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Enriching for direct regulatory targets in perturbed gene-expression profilesHere we build on a previously proposed algorithm to infer direct regulatory relationships using gene-expression profiles from cells in which individual genes are deleted or overexpressed. The updated algorithm can process networks containing feedback loops, incorporate positive and negative regulatory relationships during network reconstruction, and utilize data from double mutants to resolve ambiguous regulatory relationships. When applied to experimental data the reconstruction procedure preferentially retains direct transcription factor-target relationships.

Abstract

Here we build on a previously proposed algorithm to infer direct regulatory relationships using
gene-expression profiles from cells in which individual genes are deleted or overexpressed. The
updated algorithm can process networks containing feedback loops, incorporate positive and
negative regulatory relationships during network reconstruction, and utilize data from double
mutants to resolve ambiguous regulatory relationships. When applied to experimental data the
reconstruction procedure preferentially retains direct transcription factor-target relationships.

Background
Gene-expression studies, using cDNA or oligonucleotide
arrays, hold promise for elucidating the structure of genetic
regulatory networks. A wealth of computational techniques
have been proposed for extracting regulatory relationships
from these data, many of which rely on correlated expression
patterns to identify temporally co-regulated genes (reviewed
in [1,2]). While these methods often detect important pat-
terns, they cannot definitively identify the targets of tran-
scriptional regulators.

Another approach to identifying regulatory targets involves
perturbing gene activity by deleting or overexpressing a tran-
scription factor, and analyzing the effects on the gene-expres-
sion profile. However, transcripts affected in such
experiments include those of both direct and indirect targets
of the perturbed gene, and in some cases the latter may dom-
inate. Various methods have been used to identify the direct
targets among the affected genes, including promoter
sequence examination and/or genome-wide location analysis
[3,4]. In an earlier article, one of us proposed pooling data

from a complete set of single-mutant gene-expression
profiles to reconstruct a tentative network, then enriching for
direct targets by paring the network down to the simplest acy-
clic directed graph (digraph) consistent with the available
data [5].

Acyclic networks, by definition, lack feedback pathways
through which genes can regulate their own activity. As feed-
back pathways are known to exist in regulatory networks, the
previously proposed algorithm also included a procedure by
which it could be applied to any network, even one with
cycles. This procedure transforms the network into an equiv-
alent acyclic digraph, called a condensation, before recon-
struction. The algorithm thus bypasses the cyclic components
and reconstructs the acyclic portion of the network. The
structure of the feedback pathways themselves, however, can-
not be determined from steady-state single-mutant data [5].

To improve the ability of our algorithm to reconstruct all
types of regulatory pathway, we drew from the traditional
genetic approach of epistasis analysis. 'Epistasis' describes a
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phenomenon in which an allele of one gene can influence the
phenotypic expression of an allele of another gene [6]. For
example, an altered allele of a downstream gene in a biologi-
cal pathway may block the effects of a mutation further
upstream, thereby changing the outcome of a biological proc-
ess. Such epistatic relationships can therefore be used to
determine the order of gene function, or ascertain that two
gene products act in parallel, independent pathways [7,8]. In
epistasis analysis, genes involved in the process of interest are
systematically perturbed; phenotypes of double mutants,
with two genes perturbed, are compared to those of single
mutants with only one perturbed gene. If the phenotype of a
double mutant is different from either of the related single
mutants, the two genes are presumed to act independently of
each other. However, if the double mutant resembles one or
the other single mutant, the genes are likely to participate in
an ordered pathway and the gene whose mutant phenotype
dominates is placed downstream of the other. This type of
analysis has proved highly informative in the study of genetic,
metabolic and signaling networks, suggesting that the inclu-
sion of double-mutant data in genetic network analysis could
greatly improve the accuracy of the network reconstruction.

Here we extend the capabilities of a genetic network recon-
struction algorithm [5] to improve its performance and
broaden its applicability. First, we implement a preprocessing
step to accommodate feedback loops. Second, we modify the
algorithm to consider positive and negative regulatory rela-
tionships when generating the reconstruction. Third, we uti-
lize data from double mutants to resolve cyclical structures
and to identify nontranscriptional or redundant regulatory
relationships. The performance of these modified versions of
the algorithm is then tested in multiple ways. We use syn-
thetic networks to assess the ability of the cycle-accommodat-
ing algorithm to tolerate incomplete or noisy data, and to
examine the potential improvement achieved by the incorpo-
ration of double-mutant data. Finally, we test the improved
algorithm on published expression data from the budding
yeast Saccharomyces cerevisiae and compare our results
with transcription factor binding profiles.

Results
Graph theoretical framework
In this work we represent the genetic regulatory network as a
directed graph or digraph, G, and all discussion of graphs
here refers to digraphs. A digraph consists of nodes, which in
this case correspond to genes, and directed edges, which in
our model point from regulator to target. A graph can be rep-
resented by a diagram (Figure 1a) of nodes and edges. An
alternative representation that fully defines the graph is the
adjacency list, Adj(G), in which each node is listed along with
the nodes to which it is connected by a directed edge (Figure
1b). In the context of a genetic regulatory network, the adja-
cency list of a gene includes all the genes it directly influences:
for example, the genes whose promoters are bound by a

transcription factor. The accessibility list, Acc(G), of the
digraph lists each node along with all nodes that can be
reached along a directed path of any length from that node
(Figure 1c). For a genetic regulatory network, the accessibility
list includes all genes whose transcription can be influenced
by a gene, directly or indirectly. (For a more thorough discus-
sion of digraphs, see [9].)

