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Abstract

Extracting biological information from microarray data requires appropriate statistical methods.
The simplest statistical method for detecting differential expression is the t test, which can be
used to compare two conditions when there is replication of samples. With more than two
conditions, analysis of variance (ANOVA) can be used, and the mixed ANOVA model is a general
and powerful approach for microarray experiments with multiple factors and/or several sources
of variation. 
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Gene-expression microarrays hold tremendous promise for

revealing the patterns of coordinately regulated genes.

Because of the large volume and intrinsic variation of the

data obtained in each microarray experiment, statistical

methods have been used as a way to systematically extract

biological information and to assess the associated uncer-

tainty. Here, we review some widely used methods for testing

differential expression among conditions. For these purposes,

we assume that the data to be used are of good quality and

have been appropriately transformed (normalized) to ensure

that experimentally introduced biases have been removed

[1,2]. See Box 1 for a glossary of terms. For other aspects of

microarray data analysis, please refer to recent reviews on

experimental design [3,4] and cluster analysis [5].

Comparing two conditions 
A simple microarray experiment may be carried out to detect

the differences in expression between two conditions. Each

condition may be represented by one or more RNA samples.

Using two-color cDNA microarrays, samples can be com-

pared directly on the same microarray or indirectly by

hybridizing each sample with a common reference sample

[4,6]. The null hypothesis being tested is that there is no

difference in expression between the conditions; when

conditions are compared directly, this implies that the true

ratio between the expression of each gene in the two samples

should be one. When samples are compared indirectly, the

ratios between the test sample and the reference sample

should not differ between the two conditions. It is often more

convenient to use logarithms of the expression ratios than the

ratios themselves because effects on intensity of microarray

signals tend be multiplicative; for example, doubling the

amount of RNA should double the signal over a wide range of

absolute intensities. The logarithm transformation converts

these multiplicative effects (ratios) into additive effects (dif-

ferences), which are easier to model; the log ratio when there

is no difference between conditions should thus be zero. If a

single-color expression assay is used - such as the Affymetrix

system [7] - we are again considering a null hypothesis of no

expression-level difference between the two conditions, and

the methods described in this article can also be applied

directly to this type of experiment. 

A distinction should be made between RNA samples

obtained from independent biological sources - biological

replicates - and those that represent repeated sampling of

the same biological material - technical replicates. Ideally,

each condition should be represented by multiple indepen-

dent biological samples in order to conduct statistical tests.
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Box 1

Glossary 

Analysis of variance (ANOVA): a procedure for con-
structing statistical tests by partitioning the total variance
into different sources.

Biological replicates: biological samples obtained in
replicate from independent sources representing the
same condition, such as liver tissue from individual mice
of the same sex and strain.

Bonferroni correction: a multiple-testing adjustment in
which the nominal significance level is divided by the total
number of tests. 

Broad-sense inference: an inference that applies to the
entire population from which biological samples were
obtained.

Decomposition: separation of a complex variance term
in an ANOVA model into its components. For example,
in an experiment that varies sex and treatment, the total
variance in the data can be decomposed into components
attributable to sex, treatment, interaction, and error.

Degrees of freedom: the number of levels that can
vary freely in a term of an ANOVA model. It is typically
one less than the number of levels in the factor. For
example, the factor sex has two levels, female (F) and
male (M). The effects attributed to these levels are devia-
tions from an overall mean and so are constrained to sum
to zero. If the effect of F is +1 the effect of M must be -1,
and thus there is only one degree of freedom associated
with this two-level factor.

Error variance: the variation associated with an esti-
mated quantity. It is the square of the standard error and
is commonly used to assess the accuracy of estimation.

False negative rate: the proportion of type II errors
among the null hypotheses that were not rejected in mul-
tiple testing.

False positive rate: the proportion of type I errors
among the rejected null hypotheses in multiple testing.

Fixed effect: a term in an ANOVA model for which the
levels are going to be repeated exactly if the experiment
is repeated. For example, the factor sex has two levels
(F and M) and the same levels will occur again in a replica-
tion of the experiment. We are generally interested in
the mean values associated with levels of a fixed effect.

Fixed-effects ANOVA: an ANOVA model in which all
terms except the residual term are fixed effects. In a fixed-
effects model there is only one source of random variation. 

