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Systematic quantification of gene interactions by phenotypic array analysis<p>A phenotypic array method, developed for quantifying cell growth, was applied to the haploid and homozygous diploid yeast deletion strain sets. A growth index was developed to screen for non-additive interacting effects between gene deletion and induced perturbations. From a genome screen for hydroxyurea (HU) chemical-genetic interactions, 298 haploid deletion strains were selected for further analysis. The strength of interactions was quantified using a wide range of HU concentrations affecting reference strain growth. The selectivity of interaction was determined by comparison with drugs targeting other cellular processes. Bio-modules were defined as gene clusters with shared strength and selectivity of interaction profiles. The functions and connectivity of modules involved in processes such as DNA repair, protein secretion and metabolic control were inferred from their respective gene composition. The work provides an example of, and a gen-eral experimental framework for, quantitative analysis of gene interaction networks that buffer cell growth.</p>

Abstract

A phenotypic array method, developed for quantifying cell growth, was applied to the haploid and
homozygous diploid yeast deletion strain sets. A growth index was developed to screen for non-
additive interacting effects between gene deletion and induced perturbations. From a genome
screen for hydroxyurea (HU) chemical-genetic interactions, 298 haploid deletion strains were
selected for further analysis. The strength of interactions was quantified using a wide range of HU
concentrations affecting reference strain growth. The selectivity of interaction was determined by
comparison with drugs targeting other cellular processes. Bio-modules were defined as gene
clusters with shared strength and selectivity of interaction profiles. The functions and connectivity
of modules involved in processes such as DNA repair, protein secretion and metabolic control
were inferred from their respective gene composition. The work provides an example of, and a
general experimental framework for, quantitative analysis of gene interaction networks that buffer
cell growth.

Background
The contributions of genes to phenotypic traits are modified
by interactions with other genes and the environment, result-
ing in heterogeneity of monogenic disease traits and the
unpredictable penetrance of complex disease [1,2]. Statistical
genetic methods, used for detecting gene-phenotype associa-
tions in natural outbred populations, are not powerful
enough to detect interacting effects due to the combinatorial
complexity of genetic and environmental variations [3,4]. In
contrast, experimental genetic methods relying on inbred
genetic backgrounds and controlled environments have
found phenotypic enhancement and suppression to be ubiq-
uitous [5-7]. However, the dependence of interactions upon
genetic background and environmental conditions is usually
de-emphasized, resulting in a bias toward biological oversim-
plification [5,8,9]. The primary aim of this work is to formal-
ize an experimental framework for global analysis of
phenotype modification through quantification of gene
interactions.

Genome sequencing has enabled the study of all genes in par-
allel, enabling systems biology and an integrated experimen-
tal understanding of all gene functions [10]. It is hoped that
the outcome will be more detailed knowledge about the com-
plex genetics of natural phenotypes, such as human diseases.
This vision is partially embodied by a concept - 'genetic archi-
tecture' - referring to the full range of effects that modify
genetic traits [3]. Understanding genetic architecture will
require more systematic, comprehensive and quantitative
knowledge about how phenotypic stability is influenced by
interacting genetic and environmental variations (Figure 1).
Experimentally derived principles of gene interaction, such as
how gene-interaction networks function to buffer phenotypic
changes against genetic and environmental perturbations,
may guide hypotheses about natural phenotypic variation
[5,6,11,12].

Given the respective goals and limitations of studying inbred
and outbred genetic systems, molecular and population
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geneticists think about gene interaction differently [4,9,13-
16]. Our work defines interaction quantitatively as 'non-addi-
tive phenotypic effects resulting from combining two discrete
perturbations' (Figure 1). Biologically, non-additive pheno-
typic interactions provide a mechanism for the accumulation
of functional genetic variation in a population, because inter-
acting alleles, subject to phenotypic selection when present in
combination, may escape selection and accumulate within a
population by genetic drift in the absence of the interacting
partner. In contrast, additive effects reflect genetic or envi-
ronmental perturbations that elicit independent cellular

responses, and thus phenotypic selection is less dependent on
combinations.

Using the isogenic yeast deletion set, which provides both
genetic tractability and genome wide insights, we developed a
method for quantifying gene interaction globally with respect
to cell growth. The phenotypic effects of experimental pertur-
bations (for example, gene deletion and drug exposure) are
measured individually and in combination for all deletion
strains in parallel [17], and then quantified as additive,
synergistic (greater than additive), or antagonistic (less than

Model for classifying interactions as additive or non-additiveFigure 1
Model for classifying interactions as additive or non-additive. The interaction of effects between gene deletion and a second perturbation is quantified by 
comparison between the reference strain and each deletion strain over a range of perturbation-induced effects. Six hypothetical deletion strains are 
depicted to illustrate the contrast between additive and non-additive interaction. (a) The 'phenotypic slope' of the reference strain (filled circles) defines 
the effect of perturbation on the reference strain. The effect of gene deletion is determined in the absence of perturbation, and typically has either no 
effect (strains 1, 3, and 5) (filled square) or a negative effect (strains 2, 4, and 6) (open square) on growth. (b) Additive gene interactions are defined by the 
phenotypic slope of the deletion strain being parallel to that of the reference strain, across a range of perturbations (strains 1 and 2). (c,d) Non-additive 
gene interactions can be either synergistic (c), giving a phenotypic slope of greater absolute value (strains 3 and 4), or antagonistic (d), giving a phenotypic 
slope of lesser absolute value (strains 5 and 6). Two types of antagonistic interactions are depicted in (d). Deletion strain 5 is absolutely antagonistic to the 
perturbation (for example, drug resistance due to loss of a transporter required for drug uptake), whereas deletion strain 6 is antagonistic only when the 
inhibitory effect of the deletion alone is greater than that of the perturbation alone (for example, drug resistance due to deletion of the gene encoding the 
protein target of drug inhibition).
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additive) (Figure 1). The expression 'additive interaction'
implies that phenotypic effects are expressed independently,
synonymous with 'no interaction' [4,9].

Is it possible to understand gene interaction networks com-
prehensively and quantitatively? A simplifying principle is
that biological systems appear modular (for example, path-
ways) [18], so that network organization may be understood
by the links between sets of functionally related genes. Genes
and pathways that interact with respect to phenotype are said
to buffer genetic variation [5,6]. As gene mutations typically
cause loss of function, the set of yeast deletion strains pro-
vides a powerful resource for investigating the genetic basis of
phenotypic buffering. With the aim of conceptualizing an
experimental framework for global quantitative analysis of
gene interactions, this work involves development of a plat-
form for measuring phenotypic interactions and demon-
strates how quantitative analysis aids formulation of
hypotheses about how cell growth is buffered against inhibi-
tory perturbations. The analysis focuses on hydroxyurea
(HU), an inhibitor of ribonucleotide reductase (RNR). RNR is
a highly regulated protein complex required for deoxynucleo-
side triphosphate (dNTP) synthesis, DNA replication and
repair, and cell proliferation [19-27], and thus plays a central
role in the molecular events of genome replication and
cancer.

Results
The phenotypic array: theoretical and technical 
considerations for high-throughput growth analysis
Growth is both a system-level readout of cellular function and
a quantitative trait. There are many considerations in quanti-
fying growth, which is a complex function of cell proliferation,
cell size, and viability/life span: each is potentially affected by
genetic background (that is, gene deletions) and environmen-
tal factors (for example, temperature, nutrient conditions,
drugs).

The phenotypic array method is based on analysis of scanned
images of 8 × 12 cellular arrays spotted onto agar growth
medium (Figure 2). In pilot studies, the image density of spot-
ted cultures was linearly related to the number of cells (data
not shown); however, imaging sensitivity was insufficient to
measure exponential growth rates directly (see part A of the
figure in Additional data file 1). Thus, we used the area under
the growth curve (AUGC) as a unit measure of growth, repre-
senting the overall fitness (rate and total yield) for biomass
accumulation (Figure 2).

The growth index: a measure for screening non-
additive gene interactions
The growth index (GI) predicts whether a deletion strain
maintains growth proportional to the reference strain under
a single perturbation. The equation is given in Figure 2i. It is
formulated as a z-statistic, providing a standardized

comparison of interactions. The rationale for each of the
terms in the GI equation is as follows. First, the growth
(AUGC) of each deletion strain under a perturbation is nor-
malized to 'intrinsic growth' (AUGC of the same strain with-
out perturbation) to account for effects of the deletion alone
(see Figure 1, and Additional data file 2). Second, the mean
and standard deviation of normalized growth for replicate
cultures of the reference strain represent the effect of the per-
turbation alone and the experimental noise, respectively.
Thus, a non-zero numerator signals a differential phenotypic
response to the perturbation between the deletion strain and
the reference strain, and the denominator normalizes to the
experimental noise (Figure 2i).

