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Time- and exercise-dependent gene regulation in human skeletal muscleSkeletal muscle remodeling is a critical component of an organismâs response to environmental changes. Exercise causes structural changes in muscle and can induce phase shifts in circadian rhythms, fluctuations in physiology and behavior with a period of around 24 hours that are maintained by a core clock mechanism. Both exercise-induced remodeling and circadian rhythms rely on the transcriptional regulation of key genes.

Abstract

Background: Skeletal muscle remodeling is a critical component of an organism's response to
environmental changes. Exercise causes structural changes in muscle and can induce phase shifts in
circadian rhythms, fluctuations in physiology and behavior with a period of around 24 hours that
are maintained by a core clock mechanism. Both exercise-induced remodeling and circadian
rhythms rely on the transcriptional regulation of key genes.

Results: We used DNA microarrays to determine the effects of resistance exercise (RE) on gene
regulation in biopsy samples of human quadriceps muscle obtained 6 and 18 hours after an acute
bout of isotonic exercise with one leg. We also profiled diurnal gene regulation at the same time
points (2000 and 0800 hours) in the non-exercised leg. Comparison of our results with published
circadian gene profiles in mice identified 44 putative genes that were regulated in a circadian
fashion. We then used quantitative PCR to validate the circadian expression of selected gene
orthologs in mouse skeletal muscle.

Conclusions: The coordinated regulation of the circadian clock genes Cry1, Per2, and Bmal1 6
hours after RE and diurnal genes 18 hours after RE in the exercised leg suggest that RE may directly
modulate circadian rhythms in human skeletal muscle.

Background
Resistance exercise (RE) can improve the overall quality of
life and reduce the symptoms of many clinical disorders,
including obesity, type II diabetes mellitus [1], coronary heart
disease, and stroke [2]. The effects of RE on skeletal muscle
are mediated by activation of muscle-specific signaling cas-
cades that increase muscle mass [3], cytoskeletal protein lev-
els, and the force of contraction without increasing the

number of myofibers [4]. Exercise-induced transcription of
genes involved in growth, vascularization, and metabolism
[5-8] indicates that large-scale changes in transcriptional reg-
ulation play a key role in muscle remodeling, inducing growth
responses and metabolic shifts.

Exercise also appears to help reset circadian rhythms in shift-
workers, travelers who have changed time zones, and people

Published: 25 September 2003

Genome Biology 2003, 4:R61

Received: 20 June 2003
Revised: 12 August 2003
Accepted: 18 August 2003

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2003/4/10/R61
Genome Biology 2003, 4:R61

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2003-4-10-r61
http://genome-biology.com/2003/4/10/R61
http://www.biomedcentral.com/info/about/charter/


R61.2 Genome Biology 2003,     Volume 4, Issue 10, Article R61       Zambon et al. http://genomebiology.com/2003/4/10/R61
with sleep disorders [9-13]. Circadian rhythms are approxi-
mately 24-hour fluctuations in gene regulation, physiology,
and behavior that have evolved to optimize daily cycles of
sleep, activity, feeding, and metabolism [14]. Exercise influ-
ences both the phase [15] and the amplitude [16] of circadian
rhythms in mice, but this phenomenon is largely unexplored
in human tissues.

Circadian rhythms are controlled by a clock mechanism
located in central and peripheral tissues. The mechanism
comprises an autoregulatory transcriptional feedback loop
that includes the circadian-clock genes Clock, Bmal1, Period
(Per) and Cryptochrome (Cry). Clock and Bmal1 constitute
the positive arm of the feedback loop. These proteins form
heterodimers, bind to specific DNA regulatory elements (E-
boxes), and initiate transcription of Per 1, 2, and 3 and Cry 1
and 2. In mammals, the Per and Cry gene products, which
constitute the negative arm of the transcriptional feedback
loop, form homo- and/or heteromeric complexes, translocate
to the nucleus, and repress Clock/Bmal1-mediated transcrip-
tion [17,18] in a temporal manner. Although most studies
have focused on the rhythmic expression of these few core
clock genes, recent evidence suggests that genes regulated in
a circadian fashion (or circadian output genes) constitute 8-
10% of all genes expressed in mouse tissues [19,20].

