
gene intensity levels.  However, if we know that there are quite a number of genes 
with gene-specific variances, this method is not a good choice. LPE does not perform 
multiple test adjustment. 
SAM considers gene specific variance, and adjusts the multiple tests by permutation 
based false discovery rate. However, if the sample size is small and there are many 
expressedgenes, the distribution based on permutated datasets may not approximate 



the null distribution well, and thus the permutation based false discovery rate may be 
inaccurate. SAM filtered some genes with low variances because of the fudge factor. 

Discussion  
The three datasets used in this study cover a range of possible sample sizes: three 
replicates in each group in Ley’s data set; eight samples in the yeast data set and more 
than twenty samples from the breast cancer data set. Such a variety of sample sizes, 
along with the VCR criterion, allowed us a comprehensive evaluation of the methods 
being considered. However, we need also to consider this evaluation from a biological 
perspective, i.e. determine whether genes lying outside of the contour of a 2-d null 
distribution are indeed the most relevant ones. To do this, we looked more specifically 
at the yeast example and compared selected genes according to one or another method 
in terms of biological relevance, to see whether the same conclusion was reached than 
while using the VCR criterion. 
 
The transcription profiles of two different strains were compared: wild type strain Fy 
1679-28c and the production strain CA10/pCD63, which is a recombinant strain. 
CA10/pCD63 was selected for its ability to produce steroids and to grow on glucose 
instead of galactose and its capacity of deregulating the promoters that drive the 
recombinant protein coding sequences. Genetically, URA3, TRP1 and LEU2 genes are 
present in the production strain while absent in the wild type strain and ERG5 gene is 
present in the wild type but has been disrupted in the production strain. 
Phenotypically, the CA10/pCD63 strain differs by the deregulation of the galactose 
biosynthesis (GAL and GCY1, genes) pathway. Moreover, it is expected that the ERG 
genes be deregulated in order to compensate for the steroid excretion. In summary, at 
minimum the two transcription programs should differ in galactose metabolism and 
possibly in sterol biosynthesis and steroid detoxification.  
 
We first checked that obvious differences corresponding to known genetic 
modifications were found. The three methods indicate that LEU2, URA3 and TRP1 
transcripts were clearly induced in the production strain while ERG5 transcript was 
absent in this same strain, as expected. Furthermore, all methods clearly point out that 
the two strains differ dramatically by their expression profile - with up to 1/6 of the 
genes of the genome having different expression level – and allow for detecting 
profound changes in the galactose (comprising the GCY1 co regulated gene) 
biosynthesis pathway, in agreement with the biological selection process; The genes 
(GAL1, GAL2, GAL10) coding for enzymatic activities are deregulated between 24 to 
50 times while the genes coding for transcription factors such as GAL80 and GAL3 
are deregulated 3 to 6 times. This corresponds to a partial deregulation of the 
pathway, as induction with galactose is known to bring up to 500-fold induction of the 
GAL1 promoter [6].  
 
Since part of the ergosterol synthesis is routed to excrete steroids, ERG genes 
transcription might be modified or even up regulated during the production phase. 
Apart from the ERG5 control gene, three other genes of the family namely ERG1, 
ERG6 and ERG24 are detected showing a two-fold induction with LPE and t-test for 
ERG6 and with LPE and SAM test for ERG1 and ERG24. CYB5 electron carrier gene 
transcript is detected by all three methods while LPE and SAM detect the NCP1 
induction. It has been shown [1,13] that during azole treatment (targeting the 
ergosterol biosynthesis), which is mimicking our steroid excretion, these five genes 



(ERG1, ERG6, ERG24, CYB5 and NCP1) can be induced among other genes of the 
ERG family. It is apparent here that LPE is the only method that can discriminate the 
subtle changes of all five genes. On the contrary, t-test is clearly not performing well, 
as it detects only two out of these five genes. In this respect, SAM appears much 
closer to LPE (four detected genes out of five). 
 