The genes whose transcript levels change when a gene is
deleted or perturbed constitute an accessibility list for that
gene. Reconstructing a genetic regulatory network from gene-
expression data, therefore, is equivalent to determining an
adjacency list based on an accessibility list [5]. Because an
accessibility list does not define a unique graph, the algorithm
seeks the minimum equivalent (or most parsimonious)
graph, in which the number of edges is minimized. A unique
most parsimonious graph, which provides a core set of edges
that are present in all graphs sharing the accessibility list,
exists by definition for an acyclic graph [5,10]. The algorithm
obtains the simplest network that can explain the observa-
tions by a process that initially connects each perturbed gene
to all genes affected by its perturbation then prunes away
edges, called shortcuts, which connect one node with another
node already accessible via a directed path.

Cycles present a special problem for the reconstruction algo-
rithm in that a graph with cycles does not possess a unique
minimum equivalent graph. A cycle is a closed path in a
digraph that begins and ends on the same node and crosses at
least one other node (for example, Figure 1a, nodes 7, 8, and
9). It is impossible to reconstruct the edges in a cycle on the
basis of single-mutant data: all genes in a cycle have identical
accessibility lists, so they are effectively equivalent. Such a
group of nodes, in which each node can be reached from every
other node, is called a strong component. A multinode strong
component may contain one or many cycles, whereas each
node not contained within a cycle is a strong component unto
itself. Every graph has an equivalent acyclic graph [10], or
condensation [9], in which each strong component is repre-
sented by a single node (Figure 1d). By mapping the tentative
network onto this acyclic equivalent, the algorithm circum-
vents the problem of cycles [10]. This mapping is achieved by
examining each perturbed gene and scanning its accessibility
list for any reciprocally regulating genes, which are then
assigned to the same component.

Extensions of the algorithm
While the previous paper [5] presented a basic procedure for
reconstructing a network, several factors limit its applicabil-
ity to gene-expression data. Here we address these shortcom-
ings with a number of extensions. These modifications
accommodate cycles in such a way that the error tolerance of
the algorithm can be assessed, they distinguish between pos-
itive and negative regulation, and they incorporate informa-
tion from double-mutant gene-expression profiles into the
final reconstruction.
Genome Biology 2004, 5:R29
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Accommodating cycles
In the previous paper, the error tolerance of the algorithm
when reconstructing networks containing cycles was not
examined. To compare graphs with different numbers of
strong components, we devised a method of generating a
reconstruction in which each node again represents one gene.
In the reconstruction, any mutually regulating pairs of genes
in the network are mapped onto the same strong component
[5]. We have added a step to expand each strong component
into its constituent genes by adding direct connections from
each node in the component to all other nodes in the compo-
nent, and between each node in the component and all nodes
adjacent to the component (Figure 1e). This maps the recon-
struction back onto the original set of nodes and allows it to
be compared, edge by edge, to the original network. We chose
to treat the components in this way because alternative
approaches result in the undesirable situation of a single net-
work having multiple possible reconstructions [10,11]. While
our method can result in a number of extra edges in the recon-
struction that are not part of the real network (false-positive
edges), it does result in a unique reconstruction that mini-
mizes the number of correct relationships missed (false-neg-
ative edges).

Positive and negative regulation
The original algorithm represents the regulatory network as a
simple directed graph, in which the edges have neither

magnitude nor sign. However, real genetic regulatory rela-
tionships can be either activating or repressing, and can vary
in strength; failure to take this information into account could
result in erroneous reconstruction. Although the strength of
an interaction is difficult to determine from microarray data,
it is simple to assess whether a regulatory influence is activat-
ing or repressing. Moreover, it is straightforward to incorpo-
rate this information into the reconstruction algorithm.

Mutant gene-expression data can be represented by an M × N
accessibility matrix P(G), where M is the number of genes
perturbed and N is the number of genes in the network. Each
matrix element pij = 1 if there is an edge from node i to node j,
and pij = 0 if no edge is present [5,9]. We modified this matrix
such that pij = +1 if there is a positive regulatory relationship,
and pij = -1 if there is a negative regulatory relationship. Thus,
if the transcript level of gene j goes up when gene i is deleted,
then gene i negatively regulates gene j and the matrix element
pij = -1. Inspection reveals that any indirect regulatory path-
way will have a value equal to the product of the intermediate
edges, so the extended algorithm only prunes an edge, by con-
verting the matrix element to zero, if this condition is met
(Figure 2a, lines 15-19). For example, if the two intermediate
edges both have a positive sign, the original algorithm will
remove the shortcut regardless of its sign (Figure 2b), but the
extended algorithm will only prune the edge if it is also posi-
tive (Figure 2c). Furthermore, an edge will not be pruned if

Graphical representation of genetic regulatory networksFigure 1
Graphical representation of genetic regulatory networks. (a) A sample regulatory network; (b) its adjacency list; (c) its accessibility list; and (d) its 
condensation. (e) The reconstruction of this network, mapped onto the original nodes. Circles represent nodes, or genes, and arrows represent edges.
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the mediating node is a multigene strong component that
contains some edges with negative sign, because edges to and
from these components have ambiguous values.

Double-mutant data
Reconstructions generated by the algorithm using data from
single mutants may contain a number of unresolved strong
components. Double-mutant data, from strains in which two
genes have been perturbed, should allow the reconstruction

of edges within these strong components. We therefore devel-
oped an algorithm (Figure 3a) that uses double-mutant data
to refine the reconstruction generated with single-mutant
data.