Fold change: the ratio of RNA quantities between two
samples in a microarray experiment, often estimated by
the ratio of fluorescent signal intensities.

Log ratio: logarithm of the fold change.

Mixed-model ANOVA: an ANOVA model in which
some terms are treated as random effects and others as
fixed effects. In a mixed model there may be multiple
sources of random variation.

Narrow-sense inference: an inference that applies only
to the biological samples used in the experiment. 

Nominal significance level/p-value: a significance
level/p-value to which no multiple-testing adjustment has
been applied.

Normalization: the process of removing certain sys-
tematic biases from microarray data.

Null hypothesis: a hypothesis for which the effects of
interest are assumed to be absent. Commonly used as a
basis for constructing statistical tests.

Permutation analysis: a method of simulating data that
satisfy a null hypothesis by shuffling the observed data. 

Power: the probability that a real effect can be identi-
fied by a statistical test. It is one minus the type II error
probability. 

p-value: a measure of the evidence against the null
hypothesis in a statistical test. It is the probability of the
occurrence of a test statistic equal to, or more extreme
than, the observed value under the assumption that the
null hypothesis is true. 

Random effect: a term in ANOVA model for which the
levels represent a sample from a population of levels. In a
replicated experiment the same values will not repeat.
For example, the effect of a spot on a microarray slide
will vary in repeated experiments because the exact size
of spots varies at random. We are generally interested in
the variability associated with a random effect.

Residual: the difference between an observed data value
and its expectation as predicted by a model. It is the
lowest-level term in an ANOVA model and is often
denoted as �i.



If only technical replicates are available, statistical testing is

still possible but the scope of any conclusions drawn may be

limited [3]. If both technical and biological replicates are

available, for example if the same biological samples are

measured twice each using a dye-swap assay, the individual

log ratios of the technical replicates can be averaged to yield

a single measurement for each biological unit in the experi-

ment. Callow et al. [8] describe an example of a biologically

replicated two-sample comparison, and our group [9]

provide an example with technical replication. More compli-

cated settings that involve multiple layers of replication can

be handled using the mixed-model analysis of variance tech-

niques described below. 

‘Fold’ change 
The simplest method for identifying differentially expressed

genes is to evaluate the log ratio between two conditions (or

the average of ratios when there are replicates) and consider

all genes that differ by more than an arbitrary cut-off value

to be differentially expressed [10-12]. For example, if the

cut-off value chosen is a two-fold difference, genes are taken

to be differentially expressed if the expression under one

condition is over two-fold greater or less than that under the

other condition. This test, sometimes called ‘fold’ change, is

not a statistical test, and there is no associated value that can

indicate the level of confidence in the designation of genes as

differentially expressed or not differentially expressed. The

fold-change method is subject to bias if the data have not

been properly normalized. For example, an excess of low-

intensity genes may be identified as being differentially

expressed because their fold-change values have a larger

variance than the fold-change values of high-intensity genes

[13,14]. Intensity-specific thresholds have been proposed as

a remedy for this problem [15].

The t test
The t test is a simple, statistically based method for detecting

differentially expressed genes (see Box 2 for details of how it

is calculated). In replicated experiments, the error variance

(see Box 1) can be estimated for each gene from the log

ratios, and a standard t test can be conducted for each gene

[8]; the resulting t statistic can be used to determine which

genes are significantly differentially expressed (see below).

This gene-specific t test is not affected by heterogeneity in

variance across genes because it only uses information from

one gene at a time. It may, however, have low power because

the sample size - the number of RNA samples measured for

each condition - is small. In addition, the variances esti-

mated from each gene are not stable: for example, if the esti-

mated variance for one gene is small, by chance, the t value

can be large even when the corresponding fold change is

small. It is possible to compute a global t test, using an esti-

mate of error variance that is pooled across all genes, if it is

assumed that the variance is homogeneous between differ-

ent genes [16,17]. This is effectively a fold-change test

because the global t test ranks genes in an order that is the

same as fold change; that is, it does not adjust for individual

gene variability. It may therefore suffer from the same biases

as a fold-change test if the error variance is not truly con-

stant for all genes.

Modifications of the t test
As noted above, the error variance (the square root of which

gives the denominator of the t tests) is hard to estimate and

subject to erratic fluctuations when sample sizes are small.