In order to further assess the selection power of LPE as compared to SAM, we 
selected a set of 22 genes that were found up regulated by LPE but not SAM (ERG6, 
THI11, FAA2, MSK1, TIF35, RPL33B, YBR090C, RPL8B, TNA1, SSA3, RPL12B, 
SNF1, GTT1, YKL151C, YER044C, RPS11B, NCP1, RPL21A, YGR043C, RPL17A, 
RPS3, SMC2). We used the “Micro Array Global Viewer” 
(www.transcriptome.ens.fr/ymgv/) [1] to see whether any of these 22 genes could 
match an already described transcription profile in the database consisting of 1347 
yeast dataset conditions. In addition, a randomly selected set of 22 genes was used as 
a control to insure the specificity of the comparison with the database. Two conditions 
showed the same set of up regulated genes. One condition found with both the 
randomly selected set of genes and the LPE specific set of genes was discarded. It 
corresponds to a non-specific induction of a large spectrum of genes by an antifungal 
compound of unknown mechanism of action [9]. The second condition corresponds to 
17 out of the 22 genes that are induced by 0.4M NaCl stress in a HOG1 independent 
fashion. This could point out the fact that yeast strains are submitted to a high 
osmolarity in fermentors due to the continuous base feeding in order to maintain a 
neutral pH. It indicates that the production strain shows a small but significant 
induction of a HOG1 independent pathway. 
 
The same kind of experiment was also performed with LPE specific and down 
regulated genes namely: QCR8, ACO1, MDH1, INH1, COX8, CAR1, YMR265C, 
SDH1, DDR48, CPA2, ICY2, COX9, TPO1, COX6, CYT1, ACS2, ILV3, FUM1, IDH2, 
ORT1, OAC1, CWP1. Among the 1347 transcription profiles, a few conditions were 
matching the down regulation of this set of genes. Interestingly, two temperature 
sensitive mutants corresponding to cell cycle arrested cells, namely cdc15 and cdc24, 
matched the above set of genes. It is not clear why the production strain should be 
more arrested in its cycle than the control strain. Both strains are arrested in their cell 
cycle since they are in stationary phase. Finally, a majority of genes (13 out of 22) of 
this LPE specific and down regulated list localized to mitochondria. Interestingly, five 
of the encoded proteins namely: ACO1 (Aconitate hydratase), IDH2 (Isocitrate 
dehydrogenase), MDH1 (Malate dehydrogenase), SDH1 (Succinate dehydrogenase), 
FUM1 (Fumarate hydratase) can be clearly co-regulated as they belong to the 
tricarboxylic acid cycle (Krebs cycle) [2]. Thus, the LPE method points out a down 
regulation of the transcription of the genes involved in this cycle. This regulation 
should slow down the production of the corresponding enzymes and acetylCoA 
consumption in the cycle, thus improving acetylCoA availability for sterol 
biosynthesis. It is worth noting that the ACS2 (acetylCoA synthase) gene appears also 
down regulated. Most of the other half of the genes are involved in electron transport 
machinery i.e. QCR8, COX6, COX8, COX9. All in all, the LPE method appears to 
specifically pick up genes that are in the same pathways. 

Conclusions  
In this paper, we tackled a very practical problem: how to understand the different 
statistical methods available for analyzing microarray data and how they differentiate 



in terms of performance. We proposed a criterion (VCR) to assess different statistical 
methods and developed a bootstrap method to estimate the null distribution of treated 
vs. control gene intensity levels on which our criterion is based. Finally, the biological 
evaluation of selected genes according to one or another method strengthened our first 
conclusion - drawn from a pure statistical point of view - that the LPE method is a 
better choice when the sample size is small. This suggests that VCR is indeed an 
appropriate criterion to assess different methods. 

Methods 
Generation of a 2-d null distribution: Bootstrap procedure 
The 2-d null distribution can be estimated using  2-d non-parametric distribution of 
one averaged subset of controls vs. another averaged subset of controls, each subset 
being of the size of the treated set. This is possible whenever the experimental design 
contains twice as many controls as treated conditions. However, most experimental 
designs tend to be balanced. We therefore present a simple bootstrap procedure that 
allows creating as many “virtual” controls as needed, in order to obtain a non 
parametrical 2-d null distribution. We will see that this procedure guarantees that the 
2-d null distribution is similar to the one that would be achieved with real controls. 
 
For the sake of simplicity, we consider the case of duplicates controls (the general 
case is described below in Theoretical grounds). Let (  be duplicate expression 
log intensities of a particular gene. Assume

)YX ,

XX εµ +=  and Y Yεµ +=  where µ 
follows the probability distribution ( )µg  and ( )YX εε ,

( )
 is a couple of independent error 

terms that follow the probability distribution εh . ( )µg  is associated with gene 
diversity within the chip, different genes being possibly expressed at different levels. 