New accessibility lists for genes in a double mutant are gener-
ated by comparing the gene-expression profile of the double
mutant to that of each single mutant. For example, in a simple
three-gene cycle (Figure 3b), comparing the expression

Edge-removal criteriaFigure 2
Edge-removal criteria. (a) Pseudocode of the algorithm including positive and negative regulation. Acc(i) and Adj(i) indicate the accessibility and adjacency 
lists for gene i, respectively, and Acc(i,j) indicates the value (+1 or -1) of the edge from i to j. (b) The original algorithm will pare away any edge connecting 
two nodes that already have a pathway between them. (c) Algorithm taking positive and negative regulation into account will only pare away an edge if its 
sign is equal to the product of the signs of the remaining edges in the pathway.
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profile of a double mutant in which two genes have been
deleted to that of a single mutant can reveal indirect relation-
ships (Figure 3c). To incorporate this information, a recon-
struction is first generated based on the single-mutant data
alone (Figure 3b, bottom right), in which strong components
are fully connected as described earlier. Information from the
double mutants is then used to remove connections that are
not supported by the data. If, in the reconstruction, a gene k
is a member of the adjacency list of gene i, Adj(i), but not in
the accessibility list of gene i in the presence of a mutation in
gene j, Acc-j(i), then the connection from gene i to gene k is
probably indirect. It is removed from the reconstruction as
long as k is a member of Acc(j), meaning that gene j could be
mediating the interaction (Figure 3a, lines 5-7). In this man-
ner, data from each of the double mutants are used succes-
sively to refine the reconstruction (Figure 3c). To fully resolve
the structure of cycles that are subcomponents of a larger
graph, double-mutant data for all pairs of genes in, or
immediately adjacent to, each multinode strong component

are needed. This procedure is successful as long as there are
not multiple cycles within the component. If there is more
than one redundant, but indirect, pathway from one gene to
another, the two genes will appear to be directly connected in
this analysis.

Double-mutant data can similarly be used to identify redun-
dant or nontranscriptional regulatory relationships [7], and
we have extended the algorithm to reconstruct these types of
relationships (Figure 3a,d,e). If two genes, i and j, have
redundant or overlapping regulatory effects on a third gene,
k, the transcript level of k may be unchanged in each of the
single mutants but altered in the double mutant. This type of
relationship can be inferred when Acc-j(i) contains members
that are absent from the single-mutant accessibility list Acc(i)
(Figure 3d). In such a case, the algorithm adds connections
from both gene i and gene j to gene k (Figure 3a, lines 12-15).
This could represent a case, for example, where either of two
transcription factors can bind the same site in the promoter

Refining network structure with double-mutant dataFigure 3
Refining network structure with double-mutant data. (a) Pseudocode of the extension utilizing double-mutant data. Acc-j(i) indicates the accessibility list of 
gene i in the absence of gene j. i, j, k, and l are arbitrary indices for genes in the network. (b) An example of a three-gene cycle (top), its single-mutant 
accessibility lists (bottom left) and a reconstruction based on that data (bottom right). (c) The double-mutant accessibility lists for the cycle in (b) and the 
reconstruction process. For each set of double-mutant data (left), edges revealed to be indirect are removed from the reconstruction (right). The notation 
[1] 2 > indicates the accessibility list of gene 2 in a strain in which gene 1 is already perturbed. (d) A network in which genes 1 and 2 redundantly regulate 
gene 3 (right), and single-mutant and double-mutant accessibility lists for the network (left). (e) A network in which gene 1 regulates the activity of gene 3 
indirectly by modifying the activity of a direct regulator, gene 2 (right); single- and double-mutant accessibility lists (left).
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and activate transcription. While a reconstruction based on
the single-mutant data would be incomplete, the refinement
utilizing the double-mutant data adds the appropriate edges
(Figure 3d).

Proteins other than transcription factors often indirectly
influence gene expression. For example, a signaling kinase
could phosphorylate and activate a transcription factor, initi-
ating expression of its target genes. This type of relationship
is indistinguishable from direct regulation on the basis of sin-
gle-mutant data alone. Double-mutant data, however, can
reveal that the action of the kinase is dependent on the pres-
ence of the transcription factor; this phenomenon is the foun-
dation of epistasis analysis. If gene i influences gene k in a
wild-type background, but not when gene j is deleted, this
suggests that the effect of gene i on gene k is not direct (Figure
3e), and that it is in fact mediated by gene j. The extended
algorithm will therefore remove the connection from gene i to
gene k as long as k is also accessible from j (Figure 3a, lines 5-
7). These observations also imply that gene i must somehow
affect the activity of gene j; therefore, if gene j is not already
accessible from gene i in the reconstruction, an edge is added
from gene i to gene j (Figure 3a, lines 8-9; Figure 3e).

Prevalence of cycles in genetic regulatory networks
We anticipated that the ability to accurately reconstruct, or at
least accommodate, cycles would be critical to the success of
a reconstruction algorithm. Cycles may be positively selected
for in biological networks because feedback loops can poten-
tially provide stability and/or amplification to biological sys-
tems [12,13]. Indeed, in both yeast and Escherichia coli,
autoregulatory pathways in which transcription factors regu-
late their own expression are common [14,15]. Multigene
feedback circuits, on the other hand, are rare in E. coli [14]
but possibly more common in S. cerevisiae [16]. Such multi-
gene cycles are of concern in reconstruction because they lead
to ambiguities in network structure (see Figure 1). Single-
gene 'self-loops,' by contrast, are not readily evident in gene-
expression data, as manipulation of a gene's activity will, in
most cases, affect the level of its RNA message even in the
absence of autoregulation. We exclude self-loops from our
network models, as have others [10], to avoid complications
they can cause in the reconstruction process.

To estimate the prevalence of cycles in real biological net-
works we examined the yeast dataset of Hughes et al. [17] for
evidence of feedback loops. We generated accessibility lists
for each of the perturbed genes, using the authors' criteria for
statistically significant changes in gene expression. Any
mutually regulating genes (where perturbing i affects j and
perturbing j affects i) were assigned to the same strong com-
ponent. Among the 260 single-gene perturbations examined,
four multigene components, containing a total of 11 genes, are
apparent. Two of these involve genes with closely related
functions and known feedback regulation (Figure 4): one con-
tains the genes ERG2, ERG3, ERG11, ERG28 and TUP1,

whereas the other contains ADE2 and HPT1. All four ERG
genes in the first group are involved in ergosterol biosynthesis
and their transcription is coordinately controlled by a nega-
tive feedback pathway [18-20]. This gene set is believed to be
controlled in part by the transcriptional repressors Rox1 and
Mot3, which act by recruiting the co-repressor complex Ssn6/
Tup1 [21-23]; this may explain the participation of TUP1 in
the component. ADE2 and HPT1 are both involved in purine
biosynthesis, and deletion of HPT1 is known to activate ADE2
transcription via a feedback pathway dependent on an ade-
nine metabolite [24,25].