Classically, peripheral clocks are thought to be controlled by
a central clock located in the suprachiasmatic nucleus (SCN),
which is believed to also synchronize clocks in other brain
regions [21]. However, under certain conditions (such as
restricted feeding), peripheral tissue clocks can be regulated
independently of the SCN [22,23]. The phase-shifting effects
of exercise on mammalian circadian rhythms are thought to
be mediated by inputs to SCN neurons (these include serot-
onin [24], neuropeptide Y [25], and melatonin [13,26]) and
ultimately lead to acute changes in SCN Per1 and Per2 expres-
sion [27]. The extent to which RE may be able to directly
affect circadian-regulated genes in peripheral tissues such as
human muscle is not known, however.

To understand the global transcriptional effects of RE and
time of day on gene expression in human skeletal muscle
(hSkM), we used DNA microarrays to analyze biopsies of
exercised and non-exercised hSkM collected at different
times of day. This study was designed to answer three specific
questions. What genes and biological processes are regulated
in hSkM by RE and time of day? Which orthologs of genes
that undergo temporal regulation in hSkM also undergo cir-
cadian regulation in mouse skeletal muscle (mSkM), liver
(mLvr), heart (mHrt) or SCN (mSCN)? Are diurnally regu-
lated genes expressed in skeletal muscle directly affected by
exercise? To answer these questions, we compared gene
expression in the exercised and non-exercised legs of four
human subjects after an acute bout of RE. We then filtered
and annotated (by biological process) the significantly
changed genes and compared these genes to orthologs

regulated in microarray studies of rodent models of exercise
and circadian gene regulation. Finally, we used quantitative
reverse-transcription polymerase chain reaction (RT-PCR) to
validate the circadian regulation of selected diurnally regu-
lated hSkM gene orthologs in mSkM.

Results and discussion
Genes regulated in the context of biological processes
Comparison of gene expression profiles of the exercised and
non-exercised legs showed that 704 genes were differentially
regulated at 6 hours and 1,479 genes at 18 hours after RE (p <
0.05). In the non-exercised leg, comparison of gene expres-
sion at 0800 and 2000 hours with the same statistical criteria
showed that 608 genes were differentially regulated.

We used MAPPFinder [28] to link gene expression data to the
Gene Ontology (GO) hierarchy (Table 1). The program com-
putes a significance score (Z score) that is useful for ranking
GO terms by their relative amounts of gene expression
changes (see Materials and methods). With 40% of the circa-
dian-rhythm genes classified by the GO hierarchy signifi-
cantly changed at 6 hours after RE, circadian rhythm
displayed the highest Z score (Z = 7.17) in this comparison,
indicating that RE may regulate circadian genes directly in
the exercised leg (see below). As expected, RE also upregu-
lated a variety of genes involved in intracellular responses
(nucleic acid metabolism, G2/M transition of mitotic cell
cycle, anti-apoptosis, and transcription) and downregulated
genes involved in oxygen and calcium transport, DNA repair,
regulation of translational initiation, and glycogen metabo-
lism (Table 1). Many of these processes were similarly regu-
lated in a rat model of RE [8].

MAPPFinder analysis identified several biological processes
influenced by diurnal gene regulation in hSkM, including
transcription, cell differentiation, response to stress, hemo-
poiesis, oncogenesis, protein biosynthesis, and metabolism
(carbohydrate metabolism and tricarboxylic acid cycle)
(Table 1). These findings provide human gene targets that
correlate with the circadian regulation of metabolism and
cancer recently reported in mouse models [19,20,29-31].

Diurnal comparison
Diurnal gene regulation in hSkM: evidence of circadian genes
The significant upregulation of Per1 and Per2 in our diurnal
comparison provided the first indication that the 608 genes
that changed significantly with time contained known circa-
dian-regulated genes. To filter out potential noise in this com-
parison and to identify genes with the highest likelihood of
being regulated in a circadian fashion, we compared our
results to published data on circadian gene regulation in
mouse peripheral tissues [19,20]. These comparisons
resulted in a list of 44 'putative circadian genes' that were
significantly regulated in both our human diurnal dataset and
in the mouse circadian studies (Figures 1, 2). We then used
Genome Biology 2003, 4:R61
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quantitative RT-PCR to analyze mRNA expression levels of 12
mouse orthologs in mSkM isolated every 4 hours for 24 hours
(Figure 3).