More stable estimates can be obtained by combining data

across all genes, but these are subject to bias when the

assumption of homogeneous variance is violated. Modified

versions of the t test (Box 2) find a middle ground that is

both powerful and less subject to bias.

In the ‘significance analysis of microarrays’ (SAM) version of

the t test (known as the S test) [18], a small positive constant

is added to the denominator of the gene-specific t test. With

this modification, genes with small fold changes will not be

selected as significant; this removes the problem of stability

mentioned above. The regularized t test [19] combines infor-

mation from gene-specific and global average variance esti-

mates by using a weighted average of the two as the

denominator for a gene-specific t test. The B statistic pro-

posed by Lonnstedt and Speed [20] is a log posterior odds

ratio of differential expression versus non-differential

expression; it allows for gene-specific variances but it also
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Box 1 (continued)

Residual sums of squares: the sum of all the residu-
als squared. It is a measure of the total discrepancy
between a model and the observed data. 

Restricted maximum likelihood: a numerical
method for estimating variance components in a
mixed ANOVA model [40,41].

Significance level: the size of a p-value that is
regarded as providing sufficient evidence against a null
hypothesis. If the p-value falls below the significance
level, the null hypothesis is rejected. 

Technical replicates: multiple RNA samples obtained
from the same biological source. 

Type I error: the event of rejecting a null hypothesis
when it is true. 

Type II error: the event of failing to reject a null
hypothesis when it is false. 

Definitions are from [44-46].



combines information across many genes and thus should be

more stable than the t statistic (see Box 2 for details). 

The t and B tests based on log ratios can be found in the Sta-

tistics for Microarray Analysis (SMA) package [21]; the S test

is available in the SAM software package [22]; and the regu-

larized t test is in the Cyber T package [23]. In addition, the

Bioconductor [24] has a collection of various analysis tools

for microarray experiments. Additional modifications of the

t test are discussed by Pan [25]. 

Graphical summaries (the ‘volcano plot’) 
The ‘volcano plot’ is an effective and easy-to-interpret graph

that summarizes both fold-change and t-test criteria (see

Figure 1). It is a scatter-plot of the negative log10-transformed

p-values from the gene-specific t test (calculated as described

in the next section) against the log2 fold change (Figure 1a).

Genes with statistically significant differential expression

according to the gene-specific t test will lie above a horizontal

threshold line. Genes with large fold-change values will lie

outside a pair of vertical threshold lines. The significant genes

identified by the S, B, and regularized t tests will tend to be

located in the upper left or upper right parts of the plot. 

Significance and multiple testing
Nominal p-values 
After a test statistic is computed, it is convenient to convert it

to a p-value. Genes with p-values falling below a prescribed

level (the ‘nominal level’) may be regarded as significant.

Reporting p-values as a measure of evidence allows some

flexibility in the interpretation of a statistical test by provid-

ing more information than a simple dichotomy of ‘significant’

or ‘not significant’ at a predefined level. Standard methods

for computing p-values are by reference to a statistical distri-

bution table or by permutation analysis. Tabulated p-values

can be obtained for standard test statistics (such as the t test),

but they often rely on the assumption that the errors in the

data are normally distributed. Permutation analysis involves

shuffling the data and does not require such assumptions. If

permutation analysis is to be used, the experiment must be

large enough that a sufficient number of distinct shuffles can

be obtained. Ideally, the labels that identify which condition

is represented by each sample are shuffled to simulate data

from the null distribution. A minimum of about six replicates

per condition (yielding a total of 924 distinct permutations) is

recommended for a two-sample comparison. With multiple

conditions, fewer replicates are required. If the experiment is

too small, permutation analysis can be conducted by shuf-

fling residual values across genes (see Box 1), under the

assumption of homogeneous variance [6,25]. 

When we conduct a single hypothesis test, we may commit

one of two types of errors. A type I or false-positive error

occurs when we declare a gene to be differentially expressed

when in fact it is not. A type II or false-negative error occurs

when we fail to detect a differentially expressed gene. A sta-

tistical test is usually constructed to control the type I error

probability, and we achieve a certain power (which is equal

to one minus the type II error probability) that depends on

the study design, sample size, and precision of the measure-

ments. In a microarray experiment, we may conduct thou-

sands of statistical tests, one for each gene, and a substantial

number of false positives may accumulate. The following are

some of the methods available to address this problem,

which is called the problem of multiple testing.

