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Abstract

On the basis of the observation that conserved positions in transcription factor binding sites are
often clustered together, we propose a simple extension to the model-based motif discovery
methods. We assign position-specific prior distributions to the frequency parameters of the model,
penalizing deviations from a specified conservation profile. Examples with both simulated and real
data show that this extension helps discover motifs as the data become noisier or when there is a

competing false motif.

Background

DNA-binding transcription factors have a crucial role in tran-
scriptional regulation, linking nuclear DNA to the transcrip-
tional regulatory machinery in a sequence-specific manner.
Transcription factors generally bind to short, redundant fam-
ilies of sequences. Although experimental methods exist to
characterize the sequences bound by a given factor, the sys-
tematic enumeration of transcription factor binding sites is
greatly aided by computational methods that identify
sequences or families of sequences that are enriched in spe-
cific collections of regulatory DNA.

Two major strategies exist to discover repeating sequence
patterns occurring in both DNA and protein sequences: enu-
meration and probabilistic sequence modeling. Enumeration
strategies rely on word counting to find words that are over-
represented [1]. Model-based methods represent the pattern
as a matrix, called a motif, consisting of nucleotide base (or

amino-acid residue) multinomial probabilities for each posi-
tion in the pattern and different probabilities for background
positions outside the pattern [2,3]. For example, Figure 1
shows the motif representation of the binding sites for the
yeast transcription factor Galg, which regulates the transcrip-
tion of genes under galactose-rich conditions. The goal of the
model-based methods is to estimate the parameters of this
model, the position-specific and background multinomial
probabilities, and then to determine likely occurrences of the
motif by scoring sequence positions according to the esti-
mated motif matrix.

Even with weak signals, model-based methods such as
MEME [2] and Gibbs Motif Sampler [3] effectively find
motifs of variable width and occurrences in DNA and protein
sequences. Originally developed to be flexible for finding both
protein and DNA patterns, these general motif-discovery
algorithms have been enhanced to make them more specific
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for discovering transcription-factor binding sites [4-8].
Changes include using a higher-order Markov model,
genome-wide nucleotide frequencies or a position-specific
model for the background distribution [5,7,8] and checking
both DNA strands [2,5,6]. Other changes use knowledge
about the nature of the interaction between the transcription
factor and its binding site. Some transcription factors, like
Galg, bind DNA as homodimers and have palindromic bind-
ing sites. The most frequent bases observed at each position,
called the consensus, consist of the palindromes CGG and
CCG (Figure 1) in the Galg-binding sites. Several methods
have the option to search for palindromic patterns [2,5,9].

Many authors have noted, or showed empirically from struc-
tural information on DNA-protein complexes and binding-
site examples, that high levels of base conservation at a posi-
tion correlate with more contacts to the protein [10-14]. For
example, Galg interacts more closely with the edge positions
of the binding site, which is reflected by highly conserved
bases in positions 1-3 and 15-17 (Figure 1). This observation
has been incorporated into methods for predicting binding
sites in new sequences given a motif matrix. The score contri-
bution of the highly conserved positions are upweighted in
the scoring functions between the motif matrix and the
sequence [10,12]. This has also been incorporated directly to
the motif-finding methods. The original fragmentation model
of the Gibbs Motif Sampler assigns J positions out of a larger
window of motif width W as more important (that is, more
conserved), but there is no specification of where they should
fall within the W positions.

It has also been observed that highly conserved positions tend
to be grouped together within the motif [10,11,13]. This occurs
because transcription factors rarely contact only a single base,
and not adjacent bases. It follows that the position of high
conservation should be clustered within the motif. This
grouping has been specified through the use of blocks in Bio-
Prospector [5] and earlier in the work of Cardon and Stormo
[4]. In BioProspector, the model can be specified for two
motif blocks separated by a flexible gap window. The most
recent version of the fragmentation model in the Gibbs Motif
Sampler includes an option to indirectly specify blocks, by
assigning the J positions out of the W to occur at the ends,
rather than the middle [8].

Because of the success of these various extensions to the orig-
inal multinomial motif model, it is widely recognized that
making the model more specific improves the detection of
real binding sites [2-7]. However, these methods have still
maintained their generality so as not to make them specific to
particular data or transcription factor. In our approach, we
propose another extension to the model that strictly
incorporates the observations previously discussed: highly
conserved positions within the motif are clustered. For
improving motif discovery, we incorporate the ideas behind
both the fragmentation model in the Gibbs Motif Sampler and
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the two-block model of BioProspector, but make use of more
restrictive assumptions. The original fragmentation model
labels some positions as more important but their location
within the motif is not specified. For the two-block model in
BioProspector and the newest version of Gibbs Motif Sam-
pler, the positions are clustered but they are not restricted to
all be highly conserved. In contrast, we strictly enforce the
motif to consist of consecutive highly conserved positions.
Our model is still general for different types of binding sites
and flexible enough to incorporate the other useful extensions
mentioned above, such as palindromicity and alternative
background models. In the next section we provide a ration-
ale for our method using empirical data on binding sites.

Rationale

The information content of aligned and experimentally veri-
fied binding sites for several transcription factors is shown in
Figure 2. A 20 bp flanking region has been included on each
side. Peaks in this graph show regions of high base conserva-
tion. The shapes of these plots can be described as bimodal,
for Gal4-, Abf1- and Crp-binding sites, or unimodal, for Phog-
and PurR-binding sites. These plots reflect the structural con-
straints discussed above. Positions that have more contacts to
the protein are highly conserved and these positions tend to
cluster because the protein contacts multiple adjacent bases.
Although exceptions exist, the plots of information content
for many binding-site motifs look similar to these examples.
Therefore, our goal is to search for motifs that are uni- or
bimodal.

The shapes in these plots can also be coarsely described as
blocks of alternating strongly conserved positions and mod-
erately or minimally conserved positions. In our framework,
we assign blocks of motif positions a conservation type:
strong (regime 1), moderate (regime 2) or low (regime 3). For
positions that are specified as strongly conserved, the maxi-
mum possible conservation occurs if only one base is
observed. Similarly, in the moderately conserved case, per-
haps only two bases are conserved, with equal probability or
such that their probabilities add to one. The low-conservation
case, regime 3, corresponds to three or four bases appearing.

Bimodal motifs can be described as two regime 1 blocks sepa-
rated by one regime 2 (or regime 3) block. This is illustrated
in Figure 3a. For example, the binding site for Gal4 has two
sets of three strongly conserved positions separated by a
block of 11 positions with relatively low conservation (Figure
2). Other sites, such as those for Phog and PurR, are unimo-
dal and have a block of regime 1 positions in the center with a
regime 2 block (or regime 3) at either end. This is illustrated
in Figure 3b.

In our method, we extend the model that was the basis for
MEME and Gibbs Motif Sampler. We use the expectation
maximization (EM) algorithm, as in Lawrence and Reilly [9],
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Figure |

Binding sites and motif matrix for Gal4. (a) Binding sites obtained from the Promoter database of Saccharomyces cerevisiae (SCPD) [27]. (b) Motif matrix

with base frequencies for each of the |7 positions.

and MEME to estimate the parameters of the model. Accord-
ing to the regime type for each motif position, determined by
the blocks, we assign a prior distribution to the multinomial
probabilities. This is equivalent to a penalized likelihood
method [15]. If a position is assigned as strongly conserved
(regime 1), deviation from perfect conservation will be penal-
ized. At each iteration in the algorithm, this translates to
upweighting the frequency of the most common base, while
downweighting the rest. For the moderately conserved case
(regime 2) it translates to upweighting the frequency of the
two most common bases, while downweighting the frequen-
cies of the other two. These two situations result in changes
that are easy to implement in the original EM algorithm of
Lawrence and Reilly.