The other two multigene components, by contrast, are likely
to be artifacts. One contains two open reading frames (ORFs),
YML034W and YML033W, which have since been shown to
be exons of a single gene, SRC1 [26]. The other contains two
adjacent ORFs, RTS1 (YOR014W) and YOR015W, whose
effects on each other are likely to be mediated in cis rather
than in trans. We conclude that among these 260 genes, there
are at least 7 genes (2.7%) that participate in cycles, demon-
strating the importance of considering this type of structure
when reconstructing networks. A precise determination of
the prevalence of cycles will await more extensive experimen-
tal data.

Error tolerance of the algorithm
To evaluate the usefulness of the algorithm in reconstructing
regulatory networks, we would like to know how errors in the
data affect the final reconstruction. Previous work suggested
that the accuracy of a reconstruction scaled more or less
linearly with the amount of data available; however, this work
was based on simulations with acyclic networks only [5]. To
determine the impact of cycles on the accuracy of reconstruc-
tion, we assessed the accuracy of the reconstruction under
three conditions: when data for only a subset of genes is avail-
able; where some accessibility data is missing; and where
some of the accessibility data is erroneous. All of these prob-
lems are likely to present themselves to some extent in real
biological data.

Feedback loops in the yeast network: one controlling ergosterol biosynthesis (left) and another controlling purine biosynthesis (right)Figure 4
Feedback loops in the yeast network: one controlling ergosterol 
biosynthesis (left) and another controlling purine biosynthesis (right). 
Pointed arrows indicate positive regulation while blunt-ended arrows 
indicate negative regulation; only statistically significant relationships are 
shown.
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The ability of the algorithm to tolerate inaccuracies in the
data was assessed with random 500-gene networks with var-
ying numbers of edges (see Appendix 1 in Additional data file
1, and Materials and methods for information on the genera-
tion of these networks). For each network, accessibility lists
were generated, and then altered to simulate experimental
error. An initial reconstruction, based on the unaltered data,
was used as the standard to which all other reconstructions
were compared.

Real experimental data may not include perturbations of all
genes, and not all expression changes may be detected. We
investigated the impact of each type of missing data on the
accuracy of reconstructions. When perturbation data is
absent for up to 50% of the genes in a network, the fraction of
correct edges declines roughly linearly with the number of
unperturbed genes, with a slope slightly steeper than -1 (Fig-
ure 5a). Performance is somewhat more compromised by
random loss of accessibility information (Figure 5b), but an
informative reconstruction can still be generated from incom-
plete data. For example, when 10% of the accessibilities are
removed, roughly 70% of the reconstructed edges are correct
(Figure 5b). The impact of missing data is relatively unaf-
fected by the density of edges in the network, at least within
the tested range (1.0-1.2 edges per node).

To assess the effect of noise in the data, 'regulator' and 'target'
genes were chosen at random, checked to make sure that no
path already existed between the two, and added to the acces-
sibility lists. Such erroneous data severely reduces the accu-
racy of the reconstruction (Figure 5c). For example, 10%
false-positive data results in a reconstruction with only 50%
or 20% correct edges for networks with 500 or 600 edges,
respectively. This poor outcome results from the addition of
incorrect edges to the reconstruction, some of which create
circular pathways by erroneously connecting a gene to one of
its upstream regulators. These 'pseudocycles' interfere with
the search phase of the algorithm (Figure 2a, lines 4-14) and
often result in reconstructions of poor quality. The relative
sensitivity of the reconstruction algorithm to false-positive
data as opposed to false-negative suggests that statistically
conservative criteria should be used to define accessibility.

Sensitivity of the algorithm to incomplete or noisy dataFigure 5
Sensitivity of the algorithm to incomplete or noisy data. On the y-axis of 
each graph is the fraction correct edges, (E - fn)/(E + fp), where E is the 
number of edges in the correct graph, and fn and fp are the number of 
false-negative and false-positive edges in the reconstruction. On the x-axis 
is (a) fraction of genes for which no accessibility information is available, 
(b) fraction of false-negative accessibilities, or (c) fraction of false-positive 
accessibilities. All data is for synthetic 500-gene networks with 500, 550, 
or 600 edges and edge distribution as described in Materials and methods. 
Each data point represents the average ± standard deviation of 10 
repetitions for each of six independent networks. Figure 5
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Improved resolution with double-mutant data
As described above, our extension to the algorithm uses dou-
ble-mutant data to resolve local structures of multigene
strong components. We tested the ability of this extension to
improve on the reconstruction after a network is generated
from single-mutant data. Because we wished to examine the
ability of the algorithm to reconstruct all the edges in a net-
work, including those within cycles, we compared each recon-
struction, edge for edge, to the original synthetic network. For
each of four synthetic networks of a given edge density we
assessed the accuracy of the reconstruction based on the sin-
gle-mutant data alone as well as the reconstruction including
data for all relevant double mutants of genes within cycles
and their neighbors (Figure 6a). As expected, the accuracy of
the reconstruction based on single-mutant data alone
declines as edge density increases, as a result of an increased
number of genes in unresolved cycles. Incorporating data
from double mutants substantially improves the quality of
reconstructions for more highly connected networks. For
example, the edges in reconstructions based on single-mutant
data are only 62% correct for networks with 1.1 edges per
node while they are 93% correct when double-mutant data is
incorporated (Figure 6a). The improved reconstructions are
not 100% correct because the synthetic random networks
contain some redundant pathways that are pared away in the
reconstruction process, which seeks the most parsimonious
graph.