Slow growth was found to be noisy; harsher perturbations
therefore result in higher minimum GI values (Figure 2j).
Also, strains with high GI values (antagonistic interactions)
usually consist of intrinsically slow-growing strains having
relative resistance but not better absolute growth than the ref-
erence strain (see Figure 1d, and Additional data file 2) [28].
The GI may be modified to quantify the effect of a single per-
turbation (that is, gene deletion or drug exposure), whereby
the AUGC, with and without perturbation, is substituted for
the normalized ratios (for example, see column J in Addi-
tional data file 7). The GI, as a z-statistic, is normally distrib-
uted for replicates of the reference strain, with a mean value
of zero (Figure 2j, and parts A and B in Additional data file 4),
and is robust with respect to times after which growth has
largely subsided (linear regression of GI values from the
genome-wide HU screen calculated at 94 versus 123 hours
had R2 = 0.986, data not shown). Reproducibility of GI meas-
urements obtained from independent experiments is repre-
sented in Additional data file 3.

A common method for recording growth phenotypes involves
comparing serial dilutions of cells spotted onto agar [29,30].
Because we use a single dilution across a range of perturba-
tions, and the AUGC is a fairly novel unit measure for growth,
we examined the behavior of the GI with respect to the pertur-
bation strategy (cell dilution versus drug dilution) (see Addi-
tional data file 4). Drug dilution and cell dilution were well
correlated with respect to GI, but only drug dilution quantita-
tively delineates strong phenotypic interactions: for example,
when drug dilution but not cell dilution permits growth (Fig-
ure 3).

Genome-wide HU screen reveals many non-additive 
interactions
The GI was used to screen for phenotypic interactions
between gene deletion and three concentrations of HU (0, 50
and 150 mM). GI scores, for replicates of the reference strain,
were normally distributed around a mean of zero with a range
of -2.41 to +2.15 (Figure 2j). The distribution for deletion
strains is typically bimodal: one mode with a mean of zero,
like the reference strain, and one with a minimum value
corresponding to zero growth (see Figure 2j, and Additional
Genome Biology 2004, 5:R49
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Overview of phenotypic array and growth index (GI)Figure 2
Overview of phenotypic array and growth index (GI). Growth is quantified by image analysis of cellular arrays and plotted against time to calculate area 
under the growth curve (AUGC), which is used to calculate the growth index (GI) a predictor of non-additive gene interaction. (a-f) Raw data from 
growth of a single deletion strain source plate (plate 4, see Additional data file 7) at three different times, 26 h (a,d), 46 h (b,e), and 94 h (c,f), and under 
two different conditions, synthetic complete medium without HU (a-c) and with 150 mM HU (d-f). Only three strains (E2, E10 and G2) were selected for 
further testing from this plate, having GI < -5.8. (g,h) Growth curves (red) for all 94 strains are plotted, along with the mean growth (blue dashed line) 
from 196 replicates of the reference strain, in (g) the absence or (h) the presence of 150 mM HU. (i) The GI equation is a z-statistic, where the difference 
between normalized growth of the deletion and mean of reference strains is the signal for non-additive interaction, and the standard deviation of the 
reference strain growth is the noise. [], concentration of HU (mM); ds, deletion strain; ref, reference strain; n, number of replicates; SD, standard 
deviation. (j) The distribution of GI scores for all strains (except 64 strains with unperturbed AUGC < 600, see Additional data files 2, 7) from the 50 mM 
(red triangles) and 150 mM (blue crosses) HU screens (n = 4,788, bin size = 0.5), along with the distribution of reference strain GI values (dashed lines) (n 
= 192, bin size = 1; range: -2.41 < GI < 2.15). REF, reference strain. (k) Plot of intrinsic growth (AUGC when unexposed to drugs) vs phenotypic 
interaction with HU (GI) is shown for all deletion strains. Dashed lines indicate the GI cutoffs used to select synergistic (GI < -5.8) or antagonistic (GI > 
5.8) interactions for further testing.
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data files 4, 7). 'Sensitivity' to HU has been reported for yeast
deletion strains identified from screens of sensitivity to
gamma irradiation or the alkylating agent, methyl meth-
anesulfonate (MMS) [31,32]. We found 'synergism' among
many (75/118) of these previously reported genes, as well as
many others (see Additional data file 8). Different methods of
scoring growth and gene interaction, different growth media,
and different HU concentrations may account for inconsist-
encies. There was only one deletion strain, kre22, which was
found in both of the above studies but not in our screen. This
proved to be a false-negative result in our screen when we
sequenced the deletion barcode from our presumed kre22
deletion culture (see methods) [17,33] and found a contami-
nating strain. We subsequently recloned the kre22 deletion
and confirmed the synergistic interaction with HU in separate
tests (data not shown).

Figure 2k depicts the relationship between effects of gene
deletion alone and the interacting effects of gene deletion and
treatment with 150 mM HU. On the basis of synergistic inter-
action, 274 strains were selected for further characterization,
and 22 were selected on the basis of antagonistic interaction
(Figure 2k, and see Additional data files 2, 8). Using the GI
threshold of ±5.8, 94 strains met the GI criteria for both the
50 and 150 mM perturbations and 178 only for the harsher
150 mM HU condition. Only two interactions were scored as
synergistic in the 50 mM HU screen alone. From Figure 2k
note that antagonistic interactions (GI > 5.8) always occurred
in the context of low intrinsic growth (see Figures 1d, 3d).
This effect of 'alleviating' the deleterious effects of mutation
was previously reported in transposon-mutagenized bacteria
[28]. Strains with extremely low intrinsic growth (AUGC <
600 on C media) were excluded from GI analysis (see Addi-
tional data file 7) the small denominator means relatively
slight absolute differences in perturbed growth have a dispro-
portionately large effect on the GI (see Figure 2i) in this set-
ting, and are thus less reproducible. Among these excluded
strains, there were at least two strains (gnd1 and ism1), which
appeared growth-enhanced by the presence of HU; however,
these were not studied further (see Additional data file 7).

In addition, the rnr3 and sml1 deletion strains were added to
the HU-selected strains as negative controls in further stud-
ies, because while these two genes are known to regulate RNR
activity [34-36], they have small or undetectable effects on
HU sensitivity.

The interaction index: verification of Growth Index 
screening and measurement of interaction quantities
The purpose of the GI is to screen for interactions using single
perturbations (Figures 1, 2i). To validate its utility and further
quantify the strength of the interactions, the 298 strains (with
GI less than -5.8 or greater than 5.8) selected from the HU
screen were perturbed with a range of HU concentrations
inducing a wide spectrum of growth inhibition in the refer-
ence strain (Figure 3, and Additional data file 1). 'Phenotypic

slopes' were calculated by regression analysis of AUGC,
measured for each strain as a function of HU concentration
(see Figures 1, 3, Materials and methods, and Additional data
file 12). An 'interaction index' was formulated, essentially by
substituting phenotypic slope values into the GI equation,
yielding a z-statistic (see Figure 2i, Materials and methods,
and Additional data file 12) where more negative, parallel, or
less negative phenotypic slopes yield interaction index scores
reflecting the probability of synergistic, additive or antagonis-
tic interactions respectively (Figures 1, 3, and Additional data
file 12). The reference range for the interaction index (repli-
cate cultures of the reference strain) was -2.64 to +2.04, (see
Additional data file 12). Using a z-score cut-off of ±5.8, 215
interactions were non-additive (197 were synergistic; 18
antagonistic), and 79 (27%) were additive (see Additional
data file 12).

Genes with related functions had quantitatively similar inter-
action index scores. For example among the RAD52 epistasis
group (MRE11-RAD50-XRS2, RAD51, 52, 54, 55, 57, 59, and
RDH54) [37], all members showed equivalently strong syner-
gistic interaction except for RAD59 (Figure 3a, and Addi-
tional data file 12), and RDH54, which functions in meiosis
and was not selected from the HU screen [38]. To confirm the
weaker interaction of rad59, the respective homozygous
diploid deletion strain was sporulated and dissected, the
chromosomal deletion was confirmed by tag-sequencing (see
Materials and methods), and multiple haploid segregants (of
both mating types) were re-tested along with the homozygous
diploid, which confirmed the phenotypic difference (data not
shown). Thus, RAD59 is unique among homologous recombi-
nation genes in being relatively dispensable in the context of
HU stress [39].

The interaction index for each of the 11 vacuolar H+-ATPase
deletion strains was also uniform (see Additional data file 12),
but in contrast to homologous recombination, the phenotypic
effect of losing the vacuolar H+-ATPase was additive with the
effect of HU (Figure 3b). The functional modularity seems to
be due to the structural requirement of each subunit for com-
plex assembly [40].