Results
Basic model and algorithm

We now elaborate on the theory behind our method. Let &
denote the collection of N sequences we examine. Each
sequence X;, i = 1,...,N, consists of L;bases,

L.
X; ={Xp L,

X, is the nucleotide base at position k in sequence i. To sim-
plify notation, all sequences are set to the same length, L;= L,
but there is no difficulty in changing back to the more general
case. In this paper, we assume that in each sequence there is
an occurrence of a conserved pattern of width W, referred to
as a motif. This assumption will be relaxed in the future to
allow for any number of occurrences: 0, 1 or more than one.
Positions in the motif are labeled w, w = 1,...,W. The start
position for the motif in each sequence, m;, occurs in the
range 1,...,L - W + 1. The alignment A of the motifs refers to
the set of m;. Finally, the set of bases ranges from j = 1,...,J,
where J = 4 for nucleotide bases.

Lawrence and Reilly [9] use multinomials to model the
sequences given the alignment. The work in Stormo et al. [16]
appears to be one of the first uses of this approach. They
assume that bases in sequence positions that are not in the
motif (background positions) are independent and identically
distributed according to a multinomial distribution. Bases in
positions that are in the motif are independent but non-iden-
tically distributed according to a motif position-specific
multinomial distribution. Sequences and positions are
assumed to be independent. The background multinomial
parameters are denoted by p, = {p,y,-.-sDo, and the motif
position-specific multinomial parameters are denoted by p,,
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Plots of information content (IC = 2 + X; plog,p,) for example motifs. The binding sites have been extended 20 bp on each side and dotted lines mark

proposed boundaries of the known sites.

= {PywpPuwyr for w = 1,...,W. The set of all multinomial

parameters in the model is &2 .

In practice, the motif start positions are not known a priori.
By expanding the previous parameterization, Lawrence and
Reilly introduced a random variable for the start position to
the model for each sequence. The vector

Y; = {V

contains the alignment information, where Y;; = 1 at the start
position k = m;and o elsewhere. The sum constraint

L-W+1 _
2o Y =1
corresponds to the one motif occurrence per sequence model.

The set of all Y; will be denoted Y . The prior distribution on

Y is g and following Lawrence and Reilly, we assume g is the
uniform distribution along the sequence.

To obtain the maximum likelihood estimates for the motif
parameters & , the marginal likelihood Ly( & ) must be max-
imized. This is a sum over all possible start positions and is
difficult to maximize directly. There are several different
approaches for estimating the model parameters. Lawrence
and Reilly [9] and Bailey and Elkan [2] use the EM algorithm
[17], while Liu et al. [3] use the Gibbs sampler [18,19]. The
EM algorithm is guaranteed to reach a maximum, but
depending on the initial starting points it may get trapped by
local maxima. Alternatively, the Gibbs sampler is a stochastic
algorithm, which has the ability to escape local maxima, but
there are no guarantees for reaching a maximal solution. Fur-
thermore, there is no clear benchmark for determining the
stopping time for Markov chain Monte Carlo methods such as

Genome Biology 2004, 5:R50
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Figure 3

Diagrams illustrating regime blocks and change points. (a) Bimodal
information motif. (b) Unimodal information motif. (c) Two different
possibilities for a bimodal motif. Vertical lines correspond to positions in
the motif and double vertical lines show boundaries between blocks. S and
T are the first and second change points, respectively, between blocks.

the Gibbs sampler [20]. Following Lawrence and Reilly, we
also use EM to obtain the maximum likelihood estimates, but
we will discuss alternatives later. The EM algorithm is a two-
stage procedure and the steps from Lawrence and Reilly are
outlined below for the basic model at the r + 1 iteration. The
complete derivations are given in [21].

E-step

The unobserved start position variable Yy is replaced by the
probability that it is a start site for a motif, given the current
values of the parameters and the data,

Pr(vy =1]9",2)= €))

Pr(X; 1Yy =1,9" )9 (Yy)

ik
L-W )
DI Pr(Xi 1Y, =19 )g(Yi,k’)

The term Pr(X; |Yy =1, ") is a product of multinomials.

M-step
The background multinomial probabilities are updated,

Genome Biology 2004,  Volume 5, Issue 7, Article R50 Kechris et al.

r

e TG
poj Z%,J =1,..,4, (2)

where nzj is the expected number of base j in the background

after the rth iteration. Similarly, the parameter estimates are
updated for each motif position w,

r

A~ w j .
pzr,'ujl =TJ>] =1’-"54, (3)
where nfvj is now the expected number of base j at that posi-

tion after the rth iteration,

N L-W+1 .
g, = 21.21 2k=1 Pr(Yy =1]9",0) (X jy g = J)-

The parameter estimates at each step are based on the occur-
rences of bases at each position, weighted by the posterior
probabilities of the positions being in a motif, which were cal-
culated in the E-step.

Model with priors

Below, we discuss the details of our extensions to this model
and outline the corresponding EM algorithm. For each posi-
tion, we assume a prior distribution on the multinomial
parameters to capture the type of base conservation patterns
observed for real binding sites in Figure 2.

Blocks

As discussed above, the bi- and unimodal shape of the infor-
mation content for motifs can be described as a block of mod-
erately conserved positions separated by two blocks of
strongly conserved positions or vice versa. The concept of
blocks has been used before [4,5], but we also enforce a spe-
cific conservation pattern within the block. The multinomial
parameters at each position are assigned a prior distribution
according to the block regime specification.

Blocks of motif positions will be assigned a conservation type:
strong, moderate or low. Let I,, be the conservation type for
motif position w,

1 Strong (regime 1)
I,, =42 Moderate (regime 2).
3 Low (regime 3)

The regime 3 case is roughly equivalent to the background
distribution for the positions not in the binding site, there-
fore, we will not consider regime 3 and focus the discussion
on regimes 1 and 2. For Pho4, a unimodal motif with W = 10,
we assign I = {2,2,2,1,1,1,1,2,2,2}. For Gal4, a bimodal motif
with W = 17, we assign I = {1,1,1,2,2,2,2,2,2,2.2.2 2 2 1,1,1}.

Genome Biology 2004, 5:R50
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Depending on whether I,, = 1 or 2, a different prior
distribution will be assigned to position w. In the following
section we will elaborate on the two different forms of the
prior.

Hereinafter, to specify the regime types for a motif I, we will
use abbreviated notation. For example, [2(3), 1(4), 2(3)] is
equivalent to I = {2,2,2,1,1,1,1,2,2,2}. In this notation, the
number in bold indicates the type of regime (1 or 2) for each
of the three blocks and the number in parenthesis indicates
the width of the block.

Prior distribution

Let f(p,,) be the prior on the multinomial probabilities for
position w. For f, Liu et al. [3], among others, use the Dirich-
let distribution, the conjugate prior of the multinomial. In
these methods, the same Dirichlet distribution can be used
for each motif position or the Dirichlet parameters at each
position can be set by using previous knowledge about the rel-
ative base frequencies at the different positions [8]. In con-
trast, we use a prior distribution that is position specific,
depending on the block regime specification, and that is inde-
pendent of base composition. This prior distribution captures
a certain overall base conservation without indicating the
base identities.

