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Summary

Three different protein prenyltransferases (farnesyltransferase and geranylgeranyltransferases I and
II) catalyze the attachment of prenyl lipid anchors 15 or 20 carbons long to the carboxyl termini of
a variety of eukaryotic proteins. Farnesyltransferase and geranylgeranyltransferase I both recognize
a ‘Ca1a2X’ motif on their protein substrates; geranylgeranyltransferase II recognizes a different,
non-CaaX motif. Each enzyme has two subunits. The genes encoding CaaX protein
prenyltransferases are considerably longer than those encoding non-CaaX subunits, as a result of
longer introns. Alternative splice forms are predicted to occur, but the extent to which each splice
form is translated and the functions of the different resulting isoforms remain to be established.
Farnesyltransferase-inhibitor drugs have been developed as anti-cancer agents and may also be able
to treat several other diseases. The effects of these inhibitors are complicated, however, by the
overlapping substrate specificities of geranylgeranyltransferase I and farnesyltransferase. 
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Gene organization and evolutionary history 
Gene organization 
Protein prenylation is the posttranslational attachment of

either a farnesyl group or a geranylgeranyl group via a

thioether linkage (-C-S-C-) to a cysteine at or near the car-

boxyl terminus of the protein. Farnesyl and geranylgeranyl

groups are polyisoprenes, unsaturated hydrocarbons with a

multiple of five carbons; the chain is 15 carbons long in the

farnesyl moiety and 20 carbons long in the geranylgeranyl

moiety (see Table 1). There are three different protein

prenyltransferases in humans: farnesyltransferase (FT) and

geranylgeranyltransferase 1 (GGT1) share the same motif

(the CaaX box) around the cysteine in their substrates, and

are thus called CaaX prenyltransferases, whereas geranyl-

geranyltransferase 2 (GGT2, also called Rab geranylgeranyl-

transferase) recognizes a different motif and is thus called a

non-CaaX prenyltransferase [1]. Each protein consists of two

subunits, � and �; the � subunit of FT and GGT1 is encoded

by the same gene, FNTA (see Table 1). 

The genomic organization of the human genes that encode

protein prenyltransferases is shown in Figure 1. It is interesting

to note that the genes encoding both subunits of non-CaaX

prenyltransferases are much smaller (about 6-9 kilobases,

kb) than those of the CaaX prenyltransferases (about 30-76

kb). The number of exons in the two types of genes are

similar; the differences in gene size therefore result from dif-

fering intron lengths.

Automatic comparisons of data from expressed sequence

tags (ESTs) with genes (for example using the program

Acembly, for which the results are available from the NCBI

AceView server [2]) shows that all the human protein

prenyltransferase genes have multiple alternative splice vari-

ants. The extent of translation of the various predicted tran-

scripts and the structures and functions of the resulting

proteins remain to be established experimentally; some of

the predicted transcripts may be derived from missplicing

rather than being real splice variants. 

Evolutionary history  
Protein prenyltransferases are currently known only in

eukaryotes, but they are widespread, being found in verte-

brates, insects, nematodes, plants, fungi and protozoa,



including several parasites. The chromosomal locations and

number of exons from protein prenyltransferase genes in

the major eukaryotic model organisms are shown in

Table 2. The � and � subunits have different folds, so are

unlikely to have arisen from a common ancestor. Molecular

phylogenetic analysis shows that orthologous proteins in

different species are more closely related to each other than

to their paralogs in the same species; the relationships

between the � subunits are not fully clear. As well as the

known genes, processed pseudogenes resulting from retro-

transposition events have been found in the human and

mouse genomes [3,4].

The � subunits of protein prenyltransferases consist of tetra-

tricopeptide repeats and are part of the tetratricopeptide

repeat superfamily [5], which also includes functionally

diverse proteins involved in transcription, co-chaperoning,

protein transport, cell-cycle control and phosphorylation.

Although evolution of repeat proteins is difficult to analyze

and interpret, Zhang and Grishin [6] have deduced convinc-

ingly that the FNTA and RABGGTA genes originated from a

common ancestor that already contained multiple tetratrico-

peptide repeats rather than having independently amplified

the number of motifs as the families diverged over time.

The evolutionary history of the � subunits of protein prenyl-

transferases has received much less attention so far than that

of the � subunits [7]. They can, however, be shown using

standard sequence analysis tools such as PSI-Blast [8] or

HMMer [9] to be part of a superfamily of prenyltransferases.

Whereas the � subunits of protein prenyltransferases attach

lipid anchors to proteins, other members of the superfamily

catalyze different reactions involving polyisoprenes, such as

the cyclization of polyisoprene derivatives during the synthe-

sis of hopanoids in bacteria [10], cycloartenol in plants [11],

ergosterol in fungi [12] and lanosterol in vertebrates [13,14];

these products are then generally processed further to

produce essential substances such as cholesterol, steroid

hormones or vitamin D and their equivalents. A merged

PFAM [15] domain (PF00432) has been created containing

the � subunits of protein prenyltransferases, as well as squa-

lene-hopene cyclases and lanosterol and cycloartenol syn-

thases. Intriguingly, structural superposition of the

conserved (�-�)6 barrel forming one half of bacterial squa-

lene-hopene cyclase (the enzyme that synthesizes

hopanoids) [16] with the � subunit of rat FT [17] reveals cor-

respondence not only of their secondary structural elements

but also of the parts of their active or binding sites

(Figure 2). This would make sense if the different enzymes

have retained common reaction mechanisms - or at least

common substrate-binding characteristics - during evolu-

tion. Indeed, all of the members of the prenyltransferase

superfamily bind substrates containing isoprenyl units,

although they bind different numbers and variations of such

units and the underlying processing and binding mecha-

nisms seem to have diverged widely over time. 
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Table 1 

Features of human protein prenyltransferases

Farnesyltransferase (FT) Geranylgeranyltransferase I (GGT1) Geranylgeranyltransferase II (GGT2 or RabGGT)

Gene name 
(� subunit) FNTA FNTA RABGGTA

Gene name 
(� subunit) FNTB PGGT1B RABGGTB

Substrate motif Carboxy-terminal -Ca1a2X box* Carboxy-terminal -Ca1a2X box* Carboxy-terminal motif such as -CC, -CXC, 
-CCX, -CCXX, -CCXXX, or -CXXX†

Farnesyl

Geranylgeranyl Geranylgeranyl
(one or two moieties per substrate)

*C, cysteine; a1, and a2 are amino acids that are preferably aliphatic; the identity of a1 is more flexible than a2. X can be C, S, Q, A, M, T, H, V, N, F, G, or
I for FT, or L, F, I, V, or M for GGT1 (in decreasing order of affinity). †Requires an escort protein such as REP1.

Lipid anchor



Characteristic structural features 
The CaaX prenyltransferases FT and GGT1 and the non-CaaX

prenyltransferase GGT2 share the same heterodimeric struc-

ture  [1] (Figure 3). In the � subunits of both types of protein

prenyltransferases, seven tetratricopeptide repeats are

formed by pairs of helices (helices 2 to 15) that are stabilized

by conserved intercalating residues. The � subunits of GGT2

in mammals and plants also have an immunoglobulin-like

domain between the fifth and sixth tetratricopeptide repeat,

as well as leucine-rich repeats at the carboxyl terminus. The

functions of these additional domains in GGT2 are as yet

undefined, but they are apparently not directly involved in

the interaction with substrates and Rab escort proteins (see

below) [18,19]. The tetratricopeptide repeats of the � subunit

form a right-handed superhelix, which embraces the (�-�)6

barrel of the � subunit [20]. The � subunits include most of

the substrate- and lipid-binding pockets [20] and their tight

association with the respective � subunits is required for

proper function [21]. Compared with FT, GGT2 has a larger

hydrophobic pocket in the � subunit to accommodate the

longer lipid [22]. 

It is difficult to estimate the effect of alternative splicing on

the structure of protein prenyltransferases. We would

expect that the integrity of the structure of the � subunits

would be more sensitive to non-terminal truncations than

are the � subunits, because the modular structure of the
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Figure 1 
Gene structures and chromosomal locations of human protein
prenyltransferase subunit genes. The chromosome diagrams and the
locations of the genes on the cytogenetic map are according to the NCBI
MapViewer [67]. The sizes of the genes are indicated but are not drawn
to scale. (a) Genes encoding CaaX protein prenyltransferases are
relatively long; (b) genes encoding non-CaaX protein prenyltransferases
are much shorter.

52.0 kb5q22

PGGT1B

9 exons

75.9 kb
14q23-q24

FNTB

12 exons

6.1 kb14q11

RABGGTA

16 exons

29.9 kb8p22-q11

FNTA

9 exons

8.9 kb1p31

RABGGTB

8 exons

(a) (b)
Table 2 

Protein prenyltransferase genes in model organisms

Organism Subunit Chromosome Number 
of exons

Mus musculus FTA (GGT1A) 8 9

FTB 12 6

GGT1B 18 9

GGT2A 14 15

GGT2B 3 8

Drosophila melanogaster FTA (GGT1A) 2 3

FTB 3 4

GGT1B 2 4

GGT2A 3 1

GGT2B 2 2

Caenorhabditis elegans FTA (GGT1A) 4 4

FTB 5 6

GGT1B 2 6

GGT2A 4 9

GGT2B 3 6

Arabidopsis thaliana FTA (GGT1A) 3 5

FTB 5 14

GGT1B 2 11

GGT2A 4 8

GGT2B 3 9

Saccharomyces cerevisiae FTA (GGT1A) 11 1

FTB 4 1

GGT1B 7 1

GGT2A 10 1

GGT2B 16 1
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Figure 2 
The structural relationship between protein prenyltransferase � subunits and squalene-hopene cyclases. (a) The complete structure of squalene-hopene
cyclase from the bacterium Alicyclobacillus acidocaldarius (Protein Data Bank (PDB) identifier 3SQC [68]). (b) Structural superposition of the conserved
(�-�)6 barrels of squalene-hopene cyclase (blue) and the rat FT � subunit (cyan; see Figure 3 for the full structure of the FT). Blue spheres, functionally
important residues in the half of the squalene-hopene cyclase that is shown (the sphere indicates the van der Waals radius); pink spheres, farnesyl-
pyrophosphate and Zn2+ bound to the � subunit of FT; pink residues in stick representation, the Ca1a2X peptide of the substrate protein. (c) Alignment
of the two proteins on the basis of the structural superposition. Secondary structural elements are colored as in (b); black residues with colored
background represent � helix and white residues with colored background represent � sheet. Conserved residues and similar residues are shown below
the alignment; 1, polar; 2, small; 3, aromatic; 4, hydrophobic. The lower-case letters represent residues within 3SQC that were not easily superimposed
on the 1D8D structure (that is, gaps in 1D8D). The molecular representations were created using VMD [69].

* 20 * 40 *
1D8D:B 95 CLDASRPWLCYWILHSLELLDEPIPQIVATDVCQFLELCQSP-------------DGG 139
3SQC:C 305 QASISPVWDTGLAVLALRAAGLPADHDRLVKAGEWLLDRQITvpgdwavkrpnlkPGG 362

S W 4 2L1 P 1 13L Q GG

60 * 80 * 100 *
1D8D:B 140 FGGGPGQ--YPHLAPTYAAVNALCIIGTEEAYNVIN-REKLLQYLYSLKQPDGSFLMH 194
3SQC:C 363 FAFQFDNvyYPDVCDTAVVVWALNTLRLPDERRRRDaMTKGFRWIVGMQSSNGGWGAY 420

F2 1 YP 4 T V AL 4 1 1 1 K 134 241 1G23 3

120 * 140 * 160 *
1D8D:B 195 VG-------------------GEVDVRSAYCAASVASLTNII-TPDLFEGTAEWIARC 232
3SQC:C 421 DVdntsdlpnhipfcdfgevtDPPSEDVTAHVLECFGSFGYDdAWKVIRRAVEYLKRE 478

1 2 2 2 14 1 2 E34 R

180 * 200 * 220 *
1D8D:B 233 QNWEGGIGGVPGME---AHGGYTFCGLAALV-ILKKERSLNLKSLLQWVTSRQMRFEG 286
3SQC:C 479 QKPDGSWFG----RwgvNYLYGTGAVVSALKaVGIDTREPYIQKALDWVEQHQNP-DG 531

Q1 1G2 G 1 3 T 42AL 4 1 R 41 L1WV Q 1G

240 * 260 * 280 *
1D8D:B 287 GFQG----------RCNKLVDGCYSFWQAGLLPLLHRALHAQGDPALSMSHWMFHQQA 334
3SQC:C 532 GWGEdcrsyedpayAGKGASTPSQTAWALMALIAGGR-------------AESEAARR 576

G3 1 2 W L R 1

300 * 320 * 340
1D8D:B 335 LQEYILMCCQCPAGGLLDKPGKS-------------RDFYHTCYCLSGLSIAQHFGS 378
3SQC:C 577 GVQYLVETQRPD-GGWDE---PYytgtgfpgdfylgYTMYRHVFPTLALGRYKQAIE 629

1Y44 1 GG 1 Y 3 2L2 1

(a)

(c)

(b)



tetratricopeptide repeat motifs in the � subunits would

allow truncations and additions without severe conse-

quences for the hydrophobic packing of the structure. 

Enzyme mechanism  
CaaX prenyltransferases recognize the carboxy-terminal

Ca1a2X motif (see Table 1) [23,24] of substrate proteins,

usually after binding farnesyl-pyrophosphate [25] or ger-

anylgeranyl-pyrophosphate [26]. The lipid anchors are then

transferred by a catalytic mechanism that depends on for-

mation of a complex between a Zn2+ cation and the cysteine

of the Ca1a2X motif [20]. High concentrations of Mg2+ are

required for optimal enzymatic activity of FT [27], though

this is apparently not the case for GGT1 [28]. The Zn2+ is

suggested to be required for the proper conformation of the

substrate peptide [17]. The major conformational change in

the transfer step seems to be a rotation of the prenylpyro-

phosphate in the binding pocket and not of parts of the

enzyme itself. A detailed picture of the reaction pathway that

involves electrophilic and nucleophilic mechanisms is given

by a series of structures representing the different states [28]

as well as by kinetic measurements [29]. 

In contrast to FT and GGT1, GGT2 does not require a very

specific carboxy-terminal motif [30] apart from the avail-

ability of several cysteines close to the carboxyl terminus

that are often arranged -CC, -CXC, -CCX, -CCXX, -CCXXX

or, in a few cases, with only a single cysteine as in -CXXX. If

the motif consists of two cysteines in close proximity, two

geranylgeranyl moieties are usually added. 

GGT2 recognizes the structural features of a complex of the

substrate with an escort protein (Rab escort protein (REP),

previously known as component A) and then scans the

carboxyl terminus for prenylatable cysteines [30]. The

catalytic mechanism of lipid transfer from geranylgeranyl-

pyrophosphate to the protein substrate also requires Zn2+,

and the following model has been presented for how the

double geranylgeranylation could take place on the basis of

insights from the reaction pathway of FT [28]. After attach-

ment of the first prenyl group, the lipid chain is translocated

over the enzyme surface into another hydrophobic groove

upon binding of the second geranylgeranyl-pyrophosphate.

Finally, binding of a third geranylgeranyl-pyrophosphate

releases the whole complex of the now doubly geranyl-

geranylated substrate with its escort protein; the escort

protein is also involved in the transport of the substrate to

the target membrane [31,32].

Localization and function
The results of systematic oligonucleotide microarray experi-

ments catalogued in the human gene-expression index

database [33,34] show that protein prenyltransferases are

expressed in a variety of tissues. Both CaaX prenyltrans-

ferases seem to be active (that is, their � and � subunits are

coexpressed) in a range of tissues, and the non-CaaX

prenyltransferase subunits are also expressed in several

more tissues. It should be noted, however, that many of the

expression levels listed [33,34] are close to the detection

threshold and could therefore result from cross-hybridiza-

tion between close homologs rather than true expression.

Interestingly, the � subunits also appear to be expressed in

tissues that lack expression of the corresponding � sub-

units; this suggests that single subunits, or isoforms of

them, might have additional, prenylation-independent

functions in the cell. 

As the � subunit of CaaX prenyltransferases is shared

between FT and GGT1, its expression must be higher than

that of each � subunit if it is to form 1:1 complexes with the �

subunits of both enzymes. These higher expression levels

seem to be transcriptionally regulated by different promot-

ers; in order to produce recombinant CaaX prenyltrans-

ferases in the laboratory, it is thus necessary to

downregulate expression of the � subunits when coexpress-

ing with � subunits [35].

Lipid anchors are common posttranslational modifications

that can direct the subcellular localization of proteins. Other

lipid modifications, such as myristoylation [36-38], palmi-

toylation [39,40] and glycosylphosphatidylinositol (GPI)

anchors [41,42], are mainly important for attachment of the

protein to membranes, but lipid modification by protein

prenyltransferases seems to have a more complex role: the

farnesyl and geranylgeranyl moieties attached to the sub-

strates are directly involved in protein-protein interactions

as well as in protein-membrane interactions  [43]. The

importance of protein prenyltransferases is illustrated by the
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Figure 3
The complete structure of rat FT (PDB identifier 1D8D [70]). The
spheres in the center represent the farnesyl-pyrophosphate and Zn2+, and
the amino acids in stick representation are the CaaX motif of the protein
substrate. The molecular representation was created using VMD [69].
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involvement of their substrates in critical cellular pathways

and diseases [44].

Substrates and functions of CaaX prenyltransferases 
Typical substrates that are farnesylated by FT include many

members of the Ras superfamily of small GTPases (H-Ras,

K-Ras, N-Ras, Ras2, Rap2, RhoB (which is also geranylger-

anylated), RhoE, Rheb, TC10, and TC21), as well as the

nuclear lamina proteins lamin A and B, the kinetochore pro-

teins CENP-E and CENP-F, fungal mating factors, cGMP

phosphodiesterase �, � subunit variants of G proteins, DnaJ

heat-shock protein homologs, rhodopsin kinase, the peroxi-

somal membrane proteins Pex19 and PxF and paralemmin

(a neural protein suggested to be involved in membrane

dynamics). GGT1 preferentially geranylgeranylates some of

the other small GTPases (such as Rac1, Rac2, RalA, Rap1A,

Rap1B, RhoA, and RhoB (which is also farnesylated, as

noted above), RhoC, Cdc42, Rab8 (which is also geranyl-

geranylated by GGT2), Rab11, and Rab13, as well as some

�-subunit variants of G proteins, cGMP phosphodiesterase �

and the plant calmodulin CaM53. Typically, prenylation by

CaaX protein prenyltransferases is accompanied by further

posttranslational processing, most often involving cleavage

of the carboxy-terminal tripeptide (-a1a2X) followed by car-

boxymethylation of the carboxyl terminus [45-47]. Palmitoy-

lation is another modification that sometimes takes place

after prenylation [48].

Because several prenylated substrates are involved in dis-

eases, inhibition of protein prenyltransferases has great

potential for medical applications. A boom in the field was

triggered by the finding that inhibition of FT in mice that

have tumors derived from H-Ras-transformed cells leads to

tumor regression, while the inhibitor has no adverse effect

on the organism [49]. This led to successful completion of

clinical phase I trials of farnesyl transferase inhibitors

(FTIs), but in phase II trials the efficacy of the inhibitors

towards a broad spectrum of different cancer cells (such as

K-Ras-transformed cells) was far below the high expecta-

tions that arose from the phase I trials. Surprisingly,

however, beneficial effects were found for other, non-

neoplastic diseases; for example, diabetic retinopathy and

macular degeneration [50]. The unexpected physiological

effects of FT inhibition are partly due to a striking cross-

specificity between the two CaaX prenyltransferases: both

FT and GGT1 can use either farnesyl-pyrophosphate or

GGPP to a certain extent to transfer lipids to several of each

others’ substrates as well as their own [51,52], and several

substrates can be either farnesylated or geranylgeranylated.

The substrates probably compete in vivo for the enzymes

loaded with the preferred polyprenyl-pyrophosphate, and

the type of modification that is added depends on the rela-

tive affinity of the substrates for the enzymes. 

In cancer cells, FTIs are known to affect growth in soft agar

(anchorage-independent growth), cell-cycle progression at

the G1-S phase and the G2-M phase checkpoints, the morphol-

ogy of the cytoskeleton (formation of actin stress fibers) and

induction of apoptosis. The substrate proteins that have

been suggested to be involved in these effects include H-Ras

[49], Rheb [53], CENP-E [54] and RhoB [55]; FTI effects are

reviewed in more detail elsewhere [56]. The effects of FT

inhibition in cells transformed with H-Ras differ from those

on cells transformed with K-Ras. This difference has been

attributed to the ability of GGT1 to alternatively prenylate

some proteins, through the cross-specificity mentioned

above, including K-Ras but not H-Ras (see Figure 4). RhoB

can be both farnesylated and geranylgeranylated; Prender-

gast and colleagues [57] have suggested that the different

levels of farnesylated and geranylgeranylated RhoB in FTI-

treated cells compared with untreated cells could contribute

to the observed effects of FTIs.

Substrates and functions of non-CaaX
prenyltransferases 
The main substrates for prenylation by GGT2 are the Rab

family of proteins, the largest group of small GTPases in the
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Figure 4
Differential prenylation of substrates of CaaX protein prenyltransferases (a)
under normal conditions and (b) in the presence of a FT inhibitor.
Substrates are shown in the middle of each panel, with the two enzymes
above and below. ‘Vital-F’ and ‘Vital-GG’ represent all the proteins for which
farnesylation (Vital-F) or geranylgeranylation (Vital-GG) are essential; RhoB-
GG represents geranylgeranylated RhoB and RhoB-F represents farnesylated
RhoB. Thick arrow, normal prenylation activity; thin arrow, reduced
prenylation activity through cross-specificity of the non-preferred enzyme;
arrows with crosses, blocked prenylation activity during inhibition of FT;
brackets, substituting prenylation activity by GGT1 during inhibition of FT. 
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Ras superfamily. There are at least 60 different Rabs in

humans [58]. They interact with the Rab escort protein REP,

which is required for the prenylation of Rabs by GGT2 [30],

and are involved in the docking of transport vesicles to their

specific target membranes [59]. 

As with CaaX protein prenyltransferases, deficiencies in

prenylation by non-CaaX protein prenyltransferases are rel-

evant to diseases [59,60]. A mutation inactivating a start

codon of the major transcript of the � subunit of GGT2 is

one of the many mutations involved in the recessively inher-

ited Hermansky-Pudlak syndrome and related disorders

[61,62], in which platelet synthesis, platelet organelle func-

tion and pigmentation are affected. X-linked choroideremia

(CHM) results in retinal degeneration, with symptoms start-

ing from night blindness in young people and progressing

over decades until vision is completely lost [63]. It is caused

by loss-of-function mutations in the CHM gene, which

encodes Rab escort protein 1 (REP1) [64]. Loss-of function

mutations in the Rab27a gene cause Griscelli syndrome,

whose symptoms are similar to Hermansky-Pudlak syn-

drome and other diseases associated with insufficient Rab

prenylation [60].

Frontiers
There are several issues that merit further study in the reg-

ulation of protein prenyltransferases. Firstly, it is not clear

how the concomitant transcription of the two subunits

from two different chromosomes is regulated or where and

how the subunits meet to build up functional prenyltrans-

ferases. Secondly, given that there are multiple splice vari-

ants, it is likely that additional variants of subunits will be

found to have distinct functions or regulatory roles; an

example is a variant of the FT/GGT1 � subunit that has

been reported to be directly involved in signaling by trans-

forming growth factor � and activin  [65]. Interpretation of

results in areas ranging from molecular biology to clinical

trials must take into account possible isoforms with

varying functions or altered interactions to avoid erro-

neous conclusions. 

A third issue is the striking differences in gene size and

intron length between the two types of protein prenyltrans-

ferases. One of several possible factors that could have

caused this is a difference in evolutionary selection pres-

sures. Whereas FT and GGT1 partly compensate each other

functionally, there is no counterpart for GGT2. Furthermore,

formation of a complex between the substrate and an escort

protein is necessary for recognition by GGT2 and the conser-

vation of additional binding sites at the surface is therefore

required. Also, the severity of the effect when the prenylation

of different substrates is abolished may vary. Finally, the size

of the genomic region containing the gene might alter its

accessibility to the transcription machinery and the time

needed to complete transcription, so gene size may affect or

be affected by expression levels. The implications of these

factors for the exact evolutionary history of the protein

prenyltransferase genes (such as the relative ages of the sub-

units and the order of duplication events) remain to be

established. 

Finally, more research is also needed on the effects of FTIs.

After the rush to develop inhibitors, basic research is now

needed as well as clinical trials in order to improve the

understanding of the basic processes involved [66]. For

example, it cannot be ruled out that some effects of FTIs are

not a direct consequence of inhibiting prenylation but are

instead due to cross-reactivity with proteins from completely

different pathways. It is tempting to speculate that one of the

proteins that are evolutionarily related to the protein prenyl-

transferases (such as other prenyltransferases) could be

affected by FTIs; the selectivity of existing FTIs, which do

not inhibit even the much more closely related GGTs, makes

this scenario most unlikely, however. The next task is to

identify clearly the proteins whose altered prenylation

causes the observed effects of FT inhibition. Given the multi-

plicity and heterogeneity of these effects, it is clear that they

cannot be attributed to one single farnesylated protein that

lacks a lipid modification because of FT inhibition; rather,

alterations in the function of several proteins probably cause

the observed effects, with variations depending on the cell

type, disease and organism. Further research may eventually

lead to FTIs being used successfully to treat cancers and

other diseases.
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