Circadian regulation of selected mouse orthologs of human diurnal 
genes and core circadian-clock genes
Quantitative RT-PCR indicated that the core circadian-clock
genes Bmal1, Per1, and Per2 and selected mouse orthologs of
the 44 putative circadian genes exhibited circadian regulation
in mSkM (Figure 3). Quantitative RT-PCR also provided a
potential explanation for our inability to detect a significant
change in the expression of the circadian-regulated core clock
genes Cry1 and Bmal1 in hSkM [19,20], as these genes cycle
out of phase with Per1 and Per2 in mSkM (Figure 3) and in
many other tissues, including mLvr [19] and mHrt [19]. As
only two time points were measured in the human samples,
genes whose peak and trough times are out of phase with our

sampling times (for example, Cry1 and Bmal1) would not be
detected.

An interesting finding is that Per1 and Per2 are upregulated
in the morning in hSkM (Figure 2), and downregulated in the
morning in mSkM (Figure 3b). We cannot determine the
exact phase of the potentially circadian-regulated genes in
hSkM with only two time points of sampling. However, the
observed opposite regulation may reflect opposing phases of
core clock gene expression between human and mouse
peripheral tissues. Further examination of this phenomenon
may provide a molecular explanation for the opposite activ-
ity/rest cycles in diurnal versus nocturnal mammals.

Discovery of three conserved putative circadian-regulated genes
To identify conserved circadian-regulated genes, three
peripheral tissues were selected for comparison: mHrt [19],

Table 1

MAPPFinder analysis

Upregulated process C M T Z Downregulated process C M T Z

6 hours after RE Circadian rhythm 4 10 13 7.2 Oxygen transport 3 8 17 4.5

Nucleic acid metabolism 59 1570 2905 2.7 Calcium ion transport 8 44 67 4.4

Hearing 3 32 54 2.3 DNA repair 16 134 195 4.2

G2/M transition of mitotic cell cycle 3 34 40 2.2 Regulation of translational initiation 5 26 30 3.6

Anti-apoptosis 4 53 71 2.1 Di-, trivalent inorganic cation 
transport

8 66 102 3.0

Transcription 38 1025 1992 2.0 Glycogen metabolism 4 24 25 2.9

18 hours after RE Protein amino acid phosphorylation 60 383 735 4.7 Peripheral nervous system 
development

5 11 12 5.5

Regulation of cell cycle 42 248 294 4.5 Glycosphingolipid biosynthesis 3 5 5 5.0

Anti-apoptosis 12 53 71 3.5 Antigen processing, endogenous 
antigen via MHC class I

3 6 11 4.5

Mitochondrion organization and 
biogenesis

5 15 23 3.3 Iron transport 4 10 21 4.5

Protein-mitochondrial targeting 4 11 19 3.2 Glutamine family amino acid 
catabolism

4 13 19 3.7

L-Amino-acid transport 3 7 9 3.1 Male gonad development 3 9 12 3.4

Diurnal Regulation of transcription, DNA-
dependent

46 938 1852 3.7 Regulation of protein biosynthesis 3 7 12 5.7

Cell differentiation 7 68 109 3.6 Non-selective vesicle transport 7 57 63 3.7

Response to stress 24 452 566 3.0 Actin cytoskeleton organization and 
biogenesis

3 15 23 3.5

Hemopoiesis 3 22 28 2.9 Cell-cycle arrest 5 37 53 3.4

Oncogenesis 14 253 282 2.4 Main pathways of carbohydrate 
metabolism

7 69 100 3.1

Nucleic acid metabolism 61 1570 2905 2.3 Tricarboxylic acid cycle 3 20 23 2.8

Filtered genes (p < 0.05) were analyzed with MAPPFinder to determine the biological processes that were regulated in each comparison. C, number 
of genes changed; M, number of genes represented on chip in a process; T, number of genes in the Gene Ontology (GO) process: Z, significance Z-
score value. The top six, non-redundant GO terms are shown for each comparison
Genome Biology 2003, 4:R61
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mLvr [19,20], and hSkM. Four genes were significantly regu-
lated in all three tissues: Per2, Nr1d2 (nuclear receptor
subfamily 1, group D, member 2), Herpud1 (homocysteine-
inducible, endoplasmic reticulum stress-inducible, ubiquitin-
like domain member 1), and Oazi (ornithine decarboxylase
antizyme inhibitor) (Figures 1, 2). Per2 is a well-characterized
conserved core clock element [18]]. Human Nr1d2 (Rev-
Erbβ) is 90% identical to mouse Rev-Erbα, a newly identified
component of the circadian clock that represses the transcrip-
tion of Bmal [32]. Herpud1 appears to be a membrane-bound
endoplasmic reticulum protein induced by stress [33]. It con-
tains a ubiquitin-like domain at the amino terminus, indicat-
ing its involvement in a protein degradation pathway, a
biological process important for maintaining circadian
rhythms. The Oazi gene product is an inhibitor of antizyme,
which inhibits ornithine decarboxylase (ODC), a key enzyme
in polyamine biosynthesis that is essential for normal cell
growth [34]. The discovery of common circadian genes in
multiple tissues suggests that these genes and their patterns
of expression are important in a variety of tissue pathways.