Because we are ignoring base identity, it would be necessary
to use a mixture of Dirichlet distributions for the prior at each
position. To obtain the many parameters for the Dirichlet
mixtures, we must then train on a relatively small set of exam-
ple binding-site motifs. To avoid this estimation, we consider
two other possibilities for f, the double exponential or normal
distribution and qualitatively assign the parameters. Using
the double exponential or normal distribution for the prior
corresponds to using a certain type of penalty in the likeli-
hood. In these two cases, the penalty function takes the form
of the L, or L, norm respectively after taking the logarithm.
For the double exponential case (L,),

4
Ingé(p)Z—lz |pj—0;|+ constant, (4)
j=1
while for the normal case (L),

4
Ing(;(p)=—?tZ (pj—éj)2+constant, (5)
Jj=1

subject to the constraints
4 —
j=1 pj=1

and o < p;<1forallj. The L, and L, penalty forms are similar
to the penalties used for shrinkage in lasso and ridge regres-
sion respectively [22,23].

http://genomebiology.com/2004/5/7/R50

The prior distribution has two parameters, A and 6. The
strength of the prior on the model is determined by A, where
A> 0. The contribution of the prior to the likelihood increases
as Aincreases. When A = 0, the model simplifies to the origi-
nal model without priors. We assign values for the parameter
6 depending on the regime assigned to position w. Below, we
discuss the possible values of 5for regime 1 and 2. The w nota-
tion is dropped for simplicity.

Regime |
For positions that are specified as strongly conserved (I, = 1),
the maximum conservation occurs if only one base is possible.

That is, for some base j, p;= 1, while for all j' #, pj' =0.Thus,

the prior can be set as a penalty against deviations from this
conservation. For ordered j, such that p;y> poy > P5) > Py

1 j=1
() =

o j#1
Regime 2a

Similarly, in the moderately conserved case (I, = 2), perhaps
only two bases are conserved, with equal probability. Then,

1/2 j=1,2
54y =

0 j=34
Regime 2b

This previous constraint is somewhat arbitrary. It could very

well be that the frequencies for the two bases are 3 and L.
4 4

A more general variant would be to constrain the sum of the
probabilities of the two bases to 1. Now, for L,, the right side

of Equation (4) is,

log f5(p)=-A( Puy+ P2y =11+ Pg) |+ Py 1)+ constant. (6)

Note, however, that regime 1 is nested in this model (that is, a
position that has a small penalty value under regime 1 will
also have a small penalty value under regime 2b). The results
using simulated data show that the nested nature of the
regimes compromises the effectiveness of the method in cer-
tain situations.

The constant in Equations (4) to (6) is the log of the normal-
izing factor for f. The space of p is limited to the 4-d simplex,
with the following order constraints: pg)> p(,) > P(g) 2 Py
Because of these complicated constraints, there is no closed
form solution for the normalizing factor. However, it does not

depend on & and is dropped in the derivations of the EM
algorithm.

Genome Biology 2004, 5:R50
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As described previously, we are specifying a model that will
bias the search for uni- or bimodal motifs. We look for the
motif that maximizes the likelihood of the data given this
model. Equations (4) to (6) are the essential component of
our method and work as a penalty in the log likelihood. If a
potential motif does not follow the indicated shape, it will not
score as well, in terms of the log likelihood, as another candi-
date motif that does follow the shape. More specifically, if a
position is specified as regime 1, then §is set to the value dis-
cussed above. If the base frequencies at that position, p, devi-
ate from ¢, then the values for Equation (4) will be large and
negative and, therefore, reduce the log likelihood.

Algorithm
Assigning a prior distribution on the multinomial parameters
for each position only alters the EM algorithm slightly. For

the E-step, the update formula for Pr(Yik =1| yr,x) is the

same as in the case without priors. For the M-step, the
updates for the background multinomial parameters p, are
the same as with the basic model. The updates for the motif
positions p,, take on different forms depending on I,, and the
functional form of f and are listed in Figure 4.

For the L, prior and regime 1, using the positive root for yin

Equation (8), the 13( ;) are rescaled versions of the original

maximum likelihood estimates. The base that occurs more
frequently is upweighted relative to the other bases. For
regime 2, in Equation (10), using the positive root for y, the
top two occurring bases are upweighted relative to the other

two bases. If 1 = 0, as in the original model, y= N and the f)( b

equal the original weighted frequencies fromEquation (3).
We do not derive regime 2a, where the top two bases have
equal probability,

5=(>,2,0,0)
22

for the L, prior. We cannot safely assume
Lo

Pjy=5=9

to ignore the absolute values and to obtain a closed form solu-
tion as above. In this case we will need to directly maximize
over a four-dimensional nonlinear equation with constraints,
for each position. To simplify the updates, we only use regime
2b with L,.

For the L, prior, there is no simple closed form solution for y.
Nevertheless, the problem of determining the one-dimen-
sional y is still a reduction in the complexity of the original
maximization in four dimensions of a nonlinear equation
with constraints. To solve for yin R, we use the uniroot func-
tion based on the algorithm in Brent [24]. For L,, we do not

Genome Biology 2004,  Volume 5, Issue 7, Article R50

derive regime 2b because no simplifications are possible as in
regime 1and regime 2a. The penalty (p(,)+p(,)-1)2in regime 2b
causes dependencies between p(,, and p(, that cannot be
factored out into a simple form. Thus, to simplify the updates,
we only use regime 2a with L.

In summary, by including a prior distribution on the multino-
mial parameters, only the M-step changes. For either type of
prior, L, or L,, there is a closed form solution for the parame-
ter updates depending on the coefficient 5. This coefficient,
called the Lagrange multiplier, ensures that the constraint Z;
p;= 11is satisfied. For L,, yis a unique positive solution to a
quadratic equation, while for L,, yis a unique positive solu-
tion to a monotone decreasing nonlinear equation. Thus,
there is either an explicit solution or one that can be obtained
quickly. For L, and L,, we use the two different variations of
regime 2, 2b and 2a respectively. This is necessary so that in
the M-step there is a closed-form solution or an optimization
in one dimension. If we do not use these variations, we cannot
avoid more costly computations in higher dimensions.

Model with change points

In the previous section, the locations of the blocks were des-
ignated in advance. In many situations, the borders between
blocks will not be known a priori. We will now expand the
current model parameterization to include unobserved ran-
dom variables for the borders between blocks, referred to as
change points. For example, the diagrams in Figure 3c depict
two different possibilities for a bimodal motif.

Let S and T denote the first and second change points, respec-
tively, between blocks where -1 < S <T < W. The values of S
and T determine each I,

1 w<Sorw=T

2 w>S&w<T

For example, in Galg where I = {1,1,1,2,2,2,2,
22222929211,1}, S =3 and T = 15. This characterization
also applies to the unimodal type of sites, but the previous
designations for I,, = 1 and I, = 2 should be reversed. To
include the case where all I,, = 2, the lower range of values for
S extends to -1 and the range of T extends to W.

It may not be known which choices for S and T are preferable.
Therefore, when S and T are not known, we introduce a ran-
dom variable ¢, -1 <'s <t < W. It is an indicator for the two
change points, where

1 s=S&t=T
Cst— )
o s#Sort=T

Genome Biology 2004, 5:R50
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L, regime 1

"

()

j=1

2A+y

where Yis a

- (N=24)% /(N —22)* +84n,,

solution of a quadratic equation,

(©)]

2

)

Py =

=12

b}

/4
(10)

)

j=34

244y

where Y is

a solution of a quadratic equation,

2,1)1\/(1\7—2/1)%8/1 (n(l)+n(2)). (11)

(N —
Y=

2

L, regime 1

P =

Q24— £,J@A— ) +82n,, i

4

—y 7 +84n

4

12)

j=1

where using the positive root for each f)m , ¥ satisfies the constraint Zj [7(].) =1

L, regime 2a

Py =

A—pP) £ J(A—p) +84n,

47

—y £y +8n,

47

=1,2

k]

13)

j=34

i

where using the positive root for each i’(/‘) , ¥ satisfies the constraint Z/_ 13(/‘) =1

Figure 4 (see legend on next page)

Genome Biology 2004, 5:R50




http://genomebiology.com/2004/5/7/R50

Genome Biology 2004,  Volume 5, Issue 7, Article R50 Kechris et al.