Of particular note is the number of double mutants needed
for this gain in accuracy (Figure 6b). For networks of 1.1-1.2
edges per node, the number of double mutants necessary is in
the vicinity of 100-200 (17-33% of the number of genes in the
network). Even for networks of 1.3-1.4 edges per node, the
number of double-mutant profiles needed is on the order of
N, the number of genes in the network, and not N2, the total
number of possible double mutants (Figure 6b).

We also examined the progressive increase in accuracy as
double-mutant data is incorporated into the reconstruction of
an individual network (Figure 6c). For this analysis, individ-
ual pairs of genes contained in or adjacent to multigene com-
ponents were chosen at random, their double-mutant gene-
expression profiles analyzed, and the resulting reconstruction

Figure 6
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Quality of reconstruction using double-mutant dataFigure 6
Quality of reconstruction using double-mutant data. (a) Fraction of 
correct edges in reconstruction (including cycles) versus edge density 
using single-mutant data only (original) or including double-mutant data 
(refined). (b) Number of double mutants needed for accurate 
reconstruction of networks with different numbers of edges, as compared 
to the number of genes in the network, N. (c) Improvement of 
reconstruction as double-mutant data is added for a network with 1.2 
edges per node. All synthetic networks had 500 genes and the indicated 
number of edges. Data in (c) is for one of the four independent networks 
analyzed in (a) and (b), where each data point represents the average ± 
standard deviation for four independent networks.
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compared to the true network before repeating the process
with another pair of genes. The reconstructions consistently
improve as double-mutant data is added (Figure 6c). Thus,
any available double-mutant data can be used to aid the
reconstruction even if not all the relevant double mutants
have been generated.

Partial reconstructions from microarray data
To test the performance of the algorithm on real data and to
assess the impact of our extensions, we applied the recon-
struction algorithm to the above-mentioned set of gene-
expression profiles [17]. Using the authors' error model, we
identified 16,133 potential targets of 260 perturbed genes.
When this accessibility information is fed into the reconstruc-
tion algorithm, four multigene strong components (Figure
4c) are identified as described and collapsed into single nodes
in a condensation graph. The basic algorithm then identifies
5,770 connections that are potentially indirect and prunes
them from the network. However, when positive and negative
regulation are taken into account, only 1,779 of these turn out
to be consistent with indirect regulation by the mediating
edges. This suggests that antagonistic feed-forward pathways
("incoherent feedforward loops" in the terminology of Shen-
Orr et al. [27]) (Figure 2b, bottom) are common in real bio-
logical regulatory networks. Interestingly, 65% of the regula-
tory relationships identified in these data are apparently
repressive and most of the incoherent pathways consist of
three negative regulatory connections.

These results imply that it is important to take positive and
negative regulatory relationships into account, as the algo-
rithm may otherwise prune genuine direct connections from
the network. But are the 1,779 connections pruned by the
improved algorithm really indirect? To test this, we took
advantage of a dataset containing promoter-binding informa-
tion for the majority of transcription factors in yeast [16]. If a
gene's promoter is bound by a transcription factor, and its
transcript abundance changes upon deletion of that factor, we
consider it to be a direct target of that transcription factor
[4,28]. There are 17 transcription factors for which both sin-
gle-mutant gene-expression profiles and chromatin-binding
patterns are available in the datasets examined. Of these, one
(RGT1) does not affect the transcription of any genes, and two
(YAP3 and YAP7) do not bind any promoters, according to the
respective authors' criteria for statistical significance, and
were therefore not examined. For the remaining 14 transcrip-
tion factors, anywhere from 0% (RTG1) to 100% (MBP1) of
the 'expression targets' are direct as assessed by chromatin
binding. Overall, of the 1,016 transcripts whose levels are
affected by deletion of one of these genes, 81 (7.97%) are gen-
uinely bound by the relevant transcription factor (Table 1, and
Appendix 2 in Additional data file 1). After application of the
algorithm, 835 of these connections are retained in the recon-
structed network, including 78 (9.34%) that are directly
bound. Of the 181 eliminated targets, only 3 (1.66%, p <
0.001) are true positives according to the binding data (Table

1). Thus using only a small dataset of expression profiles from
single mutants, the algorithm prunes indirect edges more fre-
quently than direct edges, resulting in enrichment for direct
connections in the reconstruction. This enrichment, consid-
ered in the context of our simulation results (Figure 5a), sug-
gests that when provided with more data the algorithm will
successfully eliminate many indirect connections.

The three 'true positives' incorrectly pruned, all putative Swi4
targets, are BAT2, SNA2 and EXG1. Interestingly, both BAT2
and SNA2 levels increase upon SWI4 deletion, suggesting
negative regulation. By contrast, 18 of the other 19 'true tar-
gets' of Swi4 are reduced in a swi4∆ mutant, consistent with
Swi4's known behavior as a transcriptional activator [29].
Thus, even these two may in fact be indirect expression tar-
gets, or exhibit atypical regulation by Swi4.

We also utilized the gene-expression dataset to test the exten-
sion utilizing double-mutant data, as it includes transcription
profiles for several double-mutant yeast strains [17]. To use
this data for epistasis analysis, one must compare it to the sin-
gle-mutant expression profiles so that the effects of each indi-
vidual perturbation can be discerned. These data are available
for two of the double mutants: dig1∆dig2∆ and isw1∆isw2∆,
both of which bear deletions in pairs of genes believed to have
redundant functions. DIG1 and DIG2, also known as RST1
and RST2, encode proteins that inhibit the Ste12 transcrip-
tion factor [30]. ISW1 and ISW2 encode ATP-dependent
chromatin-remodeling enzymes with partially overlapping
functions [31]. Both of these pairs of genes, therefore, could
be expected to exhibit parallel, redundant regulation of some
transcripts.