Several deletion strains required for vesicular protein traf-
ficking displayed synergistic phenotypic effects (Figure 3c,
and Additional data file 12). Modularity within this set of
genes was suggested by the vacuolar protein sorting (VPS)
genes, with near-exclusive recovery of class C and D VPS
mutants, which displayed non-additive interactions, while
the vps28 (the only 'non-class C/D' mutant) interaction was
additive (see Additional data file 12). Furthermore, chc1, clc1
and end3, involved in plasma membrane to vacuole traffick-
ing [40], shared similar interaction index scores (see Addi-
tional data file 12), further implicating vacuolar trafficking as
an important module for buffering HU stress.
Genome Biology 2004, 5:R49
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Modularity in buffering growth against HU inhibition is exemplified by genes with related functions having similar strength of interactionsFigure 3
Modularity in buffering growth against HU inhibition is exemplified by genes with related functions having similar strength of interactions. AUGC is plotted 
vs HU concentration in all cases. (a) Genes of the RAD52 epistasis group. Note the uniformly strong synergistic interaction (see Figure 1c), with the 
exception of RAD59. (b) Genes of the vacuolar H+-ATPase. Note the additive interactions (see Figure 1b). (c) Genes involved in vacuolar trafficking. The 
stronger interactions are shown in green. (d) Assorted examples of antagonistic interactions (see text and Additional data file 12). Note that gene 
deletions often, in general, antagonize the HU phenotype at concentrations where the growth inhibitory effect of the deletion is greater than the inhibitory 
effect of HU on the reference strain (see Figure 1d) [28]. REF, reference strain BY4741 (see Materials and methods).

Table 1

Comparison of GI values between homozygous diploid and MATa haploid deletion strains

Synergistic HU50 Antagonistic HU50 Synergistic HU150 Antagonistic HU150 Intrinsic growth < 14%

MATa haploid only 42 18 52 4 23

Homozygous diploid 
only

86 76 213 72 91

Both 82 4 182 4 32

Neither 4,336 4,448 4,099 4,466 4,546

Total 4,546 4,546 4,546 4,546 4,692

At 50 and 150 mM HU, threshold values (GI < -5.8 classified as synergistic or GI > 5.8 classified as antagonistic) were used to score agreement. Only 
deletion strains having intrinsic (unperturbed) growth greater than 14% that of the reference strain in both sets (see text) were compared. See also 
Additional data file 14.
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Eighteen strains exhibited antagonistic interactions (Figures
1d, 3d). Phenotypic slopes were relatively nonlinear in the
context of antagonistic interactions, as absolute growth of
deletion strains almost never exceeded reference-strain
growth for a given perturbation (Figure 3d, and Additional
data file 12: note R2 values for strains with interaction index >
3).

There were nine strains (out of 4,852) with growth index
greater than 5.8 or less than -5.8 at the 50 mM concentration
only (see Additional data file 8, bolded values). The interac-
tion index (see Additional data file 12) indicated these were
spurious screening results due to experimental noise, either
that associated with low intrinsic growth of the deletion strain
and/or that of random experimental variation.

Reproducibility of interactions between haploid and 
diploid deletion strains
The analysis of phenotypic slope and interaction index given
above verifies whether interactions are non-additive. It does
not, however, insure that the interactions are biologically
explained by deletion of the targeted gene. Unintended sec-
ondary mutations may occur during knockout transforma-
tion, and/or spontaneous growth-enhancing mutations may
become fixed during strain propagation. To assess these pos-
sibilities, the genome screens were replicated in the
homozygous diploid deletion set [41].

The comparison is summarized in Table 1 (see also Additional
data files 7, 13, 14). Generally, the effect of homozygous dele-
tion was more detrimental than haploid deletion for both
intrinsic growth and HU resistance, consistent with previous
data showing haploid deletion strains less affected by ionizing
radiation and other DNA-damaging perturbations [31]. From
the 150 mM HU screens, there were 182 strains from both sets
indicating synergistic interaction, 52 from the haploid but not
the diploid set, and 213 from the diploid set only. Some dele-
tion strain pairs could not be directly compared using the GI
because either the haploid or the diploid deletion strain had
inadequate intrinsic growth (less than 14% that of the refer-
ence strain) or the deletion was not represented in both sets.

In summary, the agreement between haploid and diploid
screens supports the utility of the yeast deletion set and the GI
for quantifying gene interactions. It appears that the haploid
deletion strains are generally more fit than their homozygous
diploid counterparts, whether perturbed by HU or not. It is
possible that rapid accumulation of suppressor/adaptive
mutations occurs on some haploid backgrounds, but given
the small population size of each culture and the small
number of selective generations, accumulation of suppressors
seems an improbable general explanation for the increased
fitness of haploid strains [42,43].

Selectivity of interactions determined with other drug 
perturbations
The 298 deletion strains chosen from the HU screen were
perturbed with four other drugs to determine the selectivity of
gene interaction. Inhibitors of biologically diverse cellular
functions were used: miconazole is a specific inhibitor of
Erg11p, essential for ergosterol synthesis; cycloheximide is a
specific inhibitor of Rpl28p, part of the large ribosomal subu-
nit [44]; cisplatin causes DNA intra- and inter-strand cross-
links, resulting in DNA breaks; t-butyl hydroperoxide (TBHP)
induces oxidative stress. Three concentrations of each agent
were identified that inhibited reference strain growth equiva-
lently to 50, 100 and 150 mM HU (see Additional data file 1),
and all conditions were tested in parallel.

Selectivity for interaction with HU was high (see Additional
data file 9). The correlation between GI value in response to
HU and either miconazole, cycloheximide or TBHP was near
zero (R2 < 0.04). In contrast, correlation between cisplatin
and HU was higher (R2 = 0.13) (Figure 4, and Additional data
file 5). The greater correlation between HU and cisplatin
interactions presumably reflects overlapping pathways
required for growth during perturbations to DNA replication
[29,31,32].

Hierarchical clustering of quantitative interaction data 
highlights bio-modularity
The experimental design and data structure of the phenotypic
array are analogous to global gene-expression studies. The
deletion strains are analogous to DNA hybridization probes
for associating measurements with genes and the GI values
represent directional (negative if synergistic, or positive if
antagonistic) gene interaction quantities analogous to log2 of
mRNA hybridization ratios. Thus clustering algorithms can
be used for global correlation of the direction, strength and
selectivity of interaction [45]. We refer to 'bio-modules' as
sets of strains within a clustered phenotypic profile, indicat-
ing modular effects of the respective genes in responding to
various growth perturbations (Figures 3, 4, 5, 6, 7).

GI data for the 298 HU-selected deletion strains, under all
perturbation conditions, were clustered together (Figure 4,
and Additional data file 10). The perturbations clustered by
drug class rather than by inhibitory effect, indicating that the
interacting effects of gene deletion are globally correlated by
selectivity for the cellular target of each drug. If growth effects
of drug inhibition and gene deletion were mostly additive,
perturbations would cluster according to the degree of growth
inhibition, as drug concentrations of equivalent effect were
used (see Additional data file 1). HU and cisplatin perturba-
tions clustered together with respect to the other perturba-
tions, but separately with respect to each other (Figures 4, 5,
6, and Additional data file 6), reflecting the related but distin-
guishable biology of these two perturbations. As summarized
below, we used gene annotations [46-48] as a guide to under-
standing the biology of respective phenotypic modules.
Genome Biology 2004, 5:R49
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The strains in cluster 2 (Figure 4) indicate strong synergistic
effects, selective for HU and cisplatin perturbations. This
cluster is enriched for DNA repair functions (Figure 5a),
including recombination pathways [49,50]. The biological
basis of this module probably relates to increased require-
ment for repair of single-strand DNA gaps and/or DNA dou-
ble-strand breaks resulting from stalled replication forks as a
consequence of either dNTP pool limitation or DNA cross-
links [19,20,23,51,52]. Mre11p, Rad50p, and Xrs2p, along
with the products of other genes in the RAD52 epistasis
group, comprise a protein complex that repairs DNA breaks
by homologous recombination. Rad51p has recombinase
activity that is stimulated by Rad55p, and it is targeted to sin-
gle-stranded DNA by Rad52p [37,48]. SGS1 (Bloom's Syn-
drome/RecQ helicase homolog), TOP3 (SGS1-interacting
topoisomerase), MUS81, MMS4, and HPR5 have been char-
acterized for their roles in detoxifying single-strand DNA
lesions (see Figure 6b) [52]. Within cluster 9a, five of six
genes involved in sensing DNA damage (RAD24, RAD17,
RAD9, DDC1 and MRC1) form a module, while MEC3 appears
distinct, not interacting with cisplatin, and interacting antag-
onistically with other perturbations (Figure 4, cluster 9c, and
Figure 6b). Only a few nucleotide-metabolism genes were
identified from the HU screen. The interaction phenotypes of
the strains ado1 (adenosine kinase; converts adenosine to
AMP) and adk1 (adenylate kinase; converts AMP + ATP to
ADP) were antagonistic, suggesting that the slow-growth
phenotype of these strains could be due to basal substrate
limitation. Thus, the growth-inhibitory effect of HU, observed
at lower concentrations in the reference strain, would be
masked until RNR activity becomes limiting (see Figure 1d)
for dATP production. The strains apt1 (encoding adenine
phosphoribosyltransferase, which converts adenine and
phosphoribosyl pyrophosphate (PRPP) to AMP) and amd1
(AMP deaminase) indicated synergistic effects of gene dele-
tion and HU perturbation, suggesting that these genes may