Figure 4 (see previous page)

Update formulae for motif parameters. Updates in M-step depend on |, (regime | or 2) and the functional form of f (L, or L,). For position w after the rth

iteration, Ty is the expected number of base j at the wth motif position. For ease of notation, the superscript r and subscript w are dropped. The bases,

J» are ordered such that n() 2 ng) 2 n3) 2 n,.

and

—1<s<t<W

The variable ¢, determines I, for all w and as a result, it deter-

mines which prior is assigned to each p,,. Let € denote the

. W(W+1) .
collection c;. There are ————= +1 unique cg,.
5 :

In practice, W is usually between 6 and 20, which translates
into 22 to 211 different c,,. We also specify h, the prior distri-

bution on €. The ratios of the lengths of the three blocks to W
are assumed to follow a Dirichlet distribution. The possible
lengths are not continuous but increment by discrete posi-
tions, therefore, we use a discretized form of the Dirichlet for
h. Change points have also been used to model heterogeneity
in base composition along a sequence [25]. In this context,
both the locations and the number of change points are ran-
dom variables.

Algorithm
Now, in the E-step, besides the term Pr(Yik =1| {/’r,it) , we

also need to compute the posterior probability of c, given the
current values of the parameters and the data,

Pr(cy =1|9")= (7)

h(cst ) l-[{/111]:1 fl (pw )utg f2 (pw )l—uif _
25’<t ,/’l(CS t ) HI/UVZI fl (pw )u;; f2 (pw )u;;

where fi and f2 are the prior distributions for regime 1 and 2

positions respectively and uflf =1 indicates that regime 1 is
associated with motif position w given the change points s
and t (cy; = 1). For the M-step, the updates for the background
multinomial parameters p, are the same as with the basic
model. The updates for the motif position parameters, p,,,
take on different forms depending on the functional form of f
and are listed in Figure 5.

Given the data and the current values of the parameter, the
term d in Figure 5 is the posterior probability that I,, = 1
for that position, while the term e is the posterior probability

that I, = 2. In the updates for both forms of the priors, when

e — 0, and therefore d — 1, then p,) = P(3) = P(4) » analogous
to the regime 1 estimates in Equations (8) and (12). Alter-
nately, if d — 0, and therefore e — 1, then p(,) = p(,) , equiv-

alent to the regime 2 estimates in Equations (10) and (13). As
in the previous model, for both types of priors, there is a
closed form solution to the parameter updates depending on
the Lagrange multiplier y. For L,, yis a unique positive solu-
tion to a cubic equation, while for L,, y is a unique positive
solution to a monotone decreasing nonlinear equation.

Fixed and variable change point model

Hereinafter, the two versions of our model will be referred to
as the fixed change point model, from the section 'Model with
priors', and the variable change point model, from the section
'Model with change points'. In Figure 6, we list the steps in the
algorithm for estimating the parameters in the two cases. This
algorithm has been implemented in the statistical software R
[26] for evaluation purposes. Currently, a working version of
the algorithm in C is also being completed to increase the
speed of the program.

Our method relies on the most basic motif model introduced
in Lawrence and Reilly. This original model has many limit-
ing assumptions, which have been addressed by more recent
work in MEME and the Gibbs Motif Sampler. We have not
incorporated the more recent adaptations, such as variable
motif width, multiple motif occurrences per sequence and
non-uniform distribution for g, so that we focus our attention
on the conservation trends across motif positions.
Nevertheless, because we are using the basic framework that
is common to all the model-based methods, we can incorpo-
rate these approaches into our method as well.

In practice, this method should be used as follows. First, a set
of upstream sequences from co-regulated genes is selected as
input for the algorithm. Next, information about the structure
of the proposed transcription factor involved in the regulation
of these genes can be used to specify the motif width W and
whether the search should be for a uni- or bimodal motif. For
example, binding sites for helix-turn-helix homeodomain
proteins generally have a core of four or five highly conserved
bases flanked on either side by another one or two partially
conserved bases. In this case a unimodal specification would
be input into the algorithm. Otherwise, if more detailed infor-
mation is known, then the vector I can be specified com-
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E, j=1
/4
) o j=2
Py = 20d+vy (14)
n .
) s ] — 3’4
20 (d+e) +y

Note that d + e = 1 and thus, ¥ satisfies the following equation

4 n, n N, +n
Z Py = o, e L Teo TR g

= Yy 24d+y 24 +y (15)
We can solve for )/ by taking the real roots of the cubic equation

Y+Ay +By+C=0, (16)
where A=21(1+d)—N, B=2Ax[—n,, —n, —d (N—ny)+24d] and C=—41" n, d.

((A+d) A=) £ J(A+d) A=) +84n,, -
42 Y
R (Ae—p)£J(Ae—p) +84n, -
P = ) ’ J==- 17)
—y 7 +8n, )
_ j=3,4
42

To solve for }, take the sum of the positive roots for each p ;.

Figure 5

Update formulae for motif parameters using model with change points. Updates in M-step depend on the functional form of f (L, or L,). See details in

Figure 4. See [35] for solutions to the cubic equation.

pletely. The width usually ranges from 6 to 20 positions.
From the examples we observed, unimodal motifs tend to be
shorter (W = 8-10) than bimodal motifs, (W = 12-17).

Examination of transcription factor-DNA complexes suggests
that factors within the same broad structural class bind DNA
in a similar manner. Although the structures of many tran-
scription factors have not been solved, sequence homology or
other means may indicate that a transcription factor may be a

member of a particular structural class of factors. This infor-
mation can be used to select between a uni- or bimodal
specification.

Simulations

First, we use simulation methods to compare the different
prior functions (L, or L,) and possible regime specifications in
the fixed and variable change point models. We also use the
simulations to evaluate the performance of our method with
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E-step

M-step (Update P’)
For each motif position w

Output:
Estimated motif matrix P’

Plug v into equations for py(j
(F) L1: equations (8) & (10) or L2: equations (12) & (13)
(V) L1: equation (14) or L2: equation (17)

JIw), I, = (1 or 2)

Input:
Data: Xk, sequence ¢ = 1,2,..., N and position £k =1,2,...,L;
Motif width: W
A
(F) Regime types: I = (I, Io, ...
(V) Uni- or bi-modal motif
Initialization:

(V) Sample I from the prior on uni- or bi-modal change points
Sample P (motif matrix): each column p,, picked from prior according to regime I,
Algorithm: Repeat E- and M-step until convergence of P’

Update Yj;: posterior probabilities of position j being start site in sequence %
(V) Update cs: posterior probabilities of change points (s, )

Calculate n,,;: expected counts (based on )) of base j at position w
Order ny,; such that 1,1y = Ny2) = Nw(Ez) = M)
(V) Calculate dy,: posterior probability that I,, = 1 for position w
Calculate v: Lagrange multiplier
(F) L1: solves quadratic function
L2: solves nonlinear monotone decreasing function of A & n,(;)’s
(V) L1: solves cubic function
L2: solves nonlinear monotone decreasing function of A, n,;)’s & dy

Final update of posterior probabilities of start positions )’
(V) Final update of posterior probabilities of change points C’

Figure 6

Expectation maximization algorithm. Differences between the fixed and variable change point model are labeled (F) and (V) respectively.

data that consist of both a real motif and a competing false
motif. For evaluation purposes, we focus on the simple model
of one motif occurrence per sequence with fixed overall width.