Exercise comparisons
RE regulates circadian genes: evidence for RE-induced phase shifting
We hypothesized that RE affects circadian-regulated gene
expression directly in skeletal muscle. In support of this, we
found that three core circadian clock genes, Cry1, Per2, and
Bmal1, were upregulated 6 hours after RE in the exercised leg
(1.5-fold, 1.2-fold, and 1.2-fold, respectively; Figure 2b).
Although the RE-induced changes of these circadian clock
genes were modest in magnitude, they are statistically signif-
icant, coordinated, and precede RE-mediated changes in
diurnal genes 18 hours after RE in the exercised leg.

RE appeared to shift the expression patterns of diurnal-regu-
lated genes by upregulating genes (n = 12, p < 0.1) that nor-
mally were repressed in the morning (n = 29, p < 0.05) or by
downregulating genes (n = 5, p < 0.1) normally induced in the
morning (n = 15, p < 0.05) (Figure 2c). If we extend this anal-
ysis to all the diurnal genes that are significantly changed (p
< 0.05) 18 hours after RE, we find all (64 genes) but one
reflect this potential phase-shifting effect.

Venn diagrams of human genes undergoing diurnal regulation compared to their mouse circadian orthologsFigure 1
Venn diagrams of human genes undergoing diurnal regulation compared to 
their mouse circadian orthologs. (a) Comparison with mouse circadian 
gene orthologs reported in [19]; (b) comparison with mouse circadian 
gene orthologs reported in [20]. In the diurnal comparison (0800 vs 2000 
h), 608 human genes were changed significantly (p < 0.05) in the non-
exercised leg. An additional statistical filter was applied (p < 0.05 and 
absolute fold change > 20%) that resulted in a list of 239 diurnally 
regulated (0800 vs 2000 h) genes, that were compared with the mouse 
circadian orthologs. Gray shading indicates genes represented in Figure 2. 
Genes listed to the right of each Venn diagram are the intersection of all 
three tissues (red numbers). mHrts, mouse ortholog is circadian-regulated 
in heart [19] (n = 462); mLvrs, mouse ortholog is circadian-regulated in 
liver [19] (n = 575); mLvrp, mouse ortholog is circadian-regulated in liver 
[20] (n = 335); mSCNp, mouse ortholog is circadian-regulated in the SCN 
[20] (n = 337).

hSkM
208

mHrts

384

mLvrs

497

hSkM
215

mLvrp

287

mSCNp

289

14

5
12

14

4
6

47

24

Per2
Nr1d2
H2bfd
Btg1

Per2
Per1
Nr1d2
Herpud1
Oazi

(a)

(b)

Human genes regulated in the diurnal comparison with orthologs that display circadian regulation in mouse heart and liver [19,20], and SCN [20]Figure 2
Human genes regulated in the diurnal comparison with orthologs that display circadian regulation in mouse heart and liver [19,20], and SCN [20]. The 608 
significantly regulated (p < 0.05) hSkM genes identified in the diurnal comparison (0800 and 2000 hours) were subjected to an additional statistical filter of 
absolute fold change > 20% (n = 239) and linked to mouse circadian-regulated orthologs. The resultant 44 putative hSkM circadian-regulated genes are 
represented as boxes and colored in GenMAPP [57] using different filtering criteria. (a) The 44 putative hSkM circadian-regulated genes colored by p 
values and displaying fold changes from the diurnal comparison (0800 vs 2000 hours non-exercised leg). (b) The 44 putative hSkM circadian-regulated 
genes colored by p values and displaying fold changes from the comparison 6 hours after RE. (c) The 44 putative hSkM circadian-regulated genes colored 
by p values and displaying fold changes from the 18 hours after RE comparison. Red, blue, and gray boxes indicate significant upregulation, downregulation, 
and no significant regulation, respectively, using p-value stringencies defined in the key for each comparison. Numbers to the right of the gene boxes are 
the fold changes in the diurnal comparison. L, promoter for the light-responsive element; E, E-box (Clock/Bmal1 promoter). Ortholog information is 
denoted to the left of the gene boxes: mHrts and mLvrs, mouse ortholog was circadian-regulated as described [19] in mouse heart or liver, respectively; 
mLvrp and mSCNp, mouse ortholog was diurnally regulated as described [20] in mouse liver or SCN, respectively.
Genome Biology 2003, 4:R61
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Figure 2  (see legend on previous  page)
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Although we cannot determine whether RE induces a phase
advance or phase delay in these genes, our data are consistent
with previous studies that show that physical exercise during
the day (similar to our study) can induce a circadian phase
advance in humans [35] as measured by circulating hormone
levels. Our studies now indicate that this phase advance may
occur at the level of gene expression in muscle.