Family-wise error-rate control 
One approach to multiple testing is to control the family-

wise error rate (FWER), which is the probability of accumu-

lating one or more false-positive errors over a number of

statistical tests. This is achieved by increasing the stringency

that we apply to each individual test. In a list of differentially

expressed genes that satisfy an FWER criterion, we can have

high confidence that there will be no errors in the entire list.

The simplest FWER procedure is the Bonferroni correction:

the nominal significance level is divided by the number of

tests. The permutation-based one-step correction [26] and

the Westfall and Young step-down adjustment [27] provide

FWER control and are generally more powerful but more

computationally demanding than the Bonferroni procedure.

FWER criteria are very stringent, and they may substantially

decrease power when the number of tests is large. 

False-discovery-rate control 
An alternative approach to multiple testing considers the

false-discovery rate (FDR), which is the proportion of false

positives among all of the genes initially identified as being

differentially expressed - that is, among all the rejected null

hypotheses [28,29]. An arguably more appropriate variation,

the positive false-discovery rate (pFDR) was proposed by

Storey [30]. It multiplies the FDR by a factor of �0, which is

the estimated proportion of non-differentially expressed genes

among all genes. Because �0 is between 0 and 1, the estimated

pFDR is smaller than the FDR. The FDR is typically computed

[31] after a list of differentially expressed genes has been gen-

erated. Software for computing FDR and related quantities

can be found at [32,33]. Unlike a significance level, which is

determined before looking at the data, FDR is a post-data

measure of confidence. It uses information available in the

data to estimate the proportion of false positive results that

have occurred. In a list of differentially expressed genes that

satisfies an FDR criterion, one can expect that a known pro-

portion of these will represent false positive results. FDR crite-

ria allow a higher rate of false positive results and thus can

achieve more power than FWER procedures. 

More than two conditions 
Relative expression values 
When there are more than two conditions in an experiment,

we cannot simply compute ratios; a more general concept of
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relative expression is needed. One approach that can be

applied to cDNA microarray data from any experimental

design is to use an analysis of variance (ANOVA) model

(Box 3a) to obtain estimates of the relative expression (VG) for

each gene in each sample [6,34]. In the microarray ANOVA

model, the expression level of a gene in a given sample is com-

puted relative to the weighted average expression of that gene

over all samples in the experiment (see Box 3a for statistical

details). We note that the microarray ANOVA model is not

based on ratios but is applied directly to intensity data; the dif-

ference between two relative expression values can be inter-

preted as the mean log ratio for comparing two samples (as

logA - logB = log(A/B), where log A and log B are two relative

expression values). Alternatively, if each sample is compared

with a common reference sample, one can use normalized

ratios directly. This is an intuitive but less efficient approach

to obtaining relative expression values than using the ANOVA

estimates. Direct estimates of relative expression can also be

obtained from single-color expression assays [35,36].

The set of estimated relative expression values, one for each

gene in each RNA sample, is a derived data set that can be

subjected to a second level of analysis. There should be one

relative expression value for each gene in each independent

sample. The distinction between technical replication and

biological replication should be kept in mind when interpret-

ing results from the analysis of a derived data. If inference is

being made on the basis of biological replicates and there is

also technical replication in the experiment, the technical

replicates should be averaged to yield a single value for each

independent biological unit. The derived data can be analyzed

on a gene-by-gene basis using standard ANOVA methods to

test for differences among conditions. For example, our group

[37] have used a derived data set to test for expression differ-

ences between natural populations of fish. 

Three flavors of F test 
The classical ANOVA F test is a generalization of the t test

that allows for the comparison of more than two samples

(Box 3). The F test is designed to detect any pattern of differ-

ential expression among several conditions by comparing the

variation among replicated samples within and between con-

ditions. As with the t test, there are several variations on the F

test (Box 3b). The gene-specific F test (F1), a generalization of
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Box 2

Tests for comparing two conditions

In this box, we define the t test and some of its variations. Let Rg be the mean log ratio of the expression levels of one
gene and SEg be its standard error. Let SE be the standard error computed by combining data across all genes.