For both the simulations and the real data in the following
section, we focused on binding sites in S. cerevisiae and E.
coli for two reasons. There are many verified binding sites in
databases specific to these organisms and the simple model of
one occurrence per sequence is a reasonable assumption for
both organisms.

For each of the five test sets in Figure 2, which we designate
as galg, abfi, crp, pho4 and purR, we inserted the experimen-
tally verified binding sites for these examples in simulated
sequences. We also permuted the positions of the binding
sites and inserted a permuted version of the site in each gen-
erated sequence. More details about the simulation proce-
dure, starting points and evaluation of the final results are
described in Additional data file 1.

Ignoring the background positions, the permuted motif
should have an equal chance of being discovered as the real
motif because it has the same likelihood, but the information
content across positions will not look like characteristic tran-
scription factor binding sites.

We repeated the simulation procedure described in Addi-
tional data file 1 with 100 datasets for the five different tran-
scription factor binding site examples. To display the results
for increasing A, we plot the percentage of correctly identified
real motifs and the percentage of correctly identified per-
muted motifs, averaged over the 100 simulated datasets. We

refer to this graph asa 12 plot.

Recall that 4 is a parameter in the prior distribution. It con-
trols the contribution of the prior to the model. The larger 4
is, the more deviations from the specified regime types are
penalized. When A = o0, this is equivalent to the original
model, where both the real and permuted motifs are equally
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Figure 7

AP plots for the fixed change point model using the L, prior and no penalty for regime 2. In all AP plots, the solid line shows the percentage of simulated
datasets where at least 50% of the real sites were correctly identified. The dashed line shows the percentage of simulated datasets where at least 50% of
the permuted sites were identified. The regime type specifications are [1(3), 2(1 1), 1(3)] for gal4, [1(4), 2(5), 1(3)] for abfl, [1(5), 2(6), 1(5)] for crp, [2(3),

1(4), 2(3)] for pho4 and [2(5), 1(10), 2(5)] for purR.

likely to be discovered. When the algorithm discovers either
of the two motifs, the lines in the 1% plots should add to
100%. If the lines do not add to 100%, then the algorithm does
not find either but instead finds a spurious motif.

Fixed change points

First, we explore the situation where the borders between
regimes, the change points, are fixed. For example, in Galg,
the binding site is 17 bp long and the specified regime types
for each position in order are: [1(3), 2(11), 1(3)]. We com-
pared the results between L, and L,, in addition to whether
including or not including the regime 2 penalty is beneficial.
We find that using the L, prior without the regime 2 penalty
performs the best (that is, detects more real motifs for most A
values). The results for this model are displayed in Figure 7.

The parameter A plays an important role in the performance
of the algorithm. As expected, the motifs have about equal
probability of being detected at A = 0. Any variations are likely
to be due to random noise for the 100 simulation trials. As 4
increases, the real motif is preferred over the permuted one,
and the improvement levels off or begins to decrease around
A =100. In all but one example, this model discovers the real
site in 95 to 100% of the datasets. The only exception is the

motif for Crp, a relatively weak motif, where the percentage is
roughly 90%.

In general, the L, norm is a stronger penalty because ;| p;- J |
>%(p;- )2 forX;8=1,12 6> 0,Yjand I;p;= 1,12 p;> 0, Vj.
Our results also indicate that most of the signal is driven by
regime 1. There is little improvement or a negative effect
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Figure 8

AP plots for the variable change point model using the L, prior. In all AP plots, the solid line shows the percentage of simulated datasets where at least 50%
of the real sites were correctly identified. The dashed line shows the percentage of simulated datasets where at least 50% of the permuted sites were
identified. We use the following model specifications: W = 17 and bimodal for gal4; W = |12 and bimodal for abfl; W = 16 and bimodal for crp; W = 10 and

unimodal for crp; and W = 20 and unimodal for purR.

when including regime 2 (data not shown). In addition, we
also explored the effect of misspecifying the regimes by one
position. For example, the regimes for Galg were specified as
[1(4), 2(9), 1(4)] instead of [1(3), 2(11), 1(3)]. For all the test
sets, this caused a 10-25% drop in the percentage of datasets
where the real motif was discovered. Trying different
specifications or, equivalently, altering the change points can
be done systematically by using the variable change point
model (see below).

Variable change points

In Figure 7, the change points between regimes are specified
in advance. This information is not always available, so we
outlined the algorithm for the situation where the change
points are unobservable. For this method, it is only necessary
to specify whether the motif is uni- or bimodal. For the varia-
ble change point method, we evaluated the results for both L,

and L,. A penalty for regime 2 is necessary, otherwise, the
likelihood is maximized when all positions are labeled as
regime 2.

In this extension, L, performs better than L, for almost all test
examples. The nested nature of the L, regime 2 penalty causes
the likelihood to be maximized when all positions are labeled
as regime 2. Figure 8 displays the results for L,. The real motif
is preferred over the permuted motif as A increases and
reaches a maximum percentage in the range 50-100. Not sur-
prisingly, the algorithm performs worse than when the
change points are known a priori (Figure 7).

Despite the overall drop in performance, we still observe a 70-
80% increase in the percentage of datasets where the real
motif is discovered. These results are similar to those
obtained with the fixed change point model when we mis-
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Table |

Summary of test sets

Dataset Organism N Unimodal/Bimodal w

crp E. coli 17 Bi 16

rap| S. cerevisiae 15 Uni 13

rebl S. cerevisiae 14 Uni 13

abfl S. cerevisiae 18 Bi 12

Columns list the dataset name, its source organism, the number of sequences (N), whether it has a uni- or bimodal motif, and the motif width (W).

specified the regimes. The algorithm performs the best with
Galg, identifying the real motif almost 95% of the time, and
performs the worst with Crp, only identifying the real motif
75% of the time. These results should not be compared
directly with the L, fixed change point model (Figure 7), but
with the L, fixed change point model, which performs slightly
worse than L, (data not shown).

In summary, when the positions of high, moderate or low
conservation in a proposed motif are known a priori, the dou-
ble exponential prior in our model performed the best at
improving the detection of real motif versus decoy motifs in
the simulated data. Otherwise, when it is only known that the
motif has uni- or bimodal information content, then the nor-
mal prior performed the best in improving the detection of
the real motifs versus the decoys.

Real data

To assess the performance of our method with real data
instead of simulated data, we explored sets of genomic data
containing experimentally verified binding sites. Using a
specified length, we extracted the genomic sequences con-
taining the binding sites from databases. As we extracted
longer and longer sequences, the size of the data increased,
adding more noise to the problem, but the number of binding
sites, the signal, stayed the same. In particular, we explored
two issues with this data: first, the effect of the number of
starting points on the algorithm; and second, the effect of 2on
the ability of the algorithm to detect the known binding sites
in the data.

As previously discussed, we use the EM algorithm to find the
motif that maximizes the likelihood of the data given the
model. Because of the many local maxima in the likelihood
function, the number and type of starting points used for the
EM algorithm is a critical issue. It is beyond the scope of this
paper to make a rigorous comparison of different procedures
for obtaining starting points and to determine the optimal
number of starting points. We discuss several examples
which show that by increasing the number of starting points,
the performance of the method improves. In the light of these
results, the number of starting points is selected to be very
large. We then explore the effect of including prior knowledge

about the positional information content of the motif for the
detection of the real sites.

Data

We looked for bimodal and unimodal motif examples that
had a relatively weak signal and contained at least 10 sites
that were found in the regulatory region of at least 10 different
genes. The formal definition of a weak signal is discussed in
the following section. Briefly, motifs that are no longer
discovered as the size of the data is increased (that is, the
noise level grows) are defined as having a weak signal, but
motifs that are still detected in the noisier data are defined as
having a strong signal.