Comparison of human and rat genes regulated by RE
To validate our experimental protocol and to identify key
genes that may regulate the effects of RE in both humans and
rodents, we compared human genes that were regulated by
our isotonic RE protocol at 6 hours with rat orthologs that
were regulated either transcriptionally or translationally in a
published rat eccentric RE study [8] (Figure 4). The rat

eccentric exercise protocol induced skeletal muscle hypertro-
phy [36] and consisted of titanic contractions that were elec-
trically evoked with multistrand electrodes implanted on
both sides of the sciatic nerve. Contractions consisted of 10
sets of six repetitions with each repetition lasting 3 seconds.
Contractions were stimulated at a frequency of 100 Hz, 6-12
V, 1 msec duration, 9 msec delay. Rat muscles were then har-
vested 6 hours after the acute bout of exercise [8]. Lists of rat
6-hour RE genes were downloaded from the supplemental
data at [37]. Human and rat gene orthologs that were regu-
lated in the same directions are shown in Figure 4.

Grouping the orthologs by biological function revealed that
two genes, Rrad (Ras associated with diabetes) and G6pt1
(glucose-6-phosphatase, transport protein 1), were regulated

Confirmation of hSkM diurnal gene regulation by analysis of mSkMFigure 3
Confirmation of hSkM diurnal gene regulation by analysis of mSkM. Real-time RT-PCR (comparative CT method) was performed on total RNA isolated 
from wild-type C57BL/6J mouse quadriceps muscle, collected at the indicated zeitgeber times (ZT). (a) Genes with a cycling phase similar to that of Bmal1, 
a key diurnal clock gene, are shown. (b) Genes with a cycling phase similar to that of Per1 and Per2. One-way ANOVA was applied to all time points and 
confirmed a statistically significant effect of time on gene expression levels (p < 0.001 for Bmal1 and Hat; p < 0.05 for all others). By normalizing average 
peak value to the average trough value (12-hour opposite peak), the following fold increases in gene expression were calculated: Bmal1 = 4.1, G0s2 = 7.0, 
Cry1 = 4.5, Nfil3 = 11.1, Per1 = 3.5, Per2 = 13.0, C/EBPb = 3.5, MyF6 = 3.3, Ier3 = 1.8, Hat = 1.8, and Gadd = 2.1. Values are mean 6 SEM. Gapdh was used as 
the reference gene and is included as the negative control.
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in directions suggesting decreased glucose transport, and one
gene, Gpd2 (glycerol-3-phosphate dehydrogenase 2
(mitochondrial)) was regulated in a direction that suggested a
decrease in glucose metabolism. Other genes involved in the
metabolism of glycogen (the cellular storage form of glucose)
were also downregulated (Table 1).

Interestingly, all three of these genes have been implicated in
human diseases. Rrad was cloned because it was upregulated
in patients with type II diabetes [38]. In cultured muscle and
fat cells, overexpression of Rrad decreases insulin-stimulated
glucose uptake [39]. The upregulation of Rrad provides a
potential mechanism for previous reports that acute RE
reduces insulin-stimulated glucose uptake [40-42]. Muta-
tions in Gpd2 were found in a family of type II diabetics [43],
and mutations in G6pt1 were found in patients with glycogen
storage disease [44].