Figure 4
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Modularity of gene interactionsFigure 4
Modularity of gene interactions. The 298 HU-selected strains were 
perturbed with other drugs, and GI values were analyzed by hierarchical 
clustering. The color intensity represents the magnitude of the GI, green 
being negative (synergistic effect of gene deletion), but note that the range 
of color intensity may be different for each perturbation (see Figure 2j and 
Additional data file 3) because the phenotypic noise, determined for 
replicates of the reference strain, is measured uniquely for each 
perturbation (see Figure 2i). Gene clusters were given numbers (on right) 
for ease of referral, based subjectively on their appearance with respect to 
the dendrogram branches (see also Additional data file 10). GI values are 
reported in Additional data file 9. The first two columns (C) indicate the 
GI for unperturbed deletion strains (synthetic complete media, no drug). 
'_gen' indicates data from the original genomic screen. Otherwise, data are 
from a single retest of selected strains. The other columns indicate drugs 
used for perturbation as follows (numbers following the abbreviation 
indicate the concentration): miconaz, miconazole (nM); TBHP, t-butyl 
hydroperoxide (mM); cyclohex, cycloheximide (ng/ml); HU, hydroxyurea 
(mM); cisplat, cisplatin (µM). The drug perturbations and the growth 
phenotypes for the reference strain under each perturbation are given in 
Additional data file 1. Gene names are from SGD and descriptions can be 
found in Additional data file 10 [47].
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have a regulatory function to compensate for growth defi-
ciency, possibly by effecting an increase in the ADP substrate
on demand. The hypothesis that ADP is the limiting substrate
of RNR activity is consistent with the logic of negative feed-
back regulation, given that dATP is an allosteric inhibitor of
RNR [22].

Threonine synthesis was another interesting module. It was
the only amino-acid metabolism pathway recovered from the
HU screen (see Additional data file 11). Deletion of  HOM3
and HOM2 (homoserine is upstream of the threonine/
methionine branch point) resulted in very strong and selec-
tive synergism with HU, whereas the deletion effects in down-
stream components (HOM6, THR1, THR4) were less
selective (see Additional data file 5). AAT2 (aspartate ami-
notransferase), which is involved in the metabolism of aspar-
tate, the substrate of Hom3p, showed weaker synergism (see
Additional data file 12).

Genes required for normal mitochondrial function (SSQ1,
TOM37, ATP5, RML2) also displayed HU synergism (see
Additional data file 11). Reduced RNR function causes
increased respiratory deficiency, possibly owing to perturbed
mitochondrial DNA replication [53]. Possibly connecting the
threonine synthesis and 'mitochondrial' modules is the 'retro-
grade signaling' module (see Figure 7 and Discussion). RTG1,
RTG2, RTG3 and MKS1 have been studied for their function
in regulating the expression of genes of the TCA cycle [54-57]
in response to mitochondrial dysfunction. Retrograde-defi-
cient mutants are auxotrophic for aspartate, the precursor of
threonine synthesis [54]. MKS1, which interacts with RTG2 in
retrograde signaling [56], had a similar interaction profile to
the RTG genes (see part C of Additional data file 6).

The lst4 and lst7 (lethal with sec13) deletion strains, which
clustered together, were phenotypically 'modular' with rtg2
as well (Figure 4, cluster 9a). LST4 and LST7 (along with an
essential gene, LST8) have been shown to regulate transport
of GAP1 (general amino acid permease) between the vacuole
and plasma membrane [58]. Furthermore, RTG2 signaling is
negatively regulated by LST8 [59]. A hypothesis emerging
from these interactions is that they represent a regulatory cir-
cuit whereby metabolic flux through threonine synthesis and
degradation provides glycine, which may augment purine
synthesis when RNR activity is compromised (see Discussion,
and Figure 7) [47,60].

Figure 5
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An enlarged view of clusters 2 and 3 from Figure 4Figure 5
An enlarged view of clusters 2 and 3 from Figure 4. (a) Cluster 2 identifies 
a group of strains indicating strong and selective synergism between gene 
deletion and DNA-damaging perturbations. The set is highly enriched for 
DNA repair genes, and, in particular, homologous recombination genes. 
(b) Cluster 3 identifies genes required for growth under all perturbations 
tested, and is enriched for genes involved in vesicular trafficking, most 
notably vacuolar protein sorting. Gene names are from SGD and 
descriptions can be found in Additional data file 10 [47]. Abbreviations as 
in Figure 4.
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Figure 6 (see legend on next page)

ORF Gene Grp Functional Group Functional Subgroup Sub-Category
YPL008W CHL1 9a DNA replication chromosome dynamics chromosome transmission
YHR154W ESC4 9a DNA replication chromosome dynamics chromatin structure
YLR200W YKE2 9a DNA replication chromosome dynamics tubulin-related
YCL016C DCC1 7 DNA replication chromosome dynamics chromosome transmission
YJL082W IML2 4 DNA replication chromosome dynamics chromosome transmission
YML094W GIM5 4 DNA replication chromosome dynamics tubulin-related
YDR162C NBP2 4 DNA replication chromosome dynamics chromatin structure
YGR078C PAC10 1 DNA replication chromosome dynamics tubulin-related
YJL080C SCP160 1 DNA replication chromosome dynamics chromosome transmission
YJL179W PFD1 5 DNA replication chromosome dynamics tubulin-related
YLR357W RSC2 7 DNA replication chromosome dynamics chromatin structure
YAL047C SPC72 5 DNA replication chromosome dynamics spindle pole body
YNL225C CNM67 6 DNA replication chromosome dynamics spindle pole body
YHR013C ARD1 5 DNA replication chromosome dynamics chromatin structure
YNL307C MCK1 5 DNA replication chromosome dynamics other
YDR176W NGG1 3 DNA replication chromosome dynamics chromatin structure
YGR092W DBF2 1 DNA replication chromosome dynamics chromosome transmission
YPR141C KAR3 1 DNA replication chromosome dynamics tubulin-related
YER016W BIM1 9a DNA replication chromosome dynamics tubulin-related
YMR198W CIK1 2 DNA replication chromosome dynamics spindle pole body
YJL115W ASF1 2 DNA replication chromosome dynamics chromatin structure
YPR131C NAT3 1 DNA replication chromosome dynamics chromatin structure
YLR399C BDF1 1 DNA replication chromosome dynamics chromatin structure
YOL012C HTZ1 2 DNA replication chromosome dynamics chromatin structure
YAL016W TPD3 3 DNA replication chromosome dynamics other
YBR081C SPT7 3 DNA replication chromosome dynamics chromatin structure
YDR392W SPT3 9c DNA replication chromosome dynamics chromatin structure
YGL240W DOC1 10 DNA replication chromosome dynamics chromosome transmission
YLR233C EST1 10 DNA replication chromosome dynamics chromatin structure

ORF Gene Grp Functional Group Functional Subgroup Sub-Category
YPR120C CLB5 4 DNA replication DNA repair synthesis
YPL194W DDC1 4 DNA replication DNA repair checkpoint
YCL061C MRC1b 4 DNA replication DNA repair checkpoint
YDR217C RAD9 9a DNA replication DNA repair checkpoint
YDL059C RAD59 9a DNA replication DNA repair recombination
YGL175C SAE2 9a DNA replication DNA repair recombination
YKL213C DOA1 4 DNA replication DNA repair repair
YLR288C MEC3 9c DNA replication DNA repair checkpoint
YDR138W HPR1 5 DNA replication DNA repair recombination

recombination

recombination
recombination

YGL127C SOH1 1 DNA replication
YPR135W CTF4 2 DNA replication synthesis
YCR066W RAD18 2 DNA replication repair
YLR234W TOP3 2 DNA replication repair
YGL163C RAD54 2 DNA replication recombination
YMR190C SGS1 2 DNA replication repair
YDR004W RAD57 2 DNA replication recombination
YMR224C MRE11 2 DNA replication recombination
YNL250W RAD50 2 DNA replication recombination
YER095W RAD51 2 DNA replication recombination
YDR076W RAD55 2 DNA replication
YDR369C XRS2 2 DNA replication
YML032C RAD52 2 DNA replication recombination

recombination

YJR043C POL32 2 DNA replication repair
YLR032W RAD5 2 DNA replication repair
YGL058W RAD6 2 DNA replication repair
YIL128W MET18 1 DNA replication repair
YER116C SLX8 7 DNA replication repair
YJL092W HPR5 7 DNA replication recombination
YDL101C DUN1 9b DNA replication synthesis
YBR098W MMS4 9a DNA replication repair
YDR386W MUS81 9a DNA replication repair
YCL060C MRC1a 9a DNA replication checkpoint

checkpoint
checkpoint

YOR368W RAD17 9a DNA replication
YER173W RAD24 9a DNA replication
YDL013W HEX3 2 DNA replication repair
YPR164W KIM3 9a DNA replication repair
YLL002W REM50 2 DNA replication repair
YIL036W CST6 1 DNA replication

DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair
DNA repair

ORF Gene Grp Functional Group Functional Subgroup Sub-Category
YEL036C ANP1 9c vesicular trafficking protein secretion transport thru golgi
YLR268W SEC22 2 vesicular trafficking protein secretion vesicle fusion
YKL176C LST4 9a vesicular trafficking protein secretion other
YGR057C LST7 9a vesicular trafficking

vesicular trafficking

protein secretion other
YLR373C VID22 9a vesicular trafficking vacuolar trafficking other
YLR423C APG17 3 vacuolar trafficking other
YNL084C END3 1 vesicular trafficking vacuolar trafficking trans-golgi / p.m. to vacuole
YML097C VPS9 7 vesicular trafficking vacuolar trafficking trans-golgi / p.m. to vacuole
YPL065W VPS28 5 vesicular trafficking vacuolar trafficking trans-golgi / p.m. to vacuole
YDL185W TFP1/VMA1 5 vesicular trafficking vacuolar H+ATPase cytoplasmic V1
YLR447C VMA6 5 vesicular trafficking vacuolar H+ATPase membrane V0
YBR127C VMA2 5 vesicular trafficking vacuolar H+ATPase cytoplasmic V1
YKL080W VMA5 5 vesicular trafficking vacuolar H+ATPase cytoplasmic V1
YEL027W CUP5 5 vesicular trafficking vacuolar H+ATPase membrane V0
YEL051W VMA8 5 vesicular trafficking vacuolar H+ATPase cytoplasmic V1
YHR039C-B VMA10 5 vesicular trafficking vacuolar H+ATPase membrane V0
YGR105W VMA21 7 vesicular trafficking vacuolar H+ATPase assembly co-factor
YGR020C VMA7 5 vesicular trafficking vacuolar H+ATPase cytoplasmic V1
YKL119C VPH2 5 vesicular trafficking vacuolar H+ATPase assembly co-factor
YHR060W VMA22 3 vesicular trafficking vacuolar H+ATPase assembly co-factor
YDR108W GSG1 4 vesicular trafficking vacuolar trafficking other
YBR171W SEC66 4 vesicular trafficking protein secretion ER translocation
YGL206C CHC1 3 vesicular trafficking vacuolar trafficking trans-golgi / p.m. to vacuole
YGL095C VPS45 3 vesicular trafficking vacuolar trafficking
YLR240W VPS34 3 vesicular trafficking vacuolar trafficking
YKL054C VID31 3 vesicular trafficking vacuolar trafficking other
YGR167W CLC1 3 vesicular trafficking vacuolar trafficking
YBR097W VPS15 3 vesicular trafficking vacuolar trafficking
YDR323C PEP7 3 vesicular trafficking vacuolar trafficking
YOR036W PEP12 3 vesicular trafficking vacuolar trafficking
YPL045W VPS16 3 vesicular trafficking vacuolar trafficking other
YLR396C VPS33 3 vesicular trafficking vacuolar trafficking
YDR495C VPS3 3 vesicular trafficking vacuolar trafficking other

trans-golgi / p.m. to vacuole
trans-golgi / p.m. to vacuole

trans-golgi / p.m. to vacuole
trans-golgi / p.m. to vacuole

trans-golgi / p.m. to vacuole
trans-golgi / p.m. to vacuole

trans-golgi / p.m. to vacuole
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A different bio-module was suggested by the broad pheno-
typic profile of interactions involving vesicular trafficking and
vacuolar protein sorting genes [40,61], and the strong syner-
gism with cycloheximide (Figures 4 (cluster 3), 5b). A result-
ing hypothesis is that VPS genes are generally required for
growth when protein synthesis is stressed (as with ribosomal
poisoning by cycloheximide), and that protein synthesis is, in
fact, generally stressed when cell growth is limited (see Dis-
cussion). Support comes from previous work showing mor-
phological class C (no vacuole) and D (defective inheritance
and acidification) vps mutants [62] to be most defective in
proliferative responses of the endoplasmic reticulum, and
sensitive to a diverse array of 22 perturbing conditions [30].
Overall, only 12 of 46 vps mutants are in class C and D for vac-
uolar morphology [62]; however, nine of 10 identified in this
study were class C or D (the exception being vps28, which was
phenotypically distinct in further tests, see Figure 3c). Our
findings support a previous hypothesis that increased flux
through the VPS pathway is a compensatory response
required for maintaining growth in the face of a wide range of
cellular perturbations [30].

The phenotypic profiles of the end3, chc1 (clathrin heavy
chain) and clc1 (clathrin light chain) deletion strains were
similar to the vps strains (Figure 7c, and Additional data file
12), implicating their shared role in trafficking to the vacuole,
via endosomes [40]. The strength of interaction for these
mutants was similar to that of the vps mutants, further hint-
ing at modularity in the requirement for flux through the vac-
uolar protein secretion pathway.

Tight phenotypic clustering was observed for strains carrying
deletions of the structural subunits of the vacuolar H+-
ATPase (VMA1, VMA2, VMA5, VMA7, VMA8, VMA6,
VMA10, CUP5) (Figure 1 (cluster 5), see also Additional data
file 10). Each of the subunits is essential for assembly and
thus function of the complex [40]. Overall, the interactions
appeared weak and non-selective, suggesting that the result
of losing the vacuolar H+-ATPase is additive (see Figure 3b).

An example of a protein complex that does not function quan-
titatively as a discrete biomodule is the GIM complex (PAC10,
YKE2, PFD1, GIM5, GIM4, GIM3), which is involved in
protein folding and maturation of tubulin and actin [63,64].
Only four of the six subunits (PAC10, YKE2, PFD1, GIM5)
were identified in the 150 mM hydroxyurea screen (see Addi-
tional data file 11). Though similarities in the interaction

profiles exist (Figure 6c), the relatively pleiotropic phenotypic
effects of deleting genes of the GIM complex suggest that this
complex is less modular than others in buffering growth
against diverse perturbations.

Clustering sub-analysis highlights modular properties 
of pathways
The conclusions above about biomodules were based on
enrichment of related genes within phenotypic clusters. How-
ever, genes of the same pathway may have opposite effects on
pathway output, in which case phenotypic effects of gene
deletion should not cluster together. For a more pathway-
focused view, all genes were classified within broad categories
of cellular function (gene expression, vesicular trafficking,
cell polarization, DNA replication and cell metabolism) based
on the literature (see Additional data file 11), and the subsets
were individually clustered (Figure 6, and Additional data file
12).

The following broad conclusions drawn from the entire data-
set (Figure 4) were confirmed. First, most strains deleted for
known DNA replication genes interacted synergistically and
selectively with the DNA synthesis inhibitors HU and cispla-
tin (Figure 6b,6c). Second, it appears that deletion of damage-
sensing/checkpoint genes caused less synergism than loss of
homologous recombination, particularly in response to cispl-
atin (Figure 6b). Third, genes involved in chromosome struc-
ture and movement showed quantitative effects comparable
to the damage-sensing genes, but with less selectivity (Figure
6c). Fourth, strains defective in vesicular trafficking revealed
interactions with many of the perturbations tested, the subset
of vps deletions being notable for having more selective and
stronger phenotypic interactions with HU and cisplatin (Fig-
ure 6a).