We examined the five test sets used in the simulations and
examples in the SCPD and DPInteract databases [27,28].
Overall, we found four examples of transcription-factor-bind-
ing sites that satisfied our criteria, those for Abf1, Crp, Rap1
and Reb1, which we designate as abfi, crp, rap1, and reb1. In
Table 1, we summarize the information on these test sets.
There were six sets (cpxR, galy, lexA, repcari, pho4, purR)
that did not satisfy our criteria, which were used as a training
set for fitting the parameters of our prior distribution (See
Materials and methods for details).

The motif example crp is of particular interest for several rea-
sons. It has a relatively weak signal that can be observed in
Figure 2. Even in the simulated data, with length 100, the crp
sites are more difficult to detect than the other test sites (Fig-
ure 7). Furthermore, this example has been used as a test set
for several other motif-finding methods and is considered the
'gold standard' in this literature [2,5,9].

Using the real data, we evaluated the performance of our
method as the background noise level grew. We obtained the
sequences that contained the sites starting at length L = 100
bases and then incremented by 100 bases to create new data-
sets. We first determined the location of the site (or multiple
sites) for each sequence and elongated the sequence on each
side by a random amount of flanking sequence to obtain the
desired overall length L. Although promoter regions are
rarely longer than 500 bp for E. coli and 800 bp for S.
cerevisiae, we still include larger datasets to address the more
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Percentage of correctly identified sites for crp using different methods, varying number of starting points and different dataset lengths L

Method Number of L
starting
points
100 200 300 400 500 600 700 800
MEME | 88 76 65 0 0 0 0 0
A=0 | 71 76 65 0 0 0 0 0
A=0 100 88 76 65 65 0 6* 0 0

The rows display the results for each method. First row: MEME software with the options -nmotifs | -dna -mod oops -brief -noshorten -b 0 -adj
none. Second and third rows: the variable change point algorithm with normal prior, 4 = 0 and motif width and motif specification (uni- or bimodal)
listed in Table |. The number of starting points in the algorithm was set at | or 100. Starting points were selected according to the MEME procedure

as described in the text. The entry labeled with an asterisk corresponds to a trial in which the correct motif was not found, but one or two sites

were correctly predicted by chance, with a spurious motif.

general problem of finding a weak signal within long stretches
of genomic sequence. For more details about the data and
evaluation of the final results see Additional data file 1.

Starting points

In this exercise, we used the MEME starting-point selection
procedure. In the MEME approach, each subsequence in the
data, of the prespecified motif width, is converted into a motif
matrix and used as a starting point for one step of the EM
algorithm. After that one step, the motif matrix that has the
highest likelihood for the data, given the model, is used as the
single starting point for the EM algorithm and the algorithm
runs until convergence. See Bailey and Elkan [2] for more
details about this procedure.

Effect of the number of starting points

We ran three variations of the method to evaluate the effect of
the number of starting points. First, we compared the popular
software MEME with our method. Although there are differ-
ences in implementation heuristics between MEME and our
method, we can still use the MEME results as a benchmark.
For each dataset starting at L = 100 and incrementing by 100
bases, we first ran MEME with the following options: -nmo-
tifs 1 -dna -mod oops -brief -noshorten -b 0 -adj none. These
options were chosen so as to match our method as closely as
possible.

Next, we also ran our algorithm with 4 = 0 according to the
MEME starting-point procedure described above. The 1 = 0
option for our method essentially ignores the prior knowledge
and should be equivalent to the MEME model.

Finally, we increased the number of starting points for our
algorithm by taking the top 100 selected by the MEME proce-
dure (that is, the 100 that have the highest likelihood after
one step of the EM algorithm). We ran our algorithm with 4 =
o for each of these starting points until convergence. The
motif with the highest final likelihood from the 100 starting
points was selected as the final motif. There is no option to

increase the number of starting points with MEME, but simi-
lar results between MEME and our method with 4 = o for one
starting point indicate that the results from running MEME
and our method with 1 = o for 100 starting points will also be
similar.

In Table 2, we list the results for each L in the crp test set (the
results for the other test sets can be found in Additional data
file 2). The length was extended such that the motif is no
longer found in the previous four lengths for any of the three
runs described above. We also repeated this experiment on
the four other datasets that had enough sequences (cpxR,
lexA, repcari, purR). These datasets were declared as having
strong signals because we could extend the length up to 2,000
and MEME was still able to discover the correct motif. There-
fore, we use these four and the other two that did not have
enough sequences (pho4 and galg) as our training set (see
Materials and methods).

For all four sets, the results of MEME and our method (1 = 0)
with one starting point are similar. Although the exact per-
centage of predicted sites at each L is not the same for the two
methods, they both fail to find the correct motif at the same
length. This indicates that the 4 = 0 implementation of our
algorithm is comparable to MEME, based on the options
mentioned above. Overall, for the different test sets, neither
method finds the correct motifif L is extended beyond 300 for
crp, 700 for rapi, 600 for abfi and 500 for rebi.

The second and third rows in Table 2 illustrate that the
number of starting points affects the discovery of the motif.
Except for abfi, by using 100 starting points, our method with
A= 01is able to find the correct motif in longer lengths. For crp
and reb1, the maximum length where the motif is discovered,
denoted by L*, is increased by 100 bp, while for rap1, the final
length is increased by 700 bp.

These results indicate that up to a certain length, increasing
the number of starting points gives the algorithm an
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Table 3

Percentage of correctly identified sites for different values of 1 and length L

L
crp A 400 500 600 700
0 47 0 0 0
10 53 47 0 0
20 53 47 0 0
30 53 47 47 0
50 0 0 0 0
100 0 0 6* 6*
200 0 0 0 0
500 0 0 0 0
L
abfl A 600 700 800 900
0 56 0 0 0
10 56 0 0 0
20 56 56 50 0
30 56 56 50 0
50 50 0 0 0
100 0 0 0 0
200 0 0 0 0
500 0 0 0 0
L
rapl A 1,400 1,500 1,600 1,700
0 80 0 0 0
10 80 0 0 0
20 80 0 0 0
30 73 80 67 0
50 73 80 67 0
100 73 0 67 0
200 73 73 67 0
500 67 60 67 0
L
rebl A 500 600 700
0 86 0 0
10 86 64 0
20 79 64 0
30 0 0 0
50 0 7* 0
100 0 7* 0
200 0 0 0
500 0 0 0

Rows show the results with the specified A value and columns correspond to different values of L. The variable change point model and normal prior
is used with motif width and motif specification (uni- or bimodal) listed in Table |. For each dataset L, the top 2L starting points were used according
to the MEME starting point selection procedure. For the rap | test set, a different set of random starting points was used for each L. Entries labeled
with an asterisk correspond to a trial in which the correct motif was not found, but one or two sites were correctly predicted by chance, with a
spurious motif.
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advantage for discovering weak motifs as the noise level
increases. It is advantageous to use many different starting
points because the likelihood surface is high-dimensional
with many local maxima. However, having too many starting
points compromises the speed of the method. In summary,
these results show that for shorter lengths, MEME can be
improved by altering its implementation. In the next section,
we will show that for longer lengths more starting points do
not help and that the changes to the model we propose further
improve the method.

Effect of A

We also used the real test sets to explore the effect of our
prior, which is controlled by 4, on the algorithm's perform-
ance as L increases. So that the number of starting points is
not a confounding factor for interpreting the results, we chose
the top 2L starting points selected by the MEME procedure
for each dataset of length L. For rap1 we used an alternative
starting-point selection procedure, which is discussed in
Additional data file 1. The number 2L was arbitrarily chosen
so that it was sufficiently large and dependent on the size of
the data, which the simulations indicate is an important
factor.