• The global t-test statistic is t = 
Rg
–—
SE

and the gene-specific t-test statistic is  t = 
Rg
–—
SEg

. 

• The SAM (‘significance analysis of microarrays’) test statistic is S =
Rg

c +
—––—

SEg
, where the constant c can be taken to be

the 90th percentile SEg value [47]. 

Rg

• The regularized t-test statistic is t = ——————————————————— 
v0SE2 + (n - 1)SE2

g� ————————
v0 + n - 2

where v0 is a tunable parameter that determines the relative contributions of gene-specific and global variances and n is
the number of replicate measurements for each condition [19]. 

• The B statistic requires a somewhat more detailed description than we are able to provide here, but it is spelled out
by Lonnstedt and Speed [20]. Essentially it is the logarithm of a ratio of probabilities. The numerator is the probabil-
ity that a gene is differentially expressed and the denominator is the probability that the gene is not differentially
expressed. Both probabilities are estimated in light of the entire data and are called posterior probabilities; thus, the
B statistic is a logarithm of the posterior odds of differential expression. 

The t and B tests based on log ratios can be found in the Statistics for Microarray Analysis (SMA) package [21]; the
S test is available in the SAM software package [22]; and the regularized t test is in the Cyber T package [23]. In addition,
the Bioconductor [24] has a collection of various analysis tools for microarray experiments.



the gene-specific t test, is the usual F test and it is computed

on a gene-by-gene basis. As with t tests, we can also assume

a common error variance for all genes and thus arrive at the

global variance F test (F3). A middle ground is achieved by

the F2 test, analogous to the regularized t test; this uses a

weighted combination of global and gene-specific variance

estimates in the denominator. Nominal p-values can be

obtained for the F test, from standard tables, but the F2 and

F3 statistics do not follow the tabulated F distribution and

critical values should be established by permutation analysis.

Among these tests, the F3 test is the most powerful, but it is

also subject to the same potential biases as the fold-change

test. In our experience, F2 has power comparable to F3 but it

has a lower FDR than either F1 or F3. It is possible to derive

a version of the B statistic [20] for the case of multiple condi-

tions. This could provide an alternative approach to combine

variance estimates across genes in the context of multiple

samples. Any of these tests can be applied to a derived data

set of relative expression values to make comparisons among

two or more conditions. 

The results of all three F statistics can be summarized simul-

taneously using a volcano plot, but with a slight twist when

there are more than two samples. The standard deviation of

the relative expression values is plotted on the x axis instead

of plotting log fold change; the resulting volcano plot

(Figure 1b) is similar to the right-hand half of a standard

volcano plot (Figure 1a). 

The fixed-effects ANOVA model 
The process of creating a derived data set and computing the

F tests described above can be integrated in one step by

applying [20,35] our fixed-effects ANOVA model [9]; further

discussion is provided Lee et al. [34]. The fixed-effects

model assumes independence among all observations and

only one source of random variation. Depending on the

experimental design, this source of variation could be tech-

nical, as in our study [9], or biological if applied to data as

was done by Callow et al. [8]. Although it is applicable to

many microarray experiments, the fixed-effects model does

not allow for multiple sources of variation, nor does it

account for correlation among the observations that arise as

a consequence of different layers of variation. Test statistics

from the fixed-effects model are constructed using the

lowest level of variation in the experiment: if a design

includes both biological and technical replication, tests are

based on the technical variance component. If there are

replicated spots on the microarrays, the lowest level of vari-

ance will be the within-array measurement error. This is

rarely appropriate for testing, and the statistical significance

of results using within-array error may be artificially

inflated. To avoid this problem, replicated spots from the

same array can be ‘collapsed’ by taking the sum or average of

their raw intensities. This does not fully utilize the available

information, however, and we recommend application of the

mixed-effects ANOVA model, described below. 