The pathway-oriented sub-analysis also highlighted cluster-
ing features that are less obvious when the entire dataset is
analyzed (Figure 4). For example, Figure 6a recapitulates
clusters 3 and 5 (from Figure 4), both composed of vesicular
trafficking genes, while Figure 6b recapitulates clusters 2 and
9a, composed of genes required for DNA damage repair (Fig-
ure 6). It appears that these clusters have similar selectivity
yet are quantitatively distinct as judged by strength of
interaction. Overall, deletion of genes functioning in gene
expression, cell polarization and cellular metabolism gave
less modular phenotypic profiles, reflecting more pleiotropic
interactions between deletions within these classes of genes

Pathway modularity, assessed by subclustering of GI data involving genes of known function for protein trafficking or DNA replicationFigure 6 (see previous page)
Pathway modularity, assessed by subclustering of GI data involving genes of known function for protein trafficking or DNA replication. The 298 HU-
selected deletion strains were classified, based on literature annotations of their respective gene functions, into cellular pathways (see Table 2 and 
Additional data file 11) and sub-clustered accordingly. Color intensity corresponds to the GI (see Figure 4 for scale). Grp refers to the cluster designation 
from Figure 4. (a) Growth profiles from strains carrying deletions of vesicular trafficking genes. Note the several vacuolar protein sorting mutants (vps and 
pep), which share a distinctive phenotypic profile, even among other genes required for protein secretion and trafficking [30]. (b-c) Clustered growth 
profiles from strains carrying deletions in genes important for DNA replication, divided into DNA repair and chromosome dynamics (see text for further 
details).
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as a function of changing cellular context (see Additional data
file 12).

Discussion
Global analysis of gene interactions provides insights into the
robustness of biological systems [5,6,12]. When alteration of
a gene is phenotypically synergistic with a perturbation, it
indicates that the unaltered gene can buffer the phenotype
against that perturbation [5]. Most work on global functional

analysis of yeast phenotypes has relied upon experimental
features unique to yeast, such as barcoded deletion alleles
[17], on indirect measures of growth, such as PCR or microar-
ray hybridization [17,65], or has recorded interactions quali-
tatively or subjectively [6,8,29,66]. To enhance opportunities
for computational modeling of gene-interaction networks, we
present a systematic approach for the quantification of phe-
notype modification.

The yeast deletion array is now an unparalleled resource for
such analysis; however, the experimental method could be
applied to any genetically defined cellular array (for example,
with RNA interference). Furthermore, the statistical tools
deployed provide a standard method of reporting gene-inter-
action quantities, which may help discount the effect of exper-
imental variations due to different perturbations, different
laboratories, and even different cell types. Given the essen-
tially infinite combinatorial complexity of gene interaction
and the quantitative continuum of phenotypic effects, the
need for high-throughput and quantitative phenotyping is
perhaps superseded only by the need for statistically compa-
rable data that can be easily stored, shared, mined and inte-
grated with other genomic data [67,68].

The phenotypic array method presented here easily accom-
modates parallel analysis of around 24,000 independent cul-
tures per experiment. We used AUGC as a growth measure,
incorporating rate and final yield into a single quantity (see
Figure 2); the analysis could, however, be modified to exam-
ine interactions with respect to other parameters of growth.
The GI sensitively and specifically screens for non-additive
effects (see Additional data files 8, 12). Phenotypic slopes are
used to derive an Interaction Index, which precisely quanti-
fies interactions, thus confirming or refuting screening
results (see Figures 1, 3, and Additional data file 12). Cluster-
ing of GI data was useful for identifying biomodules, as were
gene annotations for interpreting their relatedness (see Fig-
ures 4, 5, 6, 7).

The experimentally derived topology of gene interactions is
complex [6,12,29]. What is the full complement of genes
required to buffer a particular perturbation, and what is the
relative importance of each gene? Conversely, what is the full
range of phenotypic effects that a single genetic or environ-
mental perturbation can induce? How do the properties of
gene interaction networks change as a function of time and
intensity of perturbation? The complex nature of these ques-
tions calls for quantitative answers [1-5,8,9].

For experimentally deriving gene-interaction networks, what
is the appropriate balance between qualitative breadth and
quantitative depth of data acquisition and analysis? Anecdo-
tal comparison of this work to that of Parsons et al. [29]
suggests that this is an important consideration. Parsons et
al. [29] analyzed a 69 (12 chemical-genetic and 57 gene-gene)
× 5,000 (number of deletion strains) array of interactions

Table 2

Classification of all HU-selected strains, according to gene 
annotation [46-48]

Functional group Number

Gene expression

Transcription 16

RNA processing 15

Nuclear/cytoplasmic transport 5

Translation 8

Total 44

Vesicular trafficking

Protein secretion 5

Vacuolar trafficking 17

Vacuolar H+-ATPase 11

Total 33

DNA replication

DNA synthesis/repair 38

Chromosome dynamics 29

Total 67

Cell polarization 18

Cell metabolism

Cell growth 7

Mitochondria 24

Amino acid metabolism 8

Nucleotide metabolism 7

Phosphate metabolism 3

Lipid metabolism 6

Carbohydrate metabolism 6

Heavy-metal metabolism 2

Oxidative protection 3

Total 66

Unknown 67

Total 295

See Additional data file 11 for more detail.
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Figure 7 (see legend on next page)
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compared to our analysis of a 1 (HU) × 5,000 array plus a 5
(number of other drugs) × 300 (number of strains selected
from genome-wide screen) array. Thus, qualitatively, the Par-
sons data represents an approximately 50-fold increase in
qualitative gene-interaction data. On the other hand, our
analysis of HU entailed a genomic screen at three concentra-
tions of HU (0, 50 and 150), and then further testing of 300
selected strains on 10 different HU concentrations and three
different concentrations of the other four drugs, so our study
represents about a fivefold increase in 'quantitative' data.
Regarding gene-interaction networks and modularity, related
but different observations and interpretations emerged.

First, both studies identified the vacuolar H+-ATPase as a
functional module. While Parsons et al. [29] implicated this
function in multidrug resistance, our data suggest such
effects are additive with HU (Figures 1, 3) [4,9,28]. Further
data from Parsons et al. [29] indicate that the vacuolar H+-
ATPase interacts more strongly with cyclosporin, FK506 and
tunicamycin than with HU, but more weakly with
camptothecin, benomyl, fluconazole and cycloheximide, sug-
gesting that quantitative analysis of perturbations other than
HU might reveal non-additive interactions between the vacu-
olar H+-ATPase mutants and these other perturbations
(assuming perturbations of equivalent strength were used in
the analysis of Parsons et al. [29]).

Second, Parsons et al. [29] concluded from ERG2, ERG3,
ERG4 and ERG6 interactions that ergosterol synthesis affects
multidrug resistance. Our work suggests that ERG3 is distinct
from the other ergosterol genes in the context of HU, showing
much stronger synergism as well as selectivity for interaction
with HU compared to cisplatin (see Figure 5, and Additional
data files 7, 12). The erg deletion strain interaction pheno-
types seemed more pleiotropic than modular in our work,
varying according to the gene deleted and the particular per-
turbation [69].

Third, from our work, vacuolar protein sorting (VPS) buffers
growth against multiple inhibitory perturbations (see Figures
3c, 5a, and Additional data file 11) [29]. Of the 10 vps strains
(vps3, vps9, vps15, vps16, vps28, vps33, vps34, vps45, pep7,

and pep12) we found, nine are related functionally by their
effects on vacuolar morphology and predicted requirement
for protein synthetic flux [30,62], suggesting modularity
within this class of more than 40 genes. In addition, we iden-
tified synergistic interactions between HU and 'endosome-to-
vacuole trafficking' (chc1, clc1, end3 deletion strains), per-
haps also required for protein secretion flux [30]. Parsons et
al. [29] also reported chemical-genetic interactions involving
several vacuolar protein sorting deletion strains, but not with
HU or camptothecin (see Figure 5 and discussion below).
Furthermore, only VPS16 was overlapping with our set in the
actual VPS genes proposed by Parsons et al. [29] (VPS16,
VPS25, VPS36, VPS67, VAM7, VAM6, STP22, SNF7, DID4,
IES6) to be involved in multidrug resistance [29]. We did find
IES6 to interact strongly, but did not classify it as a VPS gene.

Fourth, the GIM complex (prefoldin actin/tubulin chaper-
one) (GIM3, GIM4, GIM5, PFD1, YKE2, PAC10) provides
another example of contrast between quantitative and quali-
tative data [64]. Each study found multiple subunits to inter-
act; however, Parsons et al. [29] found interactions to be
benomyl-specific, while we found PAC10 and YKE2 to inter-
act with HU and cisplatin (see Additional data files 6 (part C),
9). GIM5 and PFD1 were recovered from our screen, but were
weaker interactions in confirmatory tests (see Additional data
file 12). Thus our data indicate that there are more pleiotropic
interactions than do the data of Parsons et al. [29], possibly
suggesting differential requirements for each gene in the mat-
uration of actin and/or tubulin structural proteins [64] and
probably involvement of the GIM complex in buffering cell
growth against a variety of inhibitory perturbations.