We focused on the more challenging datasets to determine
whether increasing 4 improves the detection of the real sites.
We started at the last length, L*, in which the motif is discov-
ered with 100 starting points: for crp, L* = 400; for rap1, L*
= 1,400; for abf1, L* = 600; and for rebi, L* = 500. For the
four test sets, Table 3 lists results using 4 = 0, 10, 20, 30, 50,
100, 200 and 500 for length L > L*. The number of starting
points was 2L for each L dataset and the same starting points
were used for each A. The algorithm was run with the variable
change point model, normal prior with motif width and spec-
ification listed in Table 1. Each entry of the table is the per-
centage of correctly identified sites from the final motif with
the highest likelihood for that particular dataset.

At the maximum value where the motif is detected with 100
starting points, L = L*, either the same or more sites are
identified as 1 increases from o for each test set. For large val-
ues of 4, which results in the prior information dominating
the likelihood, the performance drops for most of the test sets.
This behavior at large A is not surprising because perfect
conservation at a site is strictly enforced, which is not reflec-
tive of these relatively weak signals.

Looking across columns, as expected, the ability to detect the
real sites drops as L increases. Adding more starting points
does not help with these larger lengths. For example, at L =
500 in crp, even with 1,000 MEME starting points, no sites
are identified with A = 0. The limiting factor does not seem to
be the number of starting points in these larger datasets.

As we include the prior information by increasing A, the motif
is detected in many cases for L >L*. The maximum length
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where we discover the motif is increased by 200 bp for crp,
abf1 and rap1 and 100 bp for rebi. In all cases, 1 in the range
10-30 is best. The simulations (Figures 7,8) also show that the
most drastic improvement in performance appears in this
range.

Comparison with BioProspector and Gibbs Motif
Sampler

Our method is based on the observation that highly conserved
positions tend to be grouped together within the motif. Com-
paring our method with MEME is unfair because MEME does
not use information of this type to search for motifs. How-
ever, the software BioProspector and Gibbs Motif Sampler
have options for specifying blocks but do not have as restric-
tive assumptions as our model. With our test sets, we also ran
these two methods to evaluate how our algorithm compared
to these alternative approaches. See Additional data file 1 for
the options used in both software.

BioProspector

For BioProspector, there are two main options: a one-block or
a two-block motif. These options are analogous to our uni-
and bimodal models. The user specifies the width of the
blocks and, for the two-block motif, a flexible gap that sepa-
rates the two blocks. Their gap is analogous to the middle
block in our bimodal motif model, but they allow flexibility in
its width.

Table 4 lists the percentage of correctly identified sites for the
different runs on the four test sets. Except for rebi1, we found
that BioProspector is sensitive to the choice of block and gap
widths. For the two bimodal examples, the motif was found
for the larger datasets, L >L*, only if the gap was specified
correctly. When the gap was allowed to vary, the motif was
only found for L* + 100. For the unimodal example rap1i, Bio-
Prospector found the motif for L >L*, only for block width
equal to 7. For rebi, BioProspector found the motif in the
larger-length datasets regardless of the specified block width.

Gibbs Motif Sampler

Gibbs Motif Sampler was less successful than BioProspector
at discovering the motifs in the test sets. Full results are
described in Additional data file 2. In summary, the real motif
was never discovered for rap1 and abfi, even at L*. The orig-
inal fragmentation model was able to find the motif for crp
with W = 20 and 24, but only up to L = 500. For the reb1
motif, several different combinations were adequate for its
discovery up to length 700.

Discussion

Our results strongly suggest that prior knowledge of specific
and general positional constraints on information (conserva-
tion) in a transcription-factor binding site greatly helps in its
discovery. However, is such knowledge generally available?
We believe it is. There are many applications where binding
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Table 4

http://genomebiology.com/2004/5/7/R50

Percentage of correctly identified sites using different options in BioProspector

L
crp Options 400 500 600 700 800
5:6:5 47 53 65 41 0
4:6:4 29 4] 24 29 0
6:6:6 4| 53 0 0 6%*
5:(5-6):5 4] 35 0 6% 0
5:(6-7):5 47 0 0 0
5:(5-7):5 47 0
L
abfl Options 600 700 800 900
4:5:4 56 44 50 33
5:5:4 39 0 0 6*
5:5:5 28 0 0 6%
4:(4-5):4 78 56 0 0
4:(5-6):4 33 39 0 0
4:(4-6):4 50 44 0 0
L
rapl Options 1,400 1,500 1,600 1,700 1,800
Ww=5
W=6
w=7 60 60 47 57 47
Ww=38 73 0 0 0 0
L
rebl Options 500 600 700
Ww=5 79 71 71
W=6 71 71 86
w=7 79 86 79
w=38 93 71 79

The bimodal examples (crp, abfl) use three options: first block width, gap length and second block width. The values for these options are separated
by colons in the table. For example, 5:6:5 corresponds to two blocks of five positions separated by a gap of six positions. The gap ranges are denoted
by a dash. For the unimodal motifs (rap |/, rebl), there is only one option for the block width, denoted by W. Entries labeled with an asterisk
correspond to a trial in which the correct motif was not found, but one or two sites were correctly predicted by chance, with a spurious motif.

sites for a particular factor are being sought - for example,
when the targets of a particular factor have been identified by
chromatin immunoprecipitation [29]. The structural class of
factors can generally be inferred from homology, and the
information profile in turn inferred from related factors. Our
method can then be used, allowing only small variations on
the constraints obtained from the inferred profile. Where the
identity of the factor or factors is not available, a general con-
straint - allowing for uni- or bimodal motifs of various sizes -
can be used and will still be useful because it greatly narrows
the space of possible motifs and will therefore improve the
specificity of the method.

Below, we discuss several issues regarding the model and the
implementation of the algorithm. The original intent of the
analysis with real data was to observe the effect of using the
prior distribution we proposed. As a byproduct of this analy-
sis, we found that the likelihood surface has many local
maxima and that, consequently, the starting points have a
critical role. We found that to improve the detection of the
correct motifs, the number of starting points should be
increased with larger data. These observations suggest that
the model-based methods using the EM algorithm can be
improved simply by using more starting points or by looking
into alternative starting-point procedures. However, there is

Genome Biology 2004, 5:R50
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a limit for this improvement. For the very long lengths, we
found that increasing the number of starting points propor-
tionally was no better than using only a fixed number of 100.

For the data with very long lengths, where adding more start-
ing points was not effective, we found that including the prior
also improves the performance of the basic model. The extent
of improvement varied across the datasets, mostly because of
the noise level. It was more drastic in the simulated data,
which was much less noisy. Depending on the strength of the
motif signal, in all results, a A value in the range 10 to 50 was
adequate. We suggest running the algorithm for a few cases of
A to see if the results are consistent. A controls the contribu-
tion of the prior to the model. If we optimize the likelihood
over A directly, 2 would approach zero because the likelihood
is maximized when there is no penalty (1 = 0). Thus, in future
work, we plan to perform cross-validation trials for determin-
ing good values for 4 in advance.

Although BioProspector and the variants of Gibbs Motif Sam-
pler were developed to account for motifs with block struc-
ture, they do not impose the same restrictions as our method.
We tried different values for the options in these programs to
reproduce our model specification but obtained different
results. However, we used default algorithm settings for both
programs, and there could be improvement in the results if
options, such as the stopping time for the Markov chain, are
altered. It is beyond the scope of the paper to systematically
explore such options and optimize the results of these
methods.