( ) h ε is associated with experimental variability. We assume normal distributions for 
g and h: 
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The bootstrap procedure is based on the following main result (see proof below in 
Theoretical ground): 

Define zYXXX z =+≡
2

given   

− The expectation of  is z zX
− The variance of  is  zX 2/2

eσ
Procedure: 

1. Rank genes with respect to the average of the duplicate
2

YX +=Z  

2. Bin ranked genes into bins of size s  
a. The size is chosen small enough to ensure that within each bin the average 

can be considered as constant: zZ ≈  (see the results section for a 
discussion on the size s). 



b.  It seems reasonable to assume that within each bin, the real expression 
levels iµ  are close enough to ensure that the error terms ( YiXi )εε ,  have the 
same distribution (see the results section for a validation of this 
assumption on real data) 

3. Let (  and )ii yx , ( )jj yx ,  be duplicate observations of two genes within the same 
bin. Since , the four conditional variables  follow the same 
distribution. Thus, given Z = z, all ’s and ’s have expectation z and 

variance . New x and y values with expectation z and variance , noted 
 and , can be obtained by: 

jiz
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a. Re-sampling the ’s and ’s with replacement ix iy
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4. The same process is repeated for each bin 
 
Remark 1: 
For a particular gene with expression level 0µ ,  and Y  are biased with 
bias

'zX 'z

0µ−z . However, the 2-d null distribution formed by the ( ’s is still similar 
to the original one formed by the ( ’s, as (  is unbiased for those 
particular genes with expression level

)
)

'zX
'

,'z Y
)YX ,

z≈
, zY'zX

µ  (such genes exist most likely given the 
high number of genes). 
Remark 2: 
Consider 2K controls from which we can form arbitrarily K different 

. Thanks to the bootstrap process, any  will allow 
creating K bootstrapped . However: 
( ) KkYX kk ≤≤1,, ( 00 , kk YX )

)( ',' kk YX

- The average of virtual pairs (∑
≤≤ Kk

kk YX
K 1

','1 ) )will tend to , where z is the value 

taken by 

( zz,

2
YX +=Z  on the original pair used to generate the virtual ones. 

- The average of real pairs (∑
≤≤ Kk

kk YX
K 1

,1 ) )will tend to ( µµ, , where µ is the 

expression level of the gene under consideration. 
 
In other words, while the bootstrap process allows finding the 2-d null distribution, it 
does not improve the estimation of the expression level of individual genes. 

Generation of a 2-d null distribution: Theoretical grounds 
For the sake of simplicity, we will first consider the case of duplicates. The extension 
to the general case will follow. We will now prove the main results: 

Define zYXXX z =+≡
2

given   

1. The expectation of  is z zX
2. The variance of  is  zX 2/2

eσ
 



Demonstration: 

Let 
2

YX +≡Z , 
2

XYT −≡ . Then: 

- TZX −=  and TZY +=  
- Due to the normality assumption, Z and T, which are orthogonal, are independent 
- ZZ εµ +=  and T Tε=  where µ follows the probability distribution ( )µg  and 
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As the former error distribution ( )εh  will no longer be needed, we will refer to the 
distribution of T as ( )εh  instead of ( )εh' . 
Z is the sum of the two random distributions g and h. Thus: 
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Let us calculate the two first moments of : zX
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The variance follows immediately: 
( ) ( ) 2/2/ var 2222

eez zzX σσ =−+=   
In exactly the same way, we can defineY , which has the same properties as . z zX
Now, considerer the newly transformed variables: 
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These two variables have expectation z and variance .  2
eσ

Extension to n-uplates: 
Consider now the n-uplate ( . We have the following result: )nXXX ,,, 21 L
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Demonstration: 

Let 
n

XX n++= L1Z  and T . 1XZ −=

Again, Z and T are orthogonal, thus independent. The only difference with the 
duplicate case is in the variance of Zε  and Tε , since 

and( ) neZ /var 2σε = ( ) 21var eT n
n σε −= . The rest of the demonstration is exactly the 



same as in the duplicate case, except that we now consider two independent 
distributions h  and  for Z Th Zε  and Tε .  
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Note that the larger n, the smaller the effect of the final transformation. 