Fifth, both studies found homologous recombination and
DNA-damage checkpoint signaling to be modular (Figures 5,
6) [29]. Our quantitative data permit the further conclusion
that homologous recombination interacts much more
strongly with HU, on the basis of comparison of the interac-
tion index of the recombination group (RAD50 (-265),
RAD51(-171), RAD54(-178), RAD55(-138), RAD57(-179),
MRE11(-304), and XRS2 (-242)) with those of the checkpoint
group (MRC1 (-14), RAD24 (-19), RAD17 (-21), RAD9 (-7),
and DDC1 (-30)) (see Additional data file 12). It may be that

A speculative model for buffering against perturbation of deoxynucleoside triphosphate (dNTP) synthesis, based on interconnected genetic modules found to interact with HUFigure 7 (see previous page)
A speculative model for buffering against perturbation of deoxynucleoside triphosphate (dNTP) synthesis, based on interconnected genetic modules found 
to interact with HU. The growth inhibitory effects of HU are shown in red. Modules - sets of related genes with similar selectivity and/or strength of 
interactions - are indicated by green numbers (see below). Connections between modules are based on the literature about the respective genes (see 
Results and Discussion sections). The proposed metabolic regulation of de novo dNTP synthesis is indicated by bold module connections, based on recent 
discovery of a 'high-flux backbone' in E. coli [60]. Dashed lines represent related, but more speculative connections. Interaction index values, measuring the 
strength of interaction for all genes listed below are given in Additional data files 11, 12. Selectivity can be visualized in Figures 4-6 and Additional data file 
6. 1, Mitochondrial function, SSQ1, ATP5, TOM37, RML2; 2, retrograde signaling, RTG1, RTG2, RTG3, MKS1; 3, threonine synthesis, AAT2, HOM3, HOM2, 
HOM6, THR1, THR4; 4, permease trafficking, LST4, LST7; 5, adenosine metabolism, ADO1, ADK1, APT1; 6, cell-cycle checkpoint, MRC1, RAD24, RAD17, 
DDC1, RAD9; 7, homologous recombination MRE11, RAD52, XRS2, RAD50, RAD51, RAD54, RAD55, RAD57; 8, single-strand DNA repair TOP3, SGS1, 
MUS81, MMS4, HPR5; (9) sister chromatic cohesion, CTF4, CTF8, DCC1; 10, microtubule associated, PAC10, YKE2, BIM1, KAR3, CIK1; 11, protein secretion 
VPS15, VPS33, VPS34, VPS45, VPS9, VPS3, VPS16, PEP7, PEP12, CHC1, CLC1, END3, VID22, VID31/DEF1; 12, membrane biosynthesis, ERG3, SCS7.
Genome Biology 2004, 5:R49
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functional redundancy among the checkpoint genes partially
compensates for loss of these genes in response to HU, while
it appears there is no such redundancy (except for RAD59 (-
7)) among homologous recombination genes. In this regard it
was interesting that partial deletion of MRC1 (YCL060c (-
42)) interacted more strongly than complete deletion
(YCL061c (-14)), suggesting a dominant-negative effect of the
partial gene (see Additional data file 11).

Sixth, the respective studies found overlapping sets of genes
required to tolerate HU and camptothecin [29], or HU and
cisplatin (Figure 4). By using a continuous scale for quantify-
ing interactions, we are able to distinguish relative strength
and specificity of interaction (Figure 4, clusters 7 and 9b, and
see Additional data file 4), which should enhance capabilities
for computational modeling of gene interaction networks.
The Parsons analysis [29] used a binary scale of interaction
for cluster analysis, so did not make quantitative distinctions.
However, Parsons et al. [29] included a wealth of qualitative
interaction data, allowing comparison between chemical-
genetic and gene-gene interaction clusters.

Seventh, there is a set of possibly interconnected modules
from our dataset, which was essentially absent from Parsons
et al. [29] We found all genes of threonine synthesis (AAT2,
HOM3, HOM2, HOM6, THR1, THR4), several mitochondrial
genes (ATP5, RML2, TOM37, SSQ1), genes involved in tricar-
boxylic acid (TCA) cycle regulation via retrograde signaling
(RTG1, RTG2, RTG3, MKS1), and genes involved in amino-
acid permease trafficking (LST4, LST7). A model connecting
these modules is presented in Figure 7 and discussed below.

Understanding quantitative differences adds another dimen-
sion to interpreting the biological significance of gene interac-
tion. Considering the cell as a highly interconnected and
buffered genetic system, whenever a gene alteration occurs
which predisposes a cell to cancer, for example, it also reduces
the same cell's resistance to perturbations that the altered
gene normally buffers against. In this example, the strength
and specificity of synergism between gene loss and drug per-
turbation essentially determines therapeutic efficacy and tox-
icity. This principle of gene interaction has been proposed for
drug discovery [70].

What is the biological basis for the interaction between vacu-
olar trafficking and DNA replication/repair? A possible clue
comes from work on VID31/DEF1, initially identified by its
requirement for targeting fructose bisphosphatase (FBPase)
to the vacuole for degradation upon exposure to glucose ([71]
and Randy Brown, personal communication), but recently
renamed DEF1 on the basis of its association with RAD26 and
its suspected role in coordinating transcription-coupled
repair of DNA damage and ubiquitin-mediated degradation
of RNA polymerase II [72]. Our work shows that VID31 dele-
tion interacts synergistically with a broad range of perturba-
tions, but like other vacuolar-trafficking deletion strains has

relative specificity for HU and cisplatin (Figure 6a). Recent
work shows that FBPase is degraded via both the ubiquitin-
proteasome-dependent cytosolic route and the vacuolar route
[73], and that some genes are common to both pathways
[73,74]. Thus, VID31/DEF1 appears to have multiple func-
tions, and further investigation of the gene interactions in this
module may shed new light on the potential links between
vacuolar and ubiquitin-mediated degradation pathways as
well as the organization of these pathways in coordinating
transcriptional control, protein degradation and DNA repair.

How might threonine synthesis buffer cell growth against the
effects of HU? Almaas et al. [60] used flux balance analysis
[75] to discover that overall metabolic activity is dominated
by a small number of reactions, forming a high-flux back-
bone, over which metabolism is reprogrammed to optimize
growth as nutrient conditions change. Threonine synthesis
was found to be a major connection on this backbone, which
linked respiration and the TCA cycle (which produces the
threonine substrate aspartate) to purine metabolism (via
catabolism to glycine with formation of one-carbon reducing
equivalents) and membrane lipid synthesis. Our data support
the existence of a high-flux backbone in eukaryotes (see Fig-
ure 7 and discussion above).

We propose the following speculative working hypothesis.
The effect of reducing cellular nucleotide causes mitochon-
drial stress, either by perturbing mitochondrial replication or
by other, undefined, means [21]. Retrograde signaling
through RTG1, RTG2, RTG3 and MKS1 then acts to transcrip-
tionally upregulate the TCA cycle [54,55], providing increased
aspartate for threonine synthesis along the pathway of
HU-interacting genes AAT2, HOM3, HOM2, HOM6, THR1
and THR4. Threonine is then catabolized to glycine which,
along a high-flux backbone [60], is used to increase purine
synthesis and thus augment dNTP production by RNR. To
utilize external sources of threonine for the same purpose,
LST4 and LST7 regulate amino-acid uptake ([58] and Figure
7). Finally, RTG2, through its interaction with LST8 (an
essential gene that functions with LST4 and LST7) [59], coor-
dinates retrograde signaling and permease transport in regu-
lating threonine catabolic flux, which we propose contributes
to buffering of dNTP pools (Figure 7).

Conclusions
Unraveling biological complexity and understanding cells as
systems will ultimately depend on the transition from identi-
fying modules to understanding protocols [76]. This study
provides a scalable methodology for identifying genetic mod-
ules, defined by their correlated strength and selectivity of
phenotype modification. The work shows that modular net-
works of gene interaction can be deduced from quantitative
phenotypic interaction data, using even a limited number of
perturbations. We have presented an experimental design
that is conceptually adaptable for analysis of other interaction
Genome Biology 2004, 5:R49
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networks, using other perturbations. The formal methods of
quantifying interactions incorporate time and perturbation
intensity, providing continuous measures of interaction. Our
hope is to facilitate the compilation of data, from investiga-
tors studying different areas of biology and different cell
types, which is suitable for computational modeling of global
gene interaction and phenotype modification. Specifically,
the GI and interaction index should be applicable to quantify-
ing the effects of systematic perturbations to other genetically
defined cellular arrays, providing a resource for understand-
ing the complexity of phenotypic modification [5,8,68,77].