From the options we selected, BioProspector performed bet-
ter than Gibbs Motif Sampler. On comparing all three meth-
ods, the results from BioProspector and our method are the
most similar. This is not surprising, because both rely on
explicit block structure within the motif. The specification of
blocks in Gibbs Motif Sampler is more indirect. Even with the
fragmentation from center option, which tries to force the
important positions into blocks at the edges, with the bimodal
examples, Gibbs Motif Sampler tends to find motifs where the
blocks are contiguous, equivalent to a unimodal motif.

The results show that neither our method nor BioProspector
is clearly superior in all cases. Depending on the prior infor-
mation about the overall width and blocks of the expected
motif, one method may be better than the other for different
data because they rely on different assumptions. BioProspec-
tor performed better than our method when the gap and/or
block widths were specified correctly. However, these results
relied on more information than we use in our variable
change point model. The individual block widths in our
method are not specified and the prior on the change point
positions is trained by other examples. For a more balanced
comparison, the results of BioProspector with a variable gap
and different block widths should be evaluated. In that case,
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our method performed better than BioProspector for all test
sets except reb1.

Besides variations in the model assumptions, BioProspector
and Gibbs Motif Sampler also differ from our method because
both use the Gibbs sampler to obtain the maximum a poste-

riori estimates for 94 and 2 . The Gibbs sampler, a Markov
chain Monte Carlo method, is a stochastic algorithm, where
Y and P are sampled iteratively according to their full con-

ditional distributions. The Markov sequence generated by
repeatedly sampling from P(Y|#,Z) and P(2|Y,X)
should converge to the joint stationary distribution of Y and

9, P(Y,2|Z). In contrast, we use the EM algorithm to

obtain the maximum a posteriori estimates of the multino-

mial parameters, &’ , and use those to calculate P [ Y|P, ] .

Although in theory, one starting point for the Gibbs sampler
should be adequate, the results on the real data with BioPros-
pector and the Gibbs Motif Sampler suggest that this algo-
rithm may also be affected by the underlying problem that the
likelihood function for the data has many local maxima. The
developers of these programs recognize this issue and the
default option is to use 40 starting points in both BioProspec-
tor and Gibbs Motif Sampler. It is possible that using this rel-
atively small number of starting points relies too much on the
theoretical argument that the Markov chain generated by the
Gibbs sampler samples from the entire parameter space.
However, we also ran these methods with 200 starting points
and the results were similar to those with the default value of

40.

Advantages and disadvantages of using the Gibbs sampler or
the EM algorithm have been addressed in the literature [17-
20,30]. In the future, we plan to explore the use of the Gibbs
sampler with our model and compare its performance and
run time with the EM algorithm. However, the results from
both BioProspector and Gibbs Motif Sampler do not indicate
that there will be a drastic improvement in performance.

Conclusions

In summary, to improve the discovery of regulatory motifs,
we altered the underlying model used in motif-discovery
methods. We assigned a prior distribution to the base fre-
quency parameters to capture the uni- or bimodal shapes
observed in the information content plots of real binding site
examples. Our methods are motivated by structural
constraints in protein-DNA complexes and empirical data on
binding sites, as observed in Figure 2. We found that building
the information content patterns of the motif into the model
was advantageous for discovering motifs when the data
become noisier or when there is a competing false motif.
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Our goal was to alter the original model to improve perform-
ance, but to do so in a manner such that the algorithm for
parameter estimation did not increase in computational com-
plexity. Therefore, we did not use values of information con-
tent directly. Although it is a useful measure to summarize
sequence data, information content has an inconvenient
functional form. Instead, we focused on a qualitative defini-
tion of conservation at a position as a proxy for information
content. Another important consideration in the develop-
ment of this method was to keep it general for different types
of transcription factor binding sites. This algorithm can
search for one of two major types of motifs, which have either
uni- or bimodal information content shape. More specific
information content shapes can also be specified through the
'profile' extension of our method [21].

We used the EM algorithm to estimate the parameters and
our new model resulted in relatively minor changes to the
original EM algorithm in Lawrence and Reilly (see Figure 6).
The two forms of our model, fixed and variable change point,
required at most one extra update in the E-step: the

calculation of the posterior probability of € in the variable
change point model. For the updates in the M-step, the two
different forms of the prior we considered resulted in a closed
form solution or an optimization in one dimension. Overall,
the changes we proposed in the model result in only a few
extra calculations at each iteration of the algorithm. Further-
more, because we used the basic model framework we can
relax assumptions in our model (such as one motif occurrence
per sequence; OOPS) as has been done with other methods
and incorporate other useful extensions, such as palindro-
micity and alternative background models.

Materials and methods

Data

The S. cerevisiae sites from abfi, galg, pho4, rapi, reb1 and
repressor of car1 (repcari) were obtained from the promoter
database of Saccharomyces cerevisiae (SPCD) [27]. The E.
coli sites from purR, cpxR and lexA were obtained from the
DPInteract database [28] and the sites from crp were
obtained from Berg and von Hippel [31] and Lawrence and
Reilly [9]. Several sites were discarded from SCPD because
they were either duplicates, unalignable with all other sites or
their location in the upstream or downstream region could
not be located with the specified ORF or gene label.

For all the real datasets, we used the ORF or gene label to
obtain the upstream, or occasional downstream, sequence
containing the sites from RSA tools [32]. For crp, two
sequences containing sites, colE, a plasmid, and pbr3z2, a
cloning vector, were obtained from the Entrez Nucleotides
Database [33] with accession numbers NC_001371 and
Jo1749 respectively. For these two sequences, an 800-bp
region was selected so that the binding sites(s) were centrally
located. The Crp-binding site labeled 'cat’ in the references
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was not found. Overall there are 17 sequences containing 21
transcription-factor binding sites for crp, 14 upstream and
one downstream sequences containing 19 sites for rapi, 14
upstream sequences containing 17 sites for reb: and 20
upstream sequences containing 23 sites for abfi. The sites for
galq, pho4, cpxR, lexA, repcari and purR were used as train-
ing sets to estimate the parameters for the prior (see below).
The first two sets (gal4 and pho4) consisted of sites that were
contained in less than 10 sequences and the last four sets had
a strong signal as defined in Results.

Parameters for prior distributions

There are three prior distributions in the two models: g for
the location of the motif start site, f for the multinomial
parameters at each position in both the fixed and variable
change point models, and h for the change point pairs in the
variable change point model. We set g as the uniform distri-
bution along each sequence from 1to L - W + 1, which is com-
mon practice in many methods. We explain our selection for
the parameters of fin Results. Finally, for h, we use the train-
ing set (consisting of four bimodal and two unimodal motifs)
to fit the parameters. Recall that h is the distribution on the
ratios of the lengths of the three regime blocks to W. These
ratios are assumed to follow a discretized form of the Dirich-
let distribution. Using the training sets, we used a methods of
moment estimator to fit the parameters of the Dirichlet distri-
bution. The estimates are (2.5,5,2.5) showing that the middle
block tends to be twice as large as the two end blocks.

Availability

The ANSI C source code of our algorithm, TFEM (Transcrip-
tion Factor Expectation Maximization), will be made availa-
ble at [34].

Additional data files

The following files are available with the online version of this
paper: a pdf file giving a detailed account of the data for both
the simulations and real data analysis, methods for selecting
starting points, evaluation diagnostics and a discussion of the
options used in BioProspector and Gibbs Motif Sampler
(Additional data file 1); and a pdf file giving additional results
for the sections 'Effect of the number of starting points' and
'Gibbs Motif Sampler' (Additional data file 2).
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