Three methods for identifying differentially expressedgenes 
In this section, we describe three commonly used methods in analyzing microarray 
data: Two sample t-test, SAM (Significance Analysis of Microarrays) and LPE (Local 
Pooled Error) .  
 
T-test is a traditional statistical method for testing the difference between two groups. 
Suppose we have two groups, treatment group and control group. The microarray 
intensities in the treatment group are , and the intensities in the control 
group are . To test whether is any difference between the treatment group 
and the control group, if we assume equal variances for the two groups, we have 
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If we assume unequal variance, we have 
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The t-test works well if the sample size is relatively large. If the sample size is small, 
the estimated variance may be misleading. Jain et. al. [7] proposed a method called 
LPE to identify differentially expressedgenes, which borrowed strength from 
neighboring genes to estimate the variability. The LPE variance estimate is based on 
pooling errors within genes and between replicate arrays for genes in which 
expression values are similar. 
 



The LPE statistic for the median difference is calculated as : 
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))((2 xmedianxσ is the estimate of variance of X from the LPE error distribution at 
each median log-intensity median , and  is the estimate of variance 
of X from the LPE error distribution at each median log-intensity median . 

)(x ))((2 ymedianyσ
)( y

 
Significance Analysis of Microarrays (SAM) is proposed by Tusher et. al. [12], and it 
assigns a score to each gene based on the changes in gene expression relative to the 
standard deviation of repeated measurements.  Genes with scores greater than a 
threshold are deemed potentially significant. The percentage of such genes identified 
by chance is the false discovery rate (FDR), which was estimated by permutation. For 
the two groups comparison, the score for the ith gene is defined as  
    

0ss
yxdi +

−= , 

where s is the standard deviation of repeated measurements, which is the same as the 
denominator of the t-test for comparing two groups assuming equal variances. is a 
small positive constant, which was added to ensure that the variance of  is 
independent of gene expression. Thus, we can compare the values of across all 
genes and compute FDR. 
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FDR: false discovery rate 
GEA: global error assessment 
LPE: local pooled error 
SAM: significance analysis of microarrays 
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Figures 
Figure 1  - Venn diagram (Ley data) 
Using a 5% False Discovery Rate, 2677 genes were selected through the SAM test. 
We applied two other methods, t-test and LPE onto the same dataset and selected the 
first 2677 genes with respect to the P-values given by the respective methods. The 
Venn diagram shows the dramatic difference one might get when applying these three 
different methods. 



Figure 2  - Scatterplot of treated vs. controls (without variability cloud) 
The up/down regulated genes selected by the three methods using 5% false discovery 
rate are colored red. As we can see, the difference is even more striking when the 
selected genes are represented on a scatter plot of treated vs. control averaged 
expressions. 



Figure 3  - Scatterplot of treated vs. controls (without variability cloud and with 
contours of the 2-d null distribution) 
The up/down regulated genes selected by the three methods using 5% false discovery 
rate are in red color. Various alpha-levels of the contours of the 2-d null distribution 
are added. Genes outside the contours are more likely to be regulated genes. 



Figure 4  - Real controls vs. Virtual Controls of the Breast Cancer Data 
Bootstrapped controls based on 17 real controls selected randomly were used to draw 
the contours of the 2-d null distribution.  The scatterplot of the average of 17 real 
controls vs. the average of another 17 real controls was added to the 2-d contours 
drawn on the bootstrapped controls. This comparison clearly shows that both 
distributions almost perfectly overlap. 



Figure 5  - Scatterpl ot of treated vs. controls (w ith variability  cloud a nd 
contours of the 2-d null distribution) 
The up/down regulated genes selected by the three methods using 5% false discovery 
rate are in red color. The variability plot and various alpha-levels of the contours of 
the 2-d null distribution are added. 
 