RE regulates potent myogenic genes
Two potent muscle-remodeling genes, myogenin and myosta-
tin, were regulated in opposite directions in response to RE in
humans, providing a potential mechanism for exercise-
induced muscle hypertrophy. Myogenin was upregulated in
the 6-hour comparison, and this observation was validated in
the published [8] rat RE study (Figure 4). Myogenin, a

muscle-specific transcription factor containing a basic helix-
loop-helix domain, is important for muscle development and
differentiation [45]. Myostatin, a member of the TGF-β fam-
ily, is a negative regulator of skeletal muscle size and was
downregulated in our study. It is a potent inhibitor of muscle
development and proliferation [46]. Downregulation of
myostatin may be associated with skeletal muscle growth [47]
and is likely to have a major role in muscle remodeling in
response to exercise.

Interleukin-1 signaling and exercise
The interleukin-1 gene (IL-1) was upregulated 6 hours after
RE (Figure 4). The potential importance of IL-1 regulation in
response to RE is indicated by the fact that two genes regu-
lated by IL-1, Nr4a3 [48] and Carp [49], had the highest fold
changes (3.5-fold and 2.3-fold, respectively, p < 0.05) 6 hours
after RE. These two genes were also regulated in the rat exer-
cise study (Figure 4). Furthermore, the vascular endothelial
growth factor gene (Vegf) [50], which is also regulated by IL-
1, had the highest fold change at 18 hours after RE (1.6-fold).
Vegf is believed to be an important mediator of endurance
exercise-induced angiogenesis in skeletal muscle [51]. How-
ever, resistance exercise protocols do not result in increases
in capillaries per muscle area but do result in a redistribution
of blood flow to hypertrophied muscle fiber types [4].

Gene-regulation model 6 hours after REFigure 4
Gene-regulation model 6 hours after RE. The 144 human genes significantly changed (p < 0.05 and fold change > 20%) 6 hours after RE were compared to 
transcriptionally or translationally regulated rat orthologs (p < 0.05) 6 hours after RE in a rat model of RE [8]. Boxes represent individual human genes; red 
indicates upregulation and blue downregulation. *IL-1a was not found in the rat exercise data but is included for discussion purposes.
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Hierarchical cluster analysis indicates potential co-regulated gene 
clusters
To identify potential co-regulated genes, we performed hier-
archical clustering analysis [52] with expression values in the
non-exercised leg at 2000 hours as the baseline. Two clusters
included genes upregulated at 6 hours after RE (Figure 5),
one centered on Nr4a3 (Figure 5a) and the other on Rrad
(Figure 5b). These two genes displayed the highest fold
changes 6 hours after RE. Cry1, a member of the core clock
mechanism (Figure 2), was found in the Nr4a3 cluster.

Two clusters contained core circadian genes Per1 (Figure 6a)
and Per2 (Figure 6b) which were upregulated at 0800 hours.
A third cluster (Figure 6c) contained genes downregulated at
0800 but not at 2000 hours. The Per2 cluster contained
genes that were upregulated both at 0800 hours and in
response to exercise (2000 hours + RE).

Conclusions
Analysis of our data in the context of biological processes and
pathways allowed us to define physiologically the transcrip-
tional basis of muscle remodeling induced by RE and its
potential circadian gene regulation. This large-scale expres-
sion analysis of acute RE and circadian gene regulation in

hSkM suggests that RE can directly regulate circadian clock
genes (Per2, Cry1, and Bmal1) and circadian output genes.
Our findings support the emerging idea that peripheral clocks
can regulate themselves independently of the SCN [22,23]. If
the SCN were responsible for the phase shifting, the same
changes in gene expression would have occurred in both the
control and exercised legs, which was not observed. However,
acute phase advances in SCN Per1 and Per2 expression in
response to exercise have been observed in hamsters [27].
Whereas the SCN is still probably involved in the long-term
effects of clock phase shifting in peripheral tissue, our evi-
dence suggests that the skeletal muscle clock responds
quickly to RE by transcriptional regulation of specific clock
genes.

Although circadian studies in human tissue are critical for
understanding the effects of circadian gene regulation on
human physiology, access to ample tissue samples is difficult,
costly, and painful. We therefore found it valuable to validate
and compare our results with those of similar experiments in
rodents, in which tissue can be harvested at multiple time
points to establish the circadian cycle. Such comparisons
were also valuable in identifying gene orthologs regulated 6
hours after RE in both humans and rats. Cross-species, cross-
tissue comparisons are essential for defining transcriptional

Cluster of genes upregulated 6 hours after REFigure 5
Cluster of genes upregulated 6 hours after RE. Columns indicate each subject and rows indicate individual genes. Each gene is represented by the 
difference of the genes expression value and the average expression value of the four non-exercised control legs 6 hours after RE. Red indicates 
upregulated genes, and green indicates downregulated genes. Gene names and descriptions (or GenBank IDs) appear to the right.

Nr4a3    Nuclear receptor subfamily 4, group A, member 
Wdr1    WD repeat domain 
NCOA1    Nuclear receptor coactivator 
Hsf2    Heat shock transcription factor 
Mkp6    MKP-1 like protein tyrosine phosphatase
S100a4    S100 calcium-binding protein A4 calcium protein, 
Nr4a3    Nuclear receptor subfamily 4, group A, member 
Nr4a3    Nuclear receptor subfamily 4, group A, member 
Znf288    Zinc finger protein 288
AF052105
Phll1    Cryptochrome 1 photolyase-like
Arhe    Ras homolog gene family 
Ddx5 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 5 

Kpna2    Karyopherin alpha 2 RAG cohort 1, importin alpha 
Ptma    Prothymosin, alpha gene sequence 28
Ampd3    AMP deaminase AMPD3
Rrad    Ras-related associated with diabetes
Rrad    Ras-related associated with diabetes
Fubp1 Far upstream element FUSE binding protein 
Il27w     Interleukin 27 working designation
Tcf8    Transcription factor 8 represses interleukin 2 exp
CARP    Cardiac ankyrin repeat protein

2000 h

RE − + − +

0800 h

Cdkn1a    Cyclin-dependent kinase inhibitor 1A

(a)
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regulatory pathways of key genes and will allow us to define
new genes and pathways responsible for tissue regulation and
remodeling.

Materials and methods
Subjects
Four healthy men, 31-51 years old, were recruited for study.
The subjects had not carried out RE training for at least 3
months before enrolment, had no history of chronic illnesses,
and showed no abnormalities on the screening physical
examination or routine hematology and chemistry tests. Sub-
jects were admitted to the General Clinical Research Center at
San Francisco General Hospital, where they were fed a
constant metabolic diet that provided 1.2 g of protein/kg body
weight and 35 kcal/kg body weight per day for nine days
before the bout of exercise. Equilibration on the diet was
evidenced by constancy of urine urea nitrogen excretion. The
study protocol was approved by the Committee on Human

Research of the University of California, San Francisco, and
informed consent was obtained from each subject.

Exercise protocol
Maximum strength (one-repetition maximum) during isot-
onic knee extension from 90° to 170° was tested in the right
leg 8 days before the study exercise session. Subjects did not
perform any RE between the testing and the study session. On
the ninth hospital day, beginning at 1330 h, subjects per-
formed a vigorous bout of RE with the right leg. Exercise con-
sisted of 10 sets of eight repetitions of isotonic knee extension
(Cybex 4850 leg extension, Ronkonkoma, NY) at 80% of the
predetermined one-repetition maximum, with 3-min rest
periods between sets, over 30-45 min. The isotonic knee
extensions include both concentric and eccentric phases.

Muscle biopsies
Muscle biopsies were performed 6 hours (between 1930 and
2000 hours) and 18 hours (between 0730 and 0800 hours the

Cluster of genes regulated in the 0800 hours biopsiesFigure 6
Cluster of genes regulated in the 0800 hours biopsies. Columns indicate each subject and rows indicate individual genes. Each gene is represented by the 
difference of the gene-expression value and the average expression value of the four non-exercised control legs 6 hours after RE. Red indicates 
upregulated genes; green indicates downregulated genes. Gene names and descriptions (or GenBank IDs) appear to the right. (a) Per1 0800 hours 
upregulated cluster. (b) Per2 0800 hours upregulated cluster. (c) 0800 hours downregulated cluster.

DHHC1
P62      GAP-associated tyrosine phosphoprotein p62 
Galnt1      GalNAc-T1
Kiaa0766   
BAC
TAX1BP1 Tax1 (human T-cell leukemia virus type I) binding protein 1
Ubl1       Ubiquitin-like 1 (sentrin)
PPP1R3C Protein phosphatase 1, regulatory (inhibitor) subunit 5
G0s2       Putative lymphocyte G0/G1 switch gene
FLJ10618
H2BFL      H2B histone family, member L