Multiple-factor experiments 
In a complex microarray experiment, the set of conditions

may have some structure. For example, Jin et al. [38] con-

sider eight conditions in a 2 by 2 by 2 factorial design with

the factors sex, age, and genotype. There is no biological

replication here, but information about biological variance is

available because of the factorial design. In other experi-

ments, both biological and technical replicates are included.
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Figure 1
Volcano plots. The negative log10- transformed p-values of the F1 test (see
Box 3b) are plotted against (a) the log ratios (log2 fold change) in a two-
sample experiment or (b) the standard deviations of the variety-by-gene
VG values (see Box 3a) in a four-sample experiment. The horizontal bars
in each plot represent the nominal significant level 0.001 for the F1 test
under the assumption that each gene has a unique variance. The vertical
bars represent the one-step family-wise corrected significance level 0.01
for the F3 test (see Box 3b) under the assumption of constant variance
across all genes. Black points represent the significant genes selected by
the F2 test with a compromise of these two variance assumptions.
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Box 3 

(a) The microarray analysis of variance model

An analysis of variance (ANOVA) model for microarray data can be specified in two stages. The first stage is the nor-
malization model

yijgr = � + Ai + Dj + ADij + rijgr .

where yijgr is the logarithm of one signal intensity. The indices track array (i), dye (j), gene (g) and measurement (r); � is
the overall mean expression level; A is the effect of the array on the measured intensity; D is the effect of the dye on the
measured intensity; and AD is a term accounting for effects of the interaction between the array and the dye. Note that
if you have Affymetrix data, the normalization model will be different [36]. The first stage generates the term rijgr from
the measured intensities, and in the second stage, gene-specific effects are modeled in terms of the residuals of the nor-
malization mode. The gene-specific model:

rijgr = G + VGij + DGj + AGi + �ijr .

is applied to the data one gene at a time; the subscript g is therefore dropped. In this model G is the average intensity
associated with a particular gene; AGi is the effect of the array on that gene DGj is the effect of the dye on that gene; and
�ijr is the residual (see Box 1). The variety-by-gene term VG is the term that is of primary interest in our analysis; it cap-
tures variations in the expression levels of a gene across samples. We note that VGij is a ‘catch-all’ term for the effects
associated with the samples. In the simplest case, it is an indicator of the condition represented by the sample on array i
with dye j. In more complex experiments, the design structure at the biological sample level is captured in the VG terms.
For example, in the Jin et al. [38] experiment, where a 2 by 2 by 2 factorial design was used to investigate the effects of
age, sex and genotype on RNA expression in Drosophila, the VG term captures the fixed effects of age, sex and genotype
plus a sex by genotype interaction. If there are duplicated spots within an array, additional terms for spot and labeling
effects should be included in the model. This two-stage specification of the model was proposed by Wolfinger et al. [48]
and, when all of the effects are fixed, it is equivalent to our model [49]. The gene-specific model can be modified for
one-color data (Affymetrix data) by removing the DG and AG terms. There is no dye factor and the array effects
become part of the residual error term.

(b) Three F tests for the fixed-effects ANOVA

Hypothesis testing involves the comparison of two models. In this setting we consider a null model (or null hypothesis)
of no differential expression (so that all VG values are equal to zero) and an alternative model with differential expres-
sion among the conditions (some VG values are not equal to zero). F statistics are computed on a gene-by-gene basis
from the residual sums of squares from fitting each of these models. Thus 

(rss0 - rss1)/(df0 - df1)F1 = ——————————
rss1/df1

(rss0 - rss1)/(df0 - df1)F2 = ——————————
�2

pool

(rss0 - rss1)/(df0 - df1)F1 = —————————— ,
(rss1/df1 + �2

pool )/2

where rss0, df0 and rss1, df1, are the residual sums of squares and degrees of freedom for the null and alternative models,
respectively (see Box 1). The ratio of rss1/df1 is equal to 2n · SE2

g in Box 2 and �2
pool is the common error variance

pooled across all genes, equal to SE2 in Box 2 [26].



For example, we [37] considered samples of five fish from

each of three populations, and each fish was assayed on two

microarrays with duplicated spots. In this study, the condi-

tions of interest are the populations from which the fish were

sampled; the fish are biological replicates, and there are two

nested levels of technical replication, arrays and spots within

arrays. To use fully the information available in experiments

with multiple factors and multiple layers of sampling, we

require a sophisticated statistical modeling approach.

The mixed-model ANOVA 
The mixed model treats some of the factors in an experimen-

tal design as random samples from a population. In other

words, we assume that if the experiment were to be

repeated, the same effects would not be exactly reproduced

but that similar effects would be drawn from a hypothetical

population of effects. We therefore model these factors as

sources of variance. 