 

Tables 
Table 1  - Number of Genes Outside the Density Curve and the Corresponding 
Percentage (T-cell data) 
 
Density level 0.001 0.005 0.01 0.02 0.05 

1657 2027 2219 2395 2603 T-test 
0.619 0.757 0.829 0.895 0.972 
1717 2110 2277 2450 2616 SAM using 

raw data 0.641 0.788 0.851 0.915 0.977 
1609 2199 2470 2670 2677 SAM 
0.601 0.821 0.923 0.997 1.000 
2065 2513 2616 2658 2673 LPE 
0.771 0.939 0.977 0.993 0.999 

 
 
Using a 5% False Discovery Rate, 2677 genes were selected for the T-cell data. Table 
1 lists the number of selected genes that are outside the different levels of density 
curves and the corresponding percentages. 



 

Table 2  - Number of Genes Outside the Density Curve and the Corresponding 
Percentage (Yeast Data) 
 
Density level 0.005 0.01 0.02 0.05 0.1 

871 1130 1445 1972 2431 T-test 
0.319 0.414 0.529 0.722 0.890 
923 1183 1508 2040 2479 SAM using 

raw data 0.338 0.433 0.552 0.747 0.908 
963 1224 1586 2225 2695 SAM 
0.353 0.448 0.581 0.815 0.987 
1119 1457 1872 2413 2640 LPE 
0.410 0.534 0.685 0.884 0.967 

 
 
 
Using a 5% False Discovery Rate, 2731 genes were selected for the yeast data. Table 
2 lists the number of selected genes that are outside the different levels of density 
curves and the corresponding percentages. 
 



 

Table 3  - Number of Genes Outside the Density Curve and the Corresponding 
Percentage (Breast Cancer Data) 
 
Density level 0.005 0.01 0.02 0.05 0.1 

253 374 495 708 834 T-test 
0.289 0.427 0.565 0.808 0.952 
220 333 457 681 832 SAM using 

raw data 0.251 0.380 0.522 0.777 0.950 
285 433 584 781 864 SAM 
0.325 0.494 0.667 0.892 0.986 
303 450 593 743 829 LPE 
0.346 0.514 0.677 0.848 0.946 

 
 
Using a 5% False Discovery Rate, 876 genes were selected for the breast cancer data. 
Table 3 lists the number of selected genes that are outside the different levels of 
density curves and the corresponding percentages. 



 

Table 4  - Advantages and Disadvantages of different methods 
 

Advantage:                                                                                               
• Considers gene-specific variance.  
• If the sample size is large, it will be a good choice. 

t-test 

Disadvantage:  
• If the sample size is small, the variance estimate may not be 
accurate.  
• It does not deal with multiple testing issue. 
Advantage:                                                                                               
•Borrows strength from neighboring genes.  
• If the sample size is small and gene variances are similar for same 
intensity levels, it is a good choice. 

LPE 

Disadvantage:  
• Does not consider gene-specific variance and assumes the variance 
depends on the mean intensity. (If we know that there are quite a 
number of genes with gene-specific variances, this method is not a 
good choice). 
• It does not deal with multiple testing issue. 
Advantage:  
• Deals with multiple testing issues using permutation based false 
discovery rate.  
• Consider gene-specific variance.  

SAM 
with 
transformed 
data 

Disadvantage:  
• Filters some high intensities genes with low variances because of 
the fudge factor.  
• The permutation based false discovery rate may not be accurate if 
there are many regulated genes and the sample size is small since the 
permuted dataset may not approximate the null distribution well. 
Advantage:  
• Deals with multiple testing issues using permutation based false 
discovery rate. 
• Consider gene-specific variance.  
Disadvantage:  
• The permutation based false discovery rate may not be accurate if 
there are many regulated genes and the sample size is small.  
• It is not as powerful as the transformed data when the variances in 
the two groups differ a lot, that is, if the intensities in one group is 
high, while the intensities in another group is low.  

SAM with 
untransformed 
data  

Remarks: 
•  Filters some low intensity genes with low variance. 

 
 
 
 



Additional files 
 
Additional file 1 – BSTRP_add_table1.pdf  (additional Table 1) 
        Description: BSTRP_add_ta ble1.pdf shows the overlap among different 
methods for the yeast data. 
 
Additional file 2 – BSTRP3_additional_figure1.png  (additional Figure 1) 
Additional file 3 – BSTRP3_additional_figure2.png  (additional Figure 2) 
Additional file 4 – BSTRP3_additional_figure3.png   (additional Figure 3) 
Additional file 5 – BSTRP3_additional_figure4.png  (additional Figure 4) 
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