Materials and methods
Strains, media, reagents and equipment
The MATa haploid deletion set was from Research Genetics
(Huntsville, AL), release date 1/23/01. The reference strain,
BY4741, is MATa, containing auxotrophic deletions of his3
leu2 met17 ura3 [41]. YM-1 liquid media was used for pre-
growth of the yeast deletion set in 96-well plates and Hartwell
synthetic complete agar medium was used for the growth
arrays [78]. HU, miconazole, cisplatin, TBHP, and cyclohex-
imide came from Sigma. The Beckman Multimek 96, an auto-
mated 96-channel pipettor was used to inoculate, dilute and
spot cultures. An Epson Expression 1640 XL scanner with A3
transparency unit was used to collect transmitted light
images. For deletion strain confirmations, deletion cassettes
were PCR-amplified, using the uptag1/downtag1 primer pair
[41]. PCR products were purified using the Qiagen PCR puri-
fication kit, and DNA sequencing was performed (dye termi-
nator method) using KanB1 and KanC3 primers to identify
the unique molecular barcodes [41].

Phenotypic array data collection
All strains were inoculated (1:100) from thawed, glycerol
stocks into new 96-well plates containing fresh YM-1 media +
2% glucose using the Multimek 96, and pre-grown at 30°C for
36-48 h. For spotting, pre-grown cultures were resuspended
by orbital shaking before diluting 1:3025 (serial 55-fold dilu-
tions) into water using the Multimek 96. Four microliters of
the 1:3,025 diluted cultures were spotted (manually, using the
Multimek) to synthetic complete agar medium containing 2%
glucose, 2% agar, with or without perturbing agent (poured in
omni-trays, Nunc). Agar plates were typically poured at least
one day before use and 'dried' (incubated with the top off) for
30-60 min at 37°C before spotting cultures. Dilution of
1:3,025 yields approximately 250-500 cells per 4 µl with the
reference strain, limiting the effect of growth measurement
noise due to uneven initial distribution of cells, while increas-
ing the number of generation times for detecting growth dif-
ferences (data not shown). Multiple replicates of the
reference strain were used to define experimental noise due
to intra- and inter-experimental variations such as dilution,
suspension, and spotting of cultures. The plates were scanned
at designated times (see Image analysis).

Image analysis and hierarchical clustering
Image analysis was performed on a Macintosh computer
using the public-domain NIH Image program version 1.62,
available on the Internet. Images were saved as 140 dpi black
and white TIFF files. Up to 10 agar plates were included in a
single scanned image. Scans were 'sliced' and 'stacked' to
facilitate viewing and sorting data from each plate as needed
for analysis. The images were then trimmed and modified to
adjust for shadows, bubbles, and/or other artifacts contain-
ing pixels above the background intensity of agar. Each array
(96 cultures) image contains a 600 × 400 pixel area, thus
each culture in the 12 × 8 array is contained in a 50 × 50 pixel
square. The average image density for each pixel of a culture,
bounded by its square, is calculated using a 256-gray scale (0
= white), where values less than 90 are considered back-
ground and set to zero. The maximum pixel value within a 5-
day reference strain culture spot was approximately 220;
thus, maximum culture yield does not saturate the 256 gray-
scale. Growth curves were created for each strain by plotting
image density vs time. The TrapZ function of MATLAB ver-
sion 6 was used to calculate AUGC values for each growth
curve, which were in turn used to calculate the GI. Microsoft
Excel was used to manipulate and analyze data further. For
hierarchical clustering of GI data, we used J-Express version
2.1 (with Euclidean distance measure and complete linkage)
[79].

Phenotypic slope and interaction index calculations
Phenotypic slope was determined by linear regression of
AUGC vs HU concentration (mM) (see Figure 3 and Addi-
tional data file 12). For regression analysis, the first AUGC
value less than 600 was the final value included; R2 was
greater than 0.95 (see Additional data file 12) for most
strains. The interaction index was calculated like the GI (Fig-
ure 2i), substituting the corresponding phenotypic slope for
each growth ratio (see Additional data file 12).

Gene classification
The gene classification was done subjectively, with reliance
on the Saccharomyces Genome Database [47], Yeast Pro-
teome Database [48], The Molecular and Cellular Biology of
the Yeast Saccharomyces [46], and literature references
found therein, for gene annotations.

Additional data files
The following additional data files are included with the
online version of this article: figures showing determination
of three concentrations of four different perturbing agents
with growth inhibition equivalent to that of 50, 100, and 150
mM HU (Additional data file 1); intrinsic growth of all dele-
tion strains and example growth curves for synergistic and
antagonistic interactions (Additional data file 2); reproduci-
bility of GI values from independent experiments (Additional
data file 3); a comparison between drug dilution and cell dilu-
tion with respect to the GI (Additional data file 4); correlation
Genome Biology 2004, 5:R49
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of GI values resulting from perturbation with HU and differ-
ent drug inhibitors (Additional data file 5); clustering sub-
analysis (based on gene classifications) of GI data from HU-
interacting deletion strains, under growth inhibition with
other drugs (Additional data file 6); tables showing AUGC
and GI data from the genome wide screen for HU interactions
(Additional data file 7); comparison of HU interactions found
in different genome-wide screens (Additional data file 8);
AUGC and GI data from the retest of HU-interacting strains
for growth on HU, cisplatin, miconazole, cycloheximide, and
t-butyl hydrogen peroxide (Additional data file 9); identity
and annotation of genes depicted in Figure 4 (Additional data
file 10); detailed classification of HU-selected strains (Addi-
tional data file 11); interaction index values for all HU-
selected deletion strains (Additional data file 12); AUGC and
GI data from the genome wide HU screen in the homozygous
diploid deletion set (Additional data file 13); a comparison of
the MATa haploid and homozygous diploid HU 150 screens
(Additional data file 14). Legends to the figures and tables are
contained in Additional data file 15.
Additional data file 1A figure showing determination of three concentrations of four dif-ferent perturbing agents with growth inhibition equivalent to that of 50, 100, and 150 mM HUA figure showing determination of three concentrations of four dif-ferent perturbing agents with growth inhibition equivalent to that of 50, 100, and 150 mM HUClick here for additional data fileAdditional data file 2A figure showing intrinsic growth of all deletion strains and exam-ple growth curves for synergistic and antagonistic interactionsA figure showing intrinsic growth of all deletion strains and exam-ple growth curves for synergistic and antagonistic interactionsClick here for additional data fileAdditional data file 3A figure showing reproducibility of GI values from independent experimentsA figure showing reproducibility of GI values from independent experimentsClick here for additional data fileAdditional data file 4A figure showing a comparison between drug dilution and cell dilu-tion with respect to the GIA figure showing a comparison between drug dilution and cell dilu-tion with respect to the GIClick here for additional data fileAdditional data file 5A figure showing the correlation of GI values resulting from pertur-bation with HU and different drug inhibitorsA figure showing showing the correlation of GI values resulting from perturbation with HU and different drug inhibitorsClick here for additional data fileAdditional data file 6A figure showing clustering sub-analysis (based on gene classifica-tions) of GI data from HU-interacting deletion strains, under growth inhibition with other drugsA figure showing clustering sub-analysis (based on gene classifica-tions) of GI data from HU-interacting deletion strains, under growth inhibition with other drugsClick here for additional data fileAdditional data file 7A table showing AUGC and GI data from the genome wide screen for HU interactionsA table showing AUGC and GI data from the genome wide screen for HU interactionsClick here for additional data fileAdditional data file 8A table showing a comparison of HU interactions found in different genome-wide screensA table showing a comparison of HU interactions found in different genome-wide screens Click here for additional data fileAdditional data file 9A table showing AUGC and GI data from the retest of HU-interact-ing strains for growth on HU, cisplatin, miconazole, cycloheximide, and t-butyl hydrogen peroxideA table showing AUGC and GI data from the retest of HU-interact-ing strains for growth on HU, cisplatin, miconazole, cycloheximide, and t-butyl hydrogen peroxideClick here for additional data fileAdditional data file 10A table showing identity and annotation of genes depicted in Figure 4A table showing identity and annotation of genes depicted in Figure 4Click here for additional data fileAdditional data file 11A table showing detailed classification of HU-selected strainsA table showing detailed classification of HU-selected strainsClick here for additional data fileAdditional data file 12A table showing interaction index values for all HU-selected dele-tion strainsA table showing interaction index values for all HU-selected dele-tion strainsClick here for additional data fileAdditional data file 13A table showing AUGC and GI data from the genome wide HU screen in the homozygous diploid deletion setA table showing  AUGC and GI data from the genome wide HU screen in the homozygous diploid deletion setClick here for additional data fileAdditional data file 14A table showing a comparison of the MATa haploid and homozygous diploid HU 150 screensA table showing a a comparison of the MATa haploid and homozygous diploid HU 150 screensClick here for additional data fileAdditional data file 15The legends to the figures and tablesThe legends to the figures and tablesClick here for additional data file
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