We generated new accessibility lists from these mutant
expression profiles and used this information to refine the
reconstruction; specifically, edges were added from each of
the mutant genes to any new genes on the double-mutant
accessibility lists (Figure 3a, lines 12-15). This process
resulted in quite a few genes being added to the adjacency
lists of DIG1, DIG2, ISW1 and ISW2. Genome-wide binding
data is available for just one of these genes, DIG1 [16]. Of the

Table 1

Fraction of direct targets before and after reconstruction

Total targets* Bound targets† Percent bound‡

Expression data 1,016 81 8.0

Reconstruction 835 78 9.34

Eliminated targets 181 3 1.66

*Total number of transcribed genes affected by transcription factor 
deletions. †Number of gene targets bound by relevant transcription 
factor. ‡Percentage of gene targets bound by relevant transcription 
factor.
Genome Biology 2004, 5:R29
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228 'new' DIG1 targets, 18 (7.9%) are directly bound by the
Dig1 protein. These relationships were absent in the original
reconstruction from single-mutant data, demonstrating that
double-mutant data can be of use in identifying regulatory
relationships. However, significantly more double-mutant
data would be required to achieve a significant improvement
in the overall quality of the reconstruction. Genome-wide
binding profiles are not available for Dig2, Isw1 or Isw2. How-
ever, for both DIG1 and DIG2, the new targets included sev-
eral known targets of the Ste12 protein such as ERG24, PCL2,
and STE12 [4], consistent with their role as regulators of
Ste12p activity. Furthermore, at least one gene known to be
directly regulated by both Isw1 and Isw2, FIG1 [31], is recog-
nized as an Isw2 protein target only in the refined
reconstruction.

Discussion
In this study we have extended a previously described algo-
rithm [5] that uses information on the system-wide transcrip-
tional effects of single-gene perturbations to reconstruct a
tentative regulatory network. Several extensions presented
here address weaknesses in the original algorithm and make
it more effective on real biological data. One concern was that
the effect of cycles in the network on the accuracy of the
reconstruction was not previously assessed. We have now
devised a method to compare reconstructions with different
numbers of strong components and demonstrate that our
method can generate a network enriched for direct regulatory
relationships even when there are feedback loops in the net-
work. The cycle-accommodating extension does not substan-
tially change the impact of missing data observed previously
[5]. However, it is sensitive to false-positive data, implying
that statistically conservative criteria should be used for iden-
tifying potential regulatory targets. Another shortcoming of
the original algorithm was that it did not distinguish between
positive and negative regulation, an important feature of bio-
logical networks that could influence the reconstruction proc-
ess. We show here by application to published data of a
modified algorithm that considers both activation and repres-
sion that this inclusion is critical to proper characterization of
network structure. Finally, the original algorithm had no
mechanism by which to use double-mutant data, which is his-
torically proven to be of great value in pathway interpretation.
The ability to incorporate data from double mutants, in the
manner of traditional epistasis analysis, considerably
increases the potential power of the algorithm. We have
focused here on transcriptional regulation, but our approach
could easily be extended to other types of data, such as pro-
tein levels or posttranslational modifications, as they become
available.

A great deal of effort has been applied to the task of extracting
regulatory relationships from microarray data [1,2]. A
smaller, but still substantial, set of techniques addresses the
specific question of deriving genetic regulatory networks

from perturbed gene-expression profiles [32-36]. Early
efforts focused on Boolean network models [32,34] and made
a number of interesting observations about the amount and
types of data necessary to characterize a network. Evidence
suggests, however, that significant information is lost in
Boolean models by the discretization of data into arbitrary
'on' and 'off' categories, and that simple logical gates are
unlikely to encompass combinatorial regulatory interactions
[1,33]. A graph-theoretic approach, as used in our study, has
the advantage of accepting continuous-valued data and plac-
ing no constraints on the number of inputs or their interac-
tions with each other [33]. Some groups have also taken a
probabilistic approach to the problem using Bayesian net-
works [35,36]. However, despite making biologically relevant
predictions, this approach has not thus far been successful in
identifying target genes of transcription factors [35,36] and is
very sensitive to model parameters [37].

The starting point for our analysis is a parsimony approach
analogous to that used in phylogeny. A large number of
network structures could potentially explain the experimen-
tal observations, so the algorithm seeks the simplest network
consistent with available data. Similar approaches have been
proposed by others [11,33], who also represent gene-pertur-
bation data in the form of an accessibility or interaction
matrix. The graph implied by this matrix is then reduced to a
most parsimonious graph by pruning either all redundant
pathways in the graph [5,11] or only those consistent with
activation and repression data ([33] and this study). Our algo-
rithm differs from that of Kyoda and colleagues [33] in that it
cannot be directly applied to networks with cycles. However,
the method proposed here for processing these networks
avoids the problem of arbitrary gene order within cycles [33]
and the higher computational cost of the alternative algo-
rithm (O(n3)) [33]. When we carried out the same microarray
and binding-data analysis described herein, using the Kyoda
et al. algorithm, the results were very similar: 168 connec-
tions were pruned, of which three (the same three as in our
analysis) were direct. Essentially equivalent results (183 con-
nections pruned, three direct) could be achieved with a minor
improvement that allowed pruned edges to mediate accessi-
bility (data not shown). Two additional indirect edges, con-
tained within cycles, were pruned in this analysis; however,
the pruning process took approximately 418 central-process-
ing-unit (CPU) seconds as opposed to around 1 CPU second
for our algorithm. While neither processing time was prohib-
itive in this case, for larger datasets the computation cost
could become a serious concern.

The AIGNET (Algorithms for Inference of Genetic Networks)
method [11] groups nodes into 'equivalence sets,' identical to
strong components, before pruning indirect connections
from the network. Relationships within these equivalence
sets are then resolved and the network structure fine-tuned
using time-course data and a dynamic S-system model [11].
How this method fares in practice, and how it compares to the
Genome Biology 2004, 5:R29
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double-mutant approach described here, has yet to be tested.
It may well prove complementary to the analysis of steady-
state double-mutant profiles, particularly in cases where a
double mutation is lethal. It is clear, however, that the
straightforward Boolean approach suggested by Maki et al.
[11] for the creation of the 'skeleton network' will erroneously
sever direct connections as a consequence of failing to con-
sider positive and negative regulation. In our analysis, 11
additional direct connections (14 total, as compared to 3;
Table 1) were incorrectly pruned when repression and activa-
tion were not treated separately.

A unique aspect of our algorithm is the manner in which dou-
ble-mutant data is used. Other proposed methods have used
double-mutant data, but as a means of fully exploring the log-
ical states of a Boolean network [34] or expanding the range
of perturbations to the system [35]. We have used double-
mutant data here both to resolve the order of genes within
feedback loops (cycles), and to detect nontranscriptional or
redundant regulatory pathways. To our knowledge, no previ-
ous computational work has addressed the question of resolv-
ing feedback loop structure with double-mutant data.
Classical genetic pathway analysis, however, has been
automated in the program GenePath [38], which constructs
acyclic genetic regulatory networks governing specific biolog-
ical processes on the basis of phenotypic data from single and
double mutants. The basic logic underlying the analysis per-
formed by GenePath [38] is very similar to that described
here.

The power of double-mutant analysis is evident in its exten-
sive application in classical genetics [7,8]. These applications
include the study of signaling pathways involved in transcrip-
tional regulation, for example the repression of SUC2 by glu-
cose [39,40]. As the number of experiments required for this
method scales with the square of the number of genes under
investigation, epistasis analysis cannot be easily applied on a
genome-wide level. However, our algorithm generates a ten-
tative reconstruction based on single-mutant data that can
then be refined with targeted double-mutant data, bringing
the number of experiments into a manageable range. The type
of data required by our algorithm is rapidly becoming availa-
ble through gene-deletion projects and new methods, such as
RNA interference, to perturb the activity of selected genes
[41-43]. For the budding yeast S. cerevisiae, a complete
library of single-gene deletion mutants is available and dou-
ble mutants have been created by automated high-through-
put mating of these strains [44-46].

Conclusions
Application of our reconstruction algorithm to published
gene-expression data from a number of S. cerevisiae mutants
led to several interesting observations. The first is that
'incoherent' feedforward pathways, in which the edges are
arranged such that they act antagonistically, seem to be com-

mon in the yeast regulatory network. This is in contrast to E.
coli, where most (34 of 40) known feedforward motifs in tran-
scriptional regulation are coherent [27]. In S. cerevisiae an
overrepresentation of the feedforward motif, in which one
gene regulates another through both direct and indirect path-
ways, has recently been observed in regulatory pathways doc-
umented in the literature [47]; consistent with our
observations, a relatively large proportion of these (21 of 47)
are incoherent. An overrepresentation of feedforward path-
ways has also been reported in yeast chromatin-binding data
[16]; however, whether these parallel pathways act antagonis-
tically or synergistically is unknown because the data does not
indicate whether regulation is positive or negative. Our find-
ings suggest that synergy is not necessarily the rule in the
yeast network, though most of the incoherent pathways we
observed are likely to be indirect at the transcriptional level.

The second important observation is that the parsimony
approach embodied by this algorithm can successfully iden-
tify and prune indirect connections from a regulatory network
when provided with single-mutant data alone. Although only
approximately 4% of the genes in S. cerevisiae were per-
turbed in the dataset examined [17], a substantial number of
possible connections could be pruned from the network while
maintaining all regulatory relationships observed. Compari-
son with DNA-binding data for a small set of transcription
factors suggested that these pruned connections are much
more likely to be indirect than the edges retained in the
reconstruction.

Finally, analysis of experimental yeast double-mutant data
revealed that expression data for strains in which two genes
with potentially redundant functions are both deleted can aid
in the identification of true target genes. Thus, utilization of
double-mutant data is likely to improve the reconstruction
generated by the algorithm. Furthermore, analysis of syn-
thetic networks suggests that data from a relatively small
number of double mutants, on the order of the size of the net-
work, N, could substantially improve the quality of the
reconstruction.

In sum, we have shown that the assumption of parsimony is a
reasonable one in the context of regulatory networks and is
supported by available data. We have developed a method to
automate this approach that can utilize single-mutant data to
generate a tentative reconstruction and double-mutant data
to improve its accuracy. We anticipate that application of this
algorithm will greatly simplify interpretation of experimental
gene perturbation data as more mutant gene-expression pro-
files become available for a number of organisms.

Materials and methods
Synthetic networks
We generated synthetic networks (Figures 4, 5, 6) using an
adaptation of methods described in [48]. Outgoing edges
Genome Biology 2004, 5:R29
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were distributed according to a power law with an exponen-
tial cutoff such that the probability of a node having k_out
edges, p(k_out), is proportional to (k_out)-τe-k_out/κ, where
the constants τ and κ equal 0.7 and 1,000 respectively.
Incoming edges were assigned according to an exponential
distribution, where p(k_in) ~ e-βk_in and the constant β = 0.5.
This model was based on previous analyses of regulatory net-
works in E. coli and S. cerevisiae (see Appendix 1 in Addi-
tional data file 1).

To create the outgoing edge distribution, each gene was
assigned outgoing edge 'stubs' by the following procedure
[48]. First, an edge number k_out with a distribution e-k_out/κ

was generated with the transformation k_out = 1 + int(-κ ln(1
- r)) where r is a random real number uniformly distributed
in the range 0 ≤  r < 1 and int(x) indicates the largest integer
smaller than x. This number k_out was then accepted with
probability (k_out)-τ as long as k_out was less than the total
number of nodes in the network; if k_out was not accepted,
the process was repeated. Each gene was then similarly
assigned an incoming edge number generated with the trans-
formation k_in = 1 + int(-(1/β)ln(1 - r)) where r is another
random real number uniformly distributed in the range 0 ≤  r
< 1. This number was accepted as long as k_in was less than
one-quarter the total number of nodes in the network. These
outgoing and incoming stubs were then joined to form edges
until the desired number of edges was reached. Edge distribu-
tions of graphs generated in this manner were checked by eye
to confirm that they displayed the desired behavior.

Accessibility lists for these graphs were generated by a depth-
first search [49]. Double-mutant accessibility lists were cre-
ated by eliminating all incoming or outgoing edges for one
gene, then generating accessibility lists for all remaining
genes in the network.

Error analysis
To examine the effect of not having all gene perturbations
available, we deleted all accessibilities for nodes chosen at
random, without replacement, in 500 gene synthetic net-
works. For each network, the number of nodes treated in this
way ranged from 2.5% (12) to 50% (250) of the total, in 2.5%
increments. We then used this limited data as input to the
reconstruction algorithm, and the resulting network was
compared to the initial reconstruction. Similarly, to examine
the effect of incomplete data (false-negative accessibilities),
we calculated the total number of accessibilities in the net-
work, and deleted a number of accessibilities ranging from
2.5% to 50% of the total number before reconstruction. To
simulate false-positive accessibilities, we added up to 50%
more accessibilities to the data. In all of these cases we
repeated the process 10 times for each increment. We carried
out the entire analysis of the effects of incomplete, false-neg-
ative and false-positive data on the same six independent net-
works of each edge density.

To assess the accuracy of reconstructions from incomplete or
noisy data, we compared each pair of vertices in the network
to the 'correct' graph with regard to the presence of an edge.
We then tallied the number of edges missing in the recon-
struction (false negative, fn) or erroneously present in the
reconstruction (false positive, fp) and calculated the 'fraction
correct edges' (E - fn)/(E + fp), where E is the number of
edges in the correct graph. In Figure 5, the standard of com-
parison is the reconstruction generated from the correct
accessibility list, while in Figure 6, the standard of compari-
son is the original graph.

The addition or deletion of accessibilities during the error
analysis resulted at times in the creation of 'pseudocycles,'
circular pathways in the network that are not identified as
cycles in the condensation step. Such pathways are also
encountered in experimental data (data not shown) and the
algorithm can get caught in these loops during the search
phase (Figure 2a, lines 4-14). A simple modification that
keeps track of the number of times the algorithm has
'stopped' at a given node during the search prevents this from
happening. If the same node is encountered more than twice,
an alternative search path is chosen.

Yeast datasets
The dataset examined contains 300 S. cerevisiae expression
profiles, including 276 deletion mutants, 11 tetracycline-reg-
ulatable alleles of essential genes, and 13 drug treatments
[17]. Of the deletion mutants, 7 are double mutants, and 20
are aneuploid. We excluded data from double-mutant and
aneuploid strains but included data from the tetracycline-reg-
ulated alleles when initially generating accessibility lists, for a
total of 260 expression profiles. Accessibility was defined
solely by p value according to the error model of Hughes et
al.: if the transcript level of a gene changed with p < 0.01, it
was considered accessible from the gene mutated or per-
turbed in the experiment. We considered the regulation posi-
tive if the level went down and negative if it went up, as all of
these experiments involved gene inactivation and not overex-
pression. Accessibility lists for double mutants dig1∆dig2∆
and isw1∆isw2∆ were based on two criteria: a p value less
than 0.01 (relative to wild type) and a fold expression change
of at least 1.8 between the single mutant and double mutant.

To test the ability of the algorithm to distinguish direct from
indirect regulation, we utilized the chromatin binding data of
Lee et al. [16], in which the promoter-binding profiles of 106
transcription factors in S. cerevisiae were determined by
genome-wide location analysis. We used the same statistical
significance threshold, p < 0.001, chosen by the authors to
identify true binding targets. There are 17 transcription fac-
tors in this dataset with corresponding deletion-mutant
expression profiles [17]: ARG80, CIN5, DIG1, GCN4, GLN3,
HIR2, MAC1, MBP1, RGT1, RTG1, STE12, SWI4, SWI5,
SWI6, YAP1, YAP3, and YAP7 [16,17]. For each of these tran-
scription factors there is a number of genes, E, whose expres-
Genome Biology 2004, 5:R29
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sion is significantly affected by deletion of the factor and
which we refer to as expression targets. There is also a
number of genes, B, whose promoters are bound by the tran-
scription factor and which we refer to as binding targets. We
consider the intersection of these two sets to represent the T
'true targets' (listed in Appendix 2 in Additional data file 1).
The fractional overlap between the two sets (f = ΣT/(ΣE +
ΣB)) was tested within the range of p < 0.001 to p < 0.01 as
defined by the error models of the respective authors for each
dataset. It was maximized when expression targets were
defined with a p < 0.01 threshold [17] and binding targets
were defined with a p < 0.001 threshold [16], in agreement
with the authors' own choices. Additional criteria such as
requiring a certain magnitude of expression change or magni-
tude of binding enrichment either did not improve or only
minimally improved the overlap. A χ2 test was used to assess
the statistical significance of the results.

Additional data files
The following additional data are available with the online
version of this paper: a PDF file (Additional data file 1) con-
taining four appendices; Appendix 1 is a detailed discussion
of the parameters of the synthetic networks used in
simulations in the paper and the rationale behind their
choice; Appendix 2 lists the transcription factors and targets
identified as described in the main text; Appendix 3 gives the
Perl code for the algorithm described in the paper; Appendix
4 is a sample text input file for the algorithm.
Additional data file 1A PDF file containing four appendices including a detailed discus-sion of the parameters of the synthetic networks used in simula-tions, the transcription factors and targets identified as described in the main text, the Perl code for the algorithm described in the paper and a sample text input file for the algorithmA PDF file containing four appendices including a detailed discus-sion of the parameters of the synthetic networks used in simula-tions, the transcription factors and targets identified as described in the main text, the Perl code for the algorithm described in the paper and a sample text input file for the algorithmClick here for additional data file
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