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Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana<p>A novel approach for modelling gene-regulatory networks, based on graphical Gaussian modelling, is used to create a network for the isoprenoid biosynthesis pathway in Arabidopsis</p>

Abstract

We present a novel graphical Gaussian modeling approach for reverse engineering of genetic
regulatory networks with many genes and few observations. When applying our approach to infer
a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely
connected genes and candidate genes for possible cross-talk between the isoprenoid pathways.
Genes of downstream pathways also fit well into the network. We evaluate our approach in a
simulation study and using the yeast galactose network.

Background
The analysis of genetic regulatory networks has received a
major impetus from the huge amounts of data made available
by high-throughput technologies such as DNA microarrays.
The genome-wide, massively parallel monitoring of gene
activity will increase the understanding of the molecular basis
of disease and facilitate the identification of therapeutic
targets.

To fully uncover regulatory structures, different analysis tools
for transcriptomic and other high-throughput data will have
to be used in an integrative or iterative fashion. In simple
eukaryotes or prokaryotes, gene-expression data has been
combined with two-hybrid data [1] and phenotypic data [2] to
successfully predict protein-protein interaction and tran-

scriptional regulation on a large scale. If the principal organ-
ization of a gene network has been established, differential
equations may be used to study its quantitative behavior
[3,4].

In higher organisms, however, little is known about regula-
tory control mechanisms. As a first step in reverse engineer-
ing of genetic regulatory networks, structural relationships
between genes can be explored on the basis of their expres-
sion profiles. Here, we focus on graphical models [5,6] as a
probabilistic tool to analyze and visualize conditional
dependencies between genes. Genes are represented by the
vertices of a graph and conditional dependencies between
their expression profiles are encoded by edges. Graphical
modeling can be carried out with directed and undirected
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edges, with discretized and continuous data. Over the past
few years, graphical models, in particular Bayesian networks,
have become increasingly popular in reverse engineering of
genetic regulatory networks [7-10].

Graphical models are powerful for a small number of genes.
As the number of genes increases, however, reliable estimates
of conditional dependencies require many more observations
than are usually available from gene-expression profiling.
Furthermore, because the number of models grows super-
exponentially with the number of genes, only a small subset of
models can be tested [10]. Most important, a large number of
genes often entails a large number of spurious edges in the
model [11]. The interpretation of the graph within a condi-
tional-independence framework is then rendered difficult
[12]. Even a search for local dependence structures and sub-
networks with high statistical support [7] provides no guaran-
tee against the detection of numerous spurious features.

Some of these problems may be circumvented by restricting
the number of possible models or edges [10,13] or by exploit-
ing prior knowledge on the network structure. So far, how-
ever, this prior knowledge is difficult to obtain.

As an alternative approach to modeling genetic networks with
many genes, we propose not to condition on all genes at a
time. Instead, we apply graphical modeling to small subnet-
works of three genes to explore the dependence between two
of the genes conditional on the third. These subnetworks are
then combined for making inferences on the complete net-
work. This modified graphical modeling approach makes it
possible to include many genes in the network while studying
dependence patterns in a more complex and exhaustive way
than with only pairwise correlation-based relationships.

For an independent validation of our method, we compare
our modified graphical Gaussian modeling (GGM) approach
with conventional graphical modeling in a simulation study.
We show at the end of the Results section that our approach
outperforms the standard method in simulation settings with
many genes and few observations. For a further evaluation
with real data, we apply our approach to the galactose-utiliza-
tion data from [14] to detect galactose-regulated genes in Sac-
charomyces cerevisiae.

The main aim of this methodological work, however, was to
elucidate the regulatory network of the two isoprenoid bio-
synthesis pathways in Arabidopsis thaliana (reviewed in
[15]). The greater part of this paper is therefore devoted to the
inference and biological interpretation of a genetic regulatory
network for these two pathways. To motivate our novel mod-
eling strategy, we first describe the problems that we encoun-
tered with standard GGMs before presenting the results of
our modified GGM approach.

Results
Isoprenoids serve numerous biochemical functions in plants:
for example, as components of membranes (sterols), as pho-
tosynthetic pigments (carotenoids and chlorophylls) and as
hormones (gibberellins). Isoprenoids are synthesized
through condensation of the five-carbon intermediates iso-
pentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP). In higher plants, two distinct pathways for the for-
mation of IPP and DMAPP exist, one in the cytosol and the
other in the chloroplast. The cytosolic pathway, often
described as the mevalonate or MVA pathway, starts from
acetyl-CoA to form IPP via several steps, including the inter-
mediate mevalonate (MVA). In contrast, the plastidial (non-
mevalonate or MEP) pathway involves condensation of pyru-
vate and glyceraldehyde 3-phosphate via several intermedi-
ates to form IPP and DMAPP. Whereas the MVA pathway is
responsible for the synthesis of sterols, sesquiterpenes and
the side chain of ubiquinone, the MEP pathway is used for the
synthesis of isoprenes, carotenoids and the side chains of
chlorophyll and plastoquinone. Although both pathways
operate independently under normal conditions, interaction
between them has been repeatedly reported [16,17].

Reduced flux through the MVA pathway after treatment with
lovastatin can be partially compensated for by the MEP path-
way. However, inhibition of the MEP pathway in seedlings
leads to reduced levels in carotenoids and chlorophylls, indi-
cating a predominantly unidirectional transport of isopre-
noid intermediates from the chloroplast to the cytosol [16,18],
although some reports indicate that an import of isoprenoid
intermediates into the chloroplast also takes place [19-21].

Application of standard GGM to isoprenoid pathways 
in Arabidopsis thaliana
To gain more insight into the cross-talk between both path-
ways at the transcriptional level, gene-expression patterns
were monitored under various experimental conditions using
118 GeneChip (Affymetrix) microarrays (see Additional data
files 1 and 2). To construct the genetic regulatory network, we
focused on 40 genes, 16 of which were assigned to the
cytosolic pathway, 19 to the plastidal pathway and five encode
proteins located in the mitochondrion. These 40 genes com-
prise not only genes of known function but also genes whose
encoded proteins displayed considerable homology to pro-
teins of known function. For reference, we adopt the notation
from [22] (see Table 1).

The genetic-interaction network among these genes was first
constructed using GGM with backward selection under the
Bayesian information criterion (BIC) [23]. This was carried
out with the program MIM 3.1 [24] (see Materials and meth-
ods for further details). The network obtained had 178 (out of
780) edges - too many to single out biologically relevant struc-
tures. Therefore, bootstrap resampling was applied to deter-
mine the statistical confidence of the edges in the model
(Figure 1b). For the bootstrap edge probabilities, only a cutoff
Genome Biology 2004, 5:R92
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level as high as 0.8 led to a reasonably low number of selected
edges (31 edges, Figure 2). However, a comparison between
bootstrap-edge probabilities and the pairwise correlation
coefficients suggested that for such a high cutoff level, many
true edges may be missed. For example, the gene AACT2
appears to be completely independent from all genes in the
model although it is strongly correlated with MK, MPDC1 and
FPPS2 (see Additional data file 4 for the correlation patterns).

This phenomenon had already been observed in a simulation
study by Friedman et al. [25] and may be related to the sur-
prisingly frequent appearance of edges with a low absolute
pairwise correlation coefficient but a high bootstrap estimate
(Figure 1c). Although there is no concise explanation for this
pattern, one conjecture would be that the simultaneous con-
ditioning on many variables introduces many spurious edges
with little absolute pairwise correlation but high absolute par-
tial correlation into the model. Our modification for GGMs is
to improve upon this drawback.

Application of our modified GGM approaches
As described in more detail in Materials and methods, our
approach aims at modeling dependencies between two genes
by taking the effect of other genes separately into account. In
the hope of identifying direct co-regulation between genes, an
edge is drawn between two genes i and j when their pairwise
correlation is not the effect of a third gene. Each edge has
therefore a clear interpretation.

We have developed two versions of our method: a frequentist
approach in which each edge is tested for presence or
absence; and a likelihood approach with parameters θij,
which describe the probability for an edge between i and j in
a latent random graph. One main benefit of the second ver-
sion over full graphical models is that one can easily test on a
large scale how well additional genes can be incorporated into
the network. This allows the selection of additional candidate
genes for the network in a fast and efficient way.

We have applied and tested our modified GGM approaches by
constructing a regulatory network of the 40 genes in the iso-
prenoid pathways in A. thaliana and by attaching 795 addi-
tional genes from 56 other metabolic pathways to it. Figure 3
shows the network model obtained from the frequentist mod-
ified GGM approach. Because we find a module with strongly
interconnected genes in each of the two pathways, we split the
graph into two subgraphs, each displaying the subnetwork of
one module and its neighbors. Our finding provides a further
example that within a pathway many consecutive or closely
positioned genes are potentially jointly regulated [26].

In the MEP pathway, the genes DXR, MCT, CMK and MECPS
are nearly fully connected (upper panel of Figure 3). From
this group of genes, there are a few edges to genes in the MVA
pathway. Among these genes, AACT1 and HMGR1 form can-
didates for cross-talk between the MEP and the MVA pathway

Table 1

Genes coding for enzymes in the two isoprenoid pathways

Name AGI number Subcellular location

AACT1 At5g47720 C

AACT2 At5g48230 C

CMK At2g26930 P

DPPS1 At2g23410 C/ER

DPPS2 At5g58770 M

DPPS3 At5g58780 ER

DXPS1 At3g21500 P

DXPS2 At4g15560 P*

DXPS3 At5g11380 P

DXR At5g62790 P*

FPPS1 At4g17190 C

FPPS2 At5g47770 C/M*

GGPPS1 At1g49530 M*

GGPPS2 At2g18620 P

GGPPS3 At2g18640 C/ER*

GGPPS4 At2g23800 C/ER*

GGPPS5 At3g14510 M

GGPPS6 At3g14530 P

GGPPS7 At3g14550 P*

GGPPS8 At3g20160 C/ER

GGPPS9 At3g29430 M

GGPPS10 At3g32040 P

GGPPS11 At4g36810 P*

GGPPS12 At4g38460 P

GPPS At2g34630 P*

HDR At4g34350 P

HDS At5g60600 P*

HMGR1 At1g76490 C/ER*

HMGR2 At2g17370 C/ER*

HMGS At4g11820 C

IPPI1 At3g02780 P

IPPI2 At5g16440 C

MCT At2g02500 P*

MECPS At1g63970 P

MK At5g27450 C

MPDC1 At2g38700 C

MPDC2 At3g54250 C

PPDS1 At1g17050 P

PPDS2 At1g78510 P

UPPS1 At2g17570 M

Subcellular locations are pooled from experimental data, the TargetP 
data base [36] and [22]. C, cytoplasm; ER, endoplasmic reticulum; M, 
mitochondrion; P, chloroplast. Experimentally verified subcellular 
locations are marked with an asterisk (*).
Genome Biology 2004, 5:R92
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because they have no further connection to the MVA pathway.
Their correlation to DXR, MCT, CMK and MECPS is always
negative.

Similarly, the genes AACT2, HMGS, HMGR2, MK, MPDC1,
FPPS1 and FPPS2 share many edges in the MVA pathway
(lower panel of Figure 3). The subgroup AACT2, MK, MPDC1
and FPPS2 is completely interconnected. From these genes,
we find edges to IPPI1 and GGPPS12 in the MEP pathway.
Whereas IPPI1 is positively correlated with AACT2, MK,
MPDC1 and FPPS2, GGPPS12 displays negative correlation to
the four genes.

In contrast to the conventional graphical model, we could
now identify the connection between AACT2 and MK, MPDC1
and FPPS2. In general, we found a better agreement between
the absolute pairwise correlation and the selected edges (fre-
quentist approach) or the probability parameters θ (latent
random graph approach). Figures 4a and 4b show the
selected edges and θ-values as a function of the absolute pair-
wise correlation.

Attaching additional pathway genes to the network
Following construction of the isoprenoid genetic network,
795 additional genes from 56 metabolic pathways were incor-
porated. Among these were genes from pathways down-
stream of the two isoprenoid biosynthesis pathways, such as
phytosterol biosynthesis, mono- and diterpene metabolism,
porphyrin/chlorophyll metabolism, carotenoid biosynthesis,
plastoquinone biosynthesis for example. Using the second
version of our method, that is, the latent random graph
approach, we compared θ-values for all gene pairs in the net-
work with and without attaching these additional genes (Fig-
ure 4b and 4c). As expected, the parameters θ for the edge

probabilities decreased if additional genes were included in
the isoprenoid network (see Materials and methods). After
addition, if for a gene pair i, j, θij dropped by more than 0.3, it
was assumed that the dependence between i and j could be
'explained' by some of the additional genes.

To find these genes out of all additionally tested candidates k,
GGMs with genes i, j and k were formed. A gene k was consid-
ered to explain the dependency between i and j when an edge
between i and j was not supported in the GGM, that is, when
the null hypothesis ρij|k = 0 was accepted in the corresponding
likelihood ratio test. k was then taken to 'attach well' to the
gene pair i, j.

Thus, for each gene pair i, j whose parameter θij dropped by
more than 0.3, we obtained a list of well-attaching genes.
Genes appearing significantly frequently in these lists of well-
attaching genes were assumed to connect well to the complete
genetic network. We tested for significance by randomiza-
tion: For each gene pair i, j, a randomized list of well-attach-
ing genes was formed with the same size as the original gene
list. To explore which pathways attach significantly well to the
MVA and MEP pathways, the portion of genes from each of
the 56 pathways was summed over all gene pairs i, j. These
sums were then compared for the originally attached genes
and the sums of randomly attached genes in 100 datasets.

Table 2 shows the pathways whose genes were found to attach
significantly frequently to the MVA pathway, the MEP path-
way, or both pathways. Interestingly, from all 56 metabolic
pathways considered, we predominantly find that genes from
downstream pathways fit well into the isoprenoid network.
These results suggest a close regulatory connection between
isoprenoid biosynthesis genes and groups of downstream

Bootstrapped GGM of the isoprenoid pathwayFigure 1
Bootstrapped GGM of the isoprenoid pathway. (a) Comparison between absolute pairwise correlation coefficients and presence of edges. Dots at 0 and 
1 denote absent and present edges respectively. (b) Histogram of the bootstrap edge probabilities. (c) Comparison between absolute pairwise correlation 
coefficients and bootstrap edge probabilities for all 780 possible edges.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

100

50

0

150

200

0.0

0.2

0.4

0.6

0.8

1.0

E
dg

es

F
re

qu
en

cy

B
oo

ts
tr

ap
 e

st
im

at
es

Correlation Bootstrap estimates Correlation

(a) (b) (c)
Genome Biology 2004, 5:R92



http://genomebiology.com/2004/5/11/R92 Genome Biology 2004,     Volume 5, Issue 11, Article R92       Wille et al. R92.5

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

genes. On the one hand, we find strong connections between
the MEP pathway and the plastoquinone, the carotenoid and
the chlorophyll pathways (experimentally supported by
[15,16,27]). On the other hand, the plastoquinone and phyto-
sterol biosynthesis pathways appear to be closely related to
the genetic network of the MVA pathway.

On a metabolic level, our results are substantiated by earlier
labeling experiments using [1-13C] glucose, which revealed
that sterols were formed via the MVA pathway, while plastidic
isoprenoids (β-carotene, lutein, phytol and plastoquinone-9)
were synthesized using intermediates from the MEP pathway
[27]. Moreover, incorporation of [1-13C]- and [2,3,4,5-13C4]1-

deoxy-D-xylulose into β-carotene, lutein and phytol indicated
that the carotenoid and chlorophyll biosynthesis pathways
proceed from intermediates obtained via the MEP pathway
[28].

In contrast, a close connection between the MVA and the
MEP pathways could not be detected. This suggests that
cross-talk on the transcriptional level may be restricted to sin-
gle genes in both pathways.

In a further analysis step, we examined which gene pairs the
four identified pathways (plastoquinone, carotenoid, chloro-
phyll, and phytosterols) attached to. Genes from the

Bootstrapped GGM of the isoprenoid pathway with a cutoff at 0.8Figure 2
Bootstrapped GGM of the isoprenoid pathway with a cutoff at 0.8. The solid undirected edges connecting individual genes (in boxes) represent the GGM. 
Dotted directed edges mark the metabolic network, and are not part of the GGM. The grey shading indicates metabolic links to downstream pathways.
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Figure 3 (see legend on next page)
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plastoquinone pathway were predominantly linked to the
genes DXR, MCT, CMK, GGPPS11, GGPPS12, AACT1,
HMGR1 and FPPS1, supporting the hypothesis that AACT1
and HMGR1 are involved in communication between the
MEP and MVA pathways.

Genes from the carotenoid pathway attached to DXPS2, HDS,
HDR, GGPPS11, DPPS2 and PPDS2, whereas the chlorophyll
biosynthesis appears to be related to DXPS2, DXPS3, DXR,
CMK, MCT, HDS, HDR, GGPPS11 and GGPPS12. Genes from
the phytosterol pathway attach to FPPS1, HMGS, DPPS2,
PPDS1 and PPDS2.

Incorporating 795 additional genes into the isoprenoid
genetic network would not have been feasible with standard
GGMs as the graphical model would have had to be newly fit-
ted for each additional gene. Also, hierarchical clustering
would not have been an appropriate tool for detecting the
similarities in the correlation patterns between the two iso-
prenoid metabolisms and their downstream pathways. Figure
5 shows the hierarchical clustering of the 40 isoprenoid genes
and 795 additional pathway genes based on the distance
measure 1 - |σij|, where σij denotes the pairwise correlation
between genes i and j.

The positions of the MVA pathway genes (labeled 'm') and the
non-mevalonate pathway genes (labeled 'n'), respectively, are
shown to the right of the figure. The symbol + represents the

positions of genes from the downstream pathways identified
in Table 2, whereby the vertical line is drawn to distinguish
between genes downstream of the mevalonate and the non-
mevalonate pathway. From Figure 5 it can be easily seen that
there is no clear pattern of (positional) association between
genes of the isoprenoid biosynthesis and downstream path-
ways in the hierarchical clustering.

Simulation study
For an independent comparison between the modified and
the conventional GGM approaches, we simulated gene-
expression data with 40 genes and 100 observations. This
simulation framework corresponds to the data for isoprenoid
biosynthesis and is thought to be only exemplary at this point.
An extensive simulation study is currently underway and will
be presented elsewhere.

Following recent findings on the topology of metabolic and
protein networks [29,30], we simulated scale-free networks
in which the fraction of nodes with k edges decays as a power
law ∝ k-γ. For metabolic and protein networks, γ is usually
estimated to range between 2 and 3, which would result in
very sparse networks with fewer edges than nodes in our sim-
ulation settings. To allow for denser networks, we generated
100 graphs each for γ = 0.5, 1.5 and 2.5. With 40 nodes, these
graphs then comprised 88.3, 49.7 and 30.5 edges on average.
For each edge, the conditional dependence of the correspond-
ing gene pairs was modeled with a latent random variable in

Dependencies between genes of the isoprenoid pathways according to the frequentist modified GGM methodFigure 3 (see previous page)
Dependencies between genes of the isoprenoid pathways according to the frequentist modified GGM method. (a) Subgraph of the gene module in the 
MEP pathway; (b) subgraph of the gene module in the MVA pathway. For an explanation of what the edges and shading indicate see legend to Figure 2.

Comparison of the absolute pairwise correlation coefficients and the modified GGM approachesFigure 4
Comparison of the absolute pairwise correlation coefficients and the modified GGM approaches. (a) Selected edges in the frequentist modified GGM 
approach (0 and 1 denote absent and present edges respectively). (b) θ-values in the latent random graph approach. (c) θ-values after attaching 795 genes 
from other pathways.
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a structural equation model as described in [31]. Further
details are of technical nature and are omitted here. The use
of latent random variables enabled us to model partial corre-
lation coefficients according to the previously defined net-
work structure while ensuring positive definiteness of the
complete partial correlation matrix. This matrix was then
transformed into a covariance matrix Σ, from which synthetic
gene expression data with 100 observations were sampled
according to a multivariate normal distribution N(0,Σ).

The performance of the graphical modeling approaches was
monitored using the rate of true and false positives in receiver
operator characteristics (ROC) curves (see [11] for a short
introduction). For the standard graphical model, bootstrap-
ping would have been too time-consuming, so we ranked all
edges according to their sequential removal in the backward
selection process. Figure 6a shows the ROC curves for the
graphical modeling with backward selection and the modified
graphical modeling approaches (frequentist and latent ran-
dom graph approach). We also included the ROC curve for
network inference with pairwise correlation coefficients. It
can be seen that the modified GGM approaches outperform
the conventional graphical modeling. Both the frequentist
and the latent random graph method show a similar perform-
ance. Also, it should be noted that a simple measure such as
the pairwise correlation can be quite powerful in detecting
conditional dependencies between genes.

ROC curves depict the true-positive rate as a function of the
false-negative rate. However, in our setting where the false-
positive edges by far outnumber the true-positive ones, the
proportion of true positives among the selected edges is also
of interest (Figure 6b). Note that this proportion is the com-
plementary false-discovery rate 1-FDR [32]. Figure 6b pro-
vides further evidence that the modified GGM approaches
have a better performance than standard GGM.

Application to galactose utilization in Saccharomyces 
cerevisiae
For further evaluation, we applied our approach to the galac-
tose-utilization dataset from [14] to detect galactose-regu-
lated genes in Saccharomyces cerevisiae. Ideker et al. [14]
used self-organizing maps to cluster 997 genes with signifi-
cant expression changes in 20 systematic perturbation exper-
iments of the galactose pathway. From the nine galactose
genes under investigation, two subgroups with three and four
genes, respectively, were found in two of the 16 clusters. Nine
of the 87 genes in these two clusters carried GAL4p-binding
sites and are thus candidate genes for regulation by the
transcription factor GAL4p. Among these candidate genes,
GCY1 and PCL10 are known to be targets of GAL4p [33], and
YMR318C has been implicated in another binding-site study
[34].

After incorporating all yeast genes into our network of the
nine galactose genes, 13 genes were found to attach
significantly well. Among these, GCY1 and PCL10 were also
detected. Furthermore, three out of the remaining 11 candi-
date genes (MLF3, YEL057C and YPL066W) had GAL4p-
binding sites. These genes were also identified in [14]. This
result shows once more that with our approach we are not
only able to model the dependence between genes but also
find genes whose expression profiles fit well to the original
genes in the model. In contrast to [14], we did not have to rely
on gene clusters with a high occurrence of galactose genes to
find these genes.

Discussion
Analysis of gene expression patterns, for example cluster
analysis, often focuses on coexpression and pairwise correla-
tion between genes. Graphical models are based on a more
sophisticated measure of conditional dependence among
genes. However, with this measure, modeling is restricted to
a small number of genes. With a larger set of genes, it is rather
difficult to interpret the model and to generate hypotheses on
the regulation of genetic networks.

In our approaches, in the search for significant co-regulation
between two genes all other genes in the model are also taken
into account. However, the effect of these genes is examined
separately, one gene at a time. Because of this simplification,
modeling can include a larger number of genes. Also, each
edge has a clear interpretation, representing a pair of signifi-
cantly correlated genes whose dependence cannot be
explained by a third gene in the model. Our frequentist
method has a resemblance to the first two steps in the SGS
and PC algorithms [31]. By restricting the modeling to sub-
networks with three genes, we avoid the statistically unrelia-
ble and computationally costly search for conditional
independence in large subsets, as in the SGS algorithm. Also,
we avoid having to remove edges in a stepwise fashion, as in
the PC algorithm. Therefore, we do not run the risk of mistak-

Table 2

Pathways whose genes attach significantly well to the isoprenoid 
pathways

Both isoprenoid 
pathways

MEP pathway MVA pathway

Plastoquinone* Plastoquinone* Plastoquinone*

Carotenoid* Carotenoid* Phytosterol*

Calvin cycle Porphyrin/chlorophyll*

Histidine One carbon pool

One carbon pool Calvin cycle

Tocopherol*

Porphyrin/chlorophyll*

Downstream pathways are marked with an asterisk (*). The Calvin 
cycle is also metabolically linked to the isoprenoid pathways.
Genome Biology 2004, 5:R92
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enly removing an edge at an early stage, which leads to
improved stability in the modeling process.

By using a Gaussian model, we can only reveal linear depend-
encies between genes. For handling nonlinearities, gene-
expression profiles should be discretized and analyzed in a
multinomial framework. In principle, it should be straightfor-
ward to adopt our approach to a multinomial model. Because
we focused on linear dependencies, we have not addressed
this problem so far.

For the isoprenoid biosynthesis pathways in A. thaliana, we
constructed a genetic network and identified candidate genes

for cross-talk between both pathways. Interestingly, both
positive and negative correlations were found between the
identified candidate genes and the corresponding pathways.
AACT1 and HMGR1, key genes of the MVA pathway, were
found to be negatively correlated to the module of connected
genes in the MEP pathway. This suggests that in the experi-
mental conditions tested, AACT1 and HMGR1 may respond
differently (than the MEP pathway genes) to environmental
conditions, or that they possess a different organ-specific
expression profile. In either case, expression within both
groups seems to be mutually exclusive. On the other hand, a
positive correlation was identified between IPPI1 and mem-
bers of the MVA pathway, suggesting that this enzyme con-

Hierarchical clustering of 40 genes involved in the isoprenoid pathway and 795 genes from other pathwaysFigure 5
Hierarchical clustering of 40 genes involved in the isoprenoid pathway and 795 genes from other pathways. Clustering is depicted as a heatmap, in which 
red and green represent high and low expression values, respectively. Rows depict genes and columns depict hybridizations. Positions of the genes from 
the MEV pathway (m) and the plastoquinone and phytosterol pathways (+) are indicated in the left-hand column of the heatmap axis on the right side of 
the figure. Positions of the genes from the MEP pathway (n) and the plastoquinone, carotenoid and chlorophyll pathways (+) are indicated in the right 
column of the axis.
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trols the steady-state levels of IPP and DMAPP in the plastid
when a high level of transfer of intermediates between plastid
and cytosol takes place.

Although we have considered only metabolic genes in this
analysis, the method can be extended to identify genes
encoding other types of proteins belonging to the same tran-
scription module. In fact, transcription factors and other
regulator proteins, as well as structural proteins such as
transporters, are often found in the same expression module
[26]. Our results suggest that the expression of genes belong-
ing to the chlorophyll and carotenoid biosynthesis pathways
is controlled by a module that possibly includes genes from
the MEP pathway.

Similarly, the expression of genes in the phytosterol pathway
appears to be influenced by genes from the MVA pathway. For
the downstream regulation of plastoquinone biosynthesis,
however, genes from both pathways seem to be involved. This
finding is in agreement with the dual localization of enzymes
from the plastoquinone pathway in either the plastid or the

cytosol. The regulation of this pathway may therefore depend
on processes happening on the metabolic and regulatory level
in both compartments.

We have shown in a simulation study that for gene-expression
data with many genes and few observations, the modified
GGM approaches have performed better in recovering
conditional dependence structures than conventional GGM.
However, a final evaluation of our inferred network for the
isoprenoid biosynthesis pathways in A. thaliana can only be
made on the basis of additional knowledge and biological
experiments. At this stage, the use of domain knowledge has
provided some means of network validation. As genes from
the respective downstream pathways were significantly more
often attached to the isoprenoid network than were candidate
genes from other pathways, we are quite confident that our
method can grasp the modularity in the dependence structure
within groups of genes and also between groups of genes.
Such modularity would have been difficult to detect by stand-
ard graphical modeling or clustering.

Performance of different GGM approachesFigure 6
Performance of different GGM approaches. (a) ROC curves and (b) the proportion of true-positive edges as a function of the number of selected edges 
for the different graphical modeling strategies. Black line, the standard GGM; red line, frequentist modified GGM approach; blue line, latent random graph 
modified GGM approach; green line, pairwise correlation. Sparse networks with fewer edges as nodes (γ = 2.5) are represented in the left column, 
networks with approximately as many edges as nodes (γ = 1.5) are represented in the middle column, and networks with approximately twice as many 
edges as nodes (γ = 0.5) are in the right column.
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Materials and methods
Graphical Gaussian models (GGMs)
Let q be the number of genes in the network, and n be the
number of observations for each gene. The vector of log-
scaled gene-expression values, Y = (Y1,...,Yq) is assumed to
follow a multivariate normal distribution N(µ,Σ) with mean µ
= (µ1,...,µq) and covariance matrix Σ. The partial correlation
coefficients ρij|rest, which measure the correlation between
genes i and j conditional on all other genes in the model are
calculated as

where ωij, 1, j = 1,...,q are the elements of the precision matrix
Ω = Σ-1.

Using likelihood methods, each partial correlation coeffi-
cients ρij|rest can be estimated and tested against the null
hypothesis ρij|rest = 0 [5]. An edge between genes i and j is
drawn if the null hypothesis is rejected. Since the estimation
of the partial correlation coefficients involves matrix inver-
sion, estimators are very sensitive to the rank of the matrix. If
the model comprises many genes, estimates are only reliable
for a large number of observations.

Commonly, the modeling of the graph is carried out in a step-
wise backward manner starting from the full model from
which edges are removed consecutively. The process stops
when no further improvement can be achieved by removal of
an additional edge. The final model is usually evaluated by
bootstrapping to exclude spurious edges in the model.

Modified GGM approaches
Let i, j be a pair of genes. The sample Pearson's correlation
coefficient σij is the commonly used measure for coexpres-
sion. For examining possible effects of other genes k on σij, we
consider GGMs for all triples of genes i, j, k with k ≠ i, j. For
each k, the partial correlation coefficient ρij|k is computed and
compared to σij. If the expression level of k is independent of
i and j, the partial correlation coefficient would not differ
from σij. If on the other hand, the correlation between i and j
is caused by k since k co-regulates both genes, one would
expect ρij|k to be close to 0. Here, we use the terminology, that
k 'explains' the correlation between i and j.

In order to combine the different ρij|k values in a biologically
and statistically meaningful way, we define an edge between i
and j if ρij|k ≠ 0 for all remaining genes k. In particular, if there
is at least one k with ρij|k = 0, no edge between i and j is drawn
since the correlation between i and j may be the effect of k.
Our approach can be implemented as a frequentist approach
in which each edge is tested for presence or absence or alter-
natively, as a likelihood approach with parameters θij, which
describe the probability for an edge between i and j in a latent
random graph.

Frequentist approach
For the gene pair i, j and all remaining genes k, p-values ρij|k

are obtained from the likelihood ratio test of the null hypoth-
esis ρij|k = 0. In order to combine the different p-values ρij|k,
we simply test whether a third gene k exists that 'explains' the
correlation between i and j. For this purpose, we apply the fol-
lowing procedure:

(1) For each pair i, j form the maximum p-value

pij,max = max{pij|k, k ≠ i, j}.

(2) Adjust each pij,max according to standard multiple testing
procedures such as FDR [32].

(3) If the adjusted pij,max value is smaller than 0.05, draw an
edge between the genes i and j; otherwise omit it.

The correction for multiple testing in step 2 is carried out with
respect to the possible number of edges (q(q - 1))/2 in the
model. Implicitly, multiple testing over all genes k is also
involved in step 1. However, because the maximum over all
pij|k is considered, a multiple testing correction is not
necessary.

Latent random graph approach
The frequentist approach has the disadvantage that a connec-
tion between two genes i and j is either considered to be
present or absent. Also, it is not taken into account whether
an edge between i and k respectively j and k is truly present
when we test for ρij|k = 0. In our second method, we introduce
a parameter θij as the probability for an edge between two
genes i and j in a latent random graph model. Let θ be the
parameter vector of θij for all 1 ≤ i < j ≤ q and y = (y1,...,yn) be
a sample of n observations. For estimating θ, we maximize the
log-likelihood L(θ) = logPθ(y) via the EM-algorithm [35].

Let θ t be a current estimate of θ. Further, let g be the unob-
served graph encoded as an adjacency matrix with gij ∈ {0,1}
depending on whether there is an edge between genes i and j
or not. In the E-step of the EM-algorithm, the conditional
expectation of the complete data log-likelihood is determined
with respect to the conditional distribution p(g|y,θ t),

By assuming independence between edges, Equation (1)
becomes

and further, after replacing

ρ
ω

ω ωij rest
ij

ii jj
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and summing out Equation 2 we find

P(gij = 1|y,θ t) and P(gij = 0|y,θ t) at the right side of Equation
(3) are approximated by the statistical evidence of edge i, j in
GGMs with genes i, j and k. As we only want to estimate the
effect of k on the correlation between i and j, we distinguish
only the two cases whether k is a common neighbor of i and j,
for example, gik = 1 and gjk = 1 or not. When k is a common
neighbor, we test ρij|k ≠ 0 versus ρij|k = 0. When k is not a com-
mon neighbor of i and j, we test σij ≠ 0 versus σij = 0 for the
pairwise correlation coefficients instead. Thus, we obtain

where  and  are p-values of the

corresponding likelihood ratio tests. After replacing Equation
(4) in Equation (3), the M-step of the EM-algorithm, that is
the maximization of Eθ (logPθ (g)|y,θ t) with respect to θ, leads

to an iterative updating scheme θ t → θ t+1 with

In summary, we determine the probability parameters θ as
follows

(1) For gene pairs i, j, compute P(ρij|k ≠ 0) and P(σij ≠ 0) for all
genes k ≠ i, j.

(2) Starting with θ0, apply iteratively Equation (5) until the
error |θ t+1 - θ t| drops below a prespecified value, for example
10-6.
Our latent random graph approach also enables us to fit a
large number of additional genes into a constructed genetic
network. In this case, for a gene pair i, j in step 1 of the analy-
sis, the partial correlation coefficients ρij|k are not only com-
puted and tested for genes k in the model but also for the
additional candidate genes. However, the iteration in step 2 is
not extended to these candidate genes. In other words, θij is
only iteratively updated in Equation (5) if both genes i, j are in
the original model. For candidate genes k, θik and θjk are kept
fixed at a prespecified value, for example 1, and are not re-
estimated in the EM-iteration process.

This outline introduces a second level into the modeling proc-
ess. At the first level, the network between the original genes
is constructed. At the second level, we test how additional
candidate genes influence the parameters θ. If these candi-
dates have an effect on the correlation between i and j, θij will
decrease. Thus, by comparing the original network with the
network inferred from allowing for additional genes in step 1,
we can determine which candidate genes lower the θ-values
and, accordingly, fit well into the network.

Additional data files
Additional data is available with the online version of this
paper. Additional data files 1 and 2 contain the gene expres-
sion values of the isoprenoid genes (Additional data file 1) and
the 795 genes from other pathways (Additional data file 2).
Additional data file 3 contains a more detailed description of
the microarray data (such as experimental conditions,
hybridization and standardization). Additional data file 4
describes the correlation pattern of the 40 isoprenoid genes.
Additional data file 1The gene expression values of the isoprenoid genesThe gene expression values of the isoprenoid genesClick here for additional data fileAdditional data file 2The gene expression values of the 795 genes from other pathwaysThe gene expression values of the 795 genes from other pathwaysClick here for additional data fileAdditional data file 3A more detailed description of the microarray dataA more detailed description of the microarray data (such as exper-imental conditions, hybridization and standardization)Click here for additional data fileAdditional data file 4The correlation pattern of the 40 isoprenoid genesThe correlation pattern of the 40 isoprenoid genes.Click here for additional data file
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