In a mixed model for two-color microarrays (Box 3c), the

gene-specific array effect (AG in Box 3a) is treated as a

random factor. This captures an important component of

technical variation. If the same clone is printed multiple

times on each array we should include additional random

factors for spot (S) and labeling (L) effects. Consider an

array with duplicate spots of each clone. Four measurements

are obtained for each clone, two in the red channel and two

in the green channel. Measurements obtained on the same

spot (one red and one green) will be correlated because they

share common variation in the spot size. Measurement

obtained in the same color (both red or both green) will be

correlated because they share variation through a common

labeling reaction. Failure to account for these correlations

can result in underestimation of technical variance and

inflated assessments of statistical significance. 

In experiments with multiple factors, the VG term in

the ANOVA model is expanded to have a structure that

reflects the experimental design at the level of the biological

replicates, that is, independent biological samples obtained

from the same conditions such as two mice of the same sex and

strain. This may include both fixed and random components.

Biological replicates should be treated as a random factor and

will be included in the error variance of any tests that make

comparisons among conditions. This provides a broad-sense

inference (see Box 1) that applies to the biological population

from which replicate samples were obtained [3,39].

Constructing tests with the mixed-model ANOVA 
The components of variation attributable to each random

factor in a mixed model can be estimated by any of several

methods [39], of which restricted maximum likelihood (see

Box 1) is the most widely used. The presence of random effects

in a model can influence the estimation of other effects,

including the relative expression values; these will tend to

‘shrink’ toward zero slightly. This effectively reduces the bias

in the extremes of estimated relative expression values. 

In the fixed-effects ANOVA model, there is only one variance

term and all factors in the model are tested against this vari-

ance. In mixed-model ANOVA, there are multiple levels of

variance (biological, array, spot, and residual), and the ques-

tion becomes which level we should use for the testing. The

answer depends on what type of inference scope is of interest.

If the interest is restricted to the specific materials and proce-

dures used in the experiment, a narrow-sense inference,

which applies only to the biological samples used in the

experiment, can be made using technical variance. In most

instances, however, we will be interested in a broader sense of

inference that includes the biological population from which

our material was sampled. In this case, all relevant sources of

variance should be considered in the test [40]. Constructing

an appropriate test statistic using the mixed model can be

tricky [41] and falls outside the scope of the present discus-

sion, but software tools are available that can be applied to

compute appropriate F statistics, such as MAANOVA [42]

and SAS [43]. Variations analogous to the F2 and F3 statistics

are available in the MAANOVA software package [42].
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Box 3 (continued)

(c) The mixed ANOVA model

The mixed model has the same structure as the fixed-effects model above; the difference is in the interpretation of
terms that are treated as random effects. Typically, the AG term will be modeled as a random effect and is assumed to
have a normal distribution with a mean of zero (N(0,�2

A)). Additional terms may be required to account for random
effects associated with duplicate spotting of clones. In multiple-factor experiments, the VG terms may be decomposed
into both random and fixed effects. Biological replication should be treated as a random effect. The details will vary
according to the particular experiment and it is advisable to work in collaboration with a statistician if there is any doubt
about the formulation of an appropriate model. Details for constructing the usual (gene-specific) F test can be found in
Littell et al. [41]. The three variations of the F tests can also be computed for mixed-model ANOVA and are imple-
mented in our MAANOVA software package [42].



In conclusion, fold change is the simplest method for detect-

ing differential expression, but the arbitrary nature of the cut-

off value, the lack of statistical confidence measures, and the

potential for biased conclusions all detract from its appeal.

The t test based on log ratios and variations thereof provide a

rigorous statistical framework for comparing two conditions

and require replication of samples within each condition.

When there are more than two conditions to compare, a more

general approach is provided by the application of ANOVA F

tests. These may be computed from derived sets of estimated

relative expression values or directly through the application

of a fixed-effects ANOVA model. The mixed ANOVA model

provides a general and powerful approach to allow full uti-

lization of the information available in microarray experi-

ments with multiple factors and/or a hierarchy of sources of

variation. Modifications of both t tests and F tests are avail-

able to address the problems of gene-to-gene variance hetero-

geneity and small sample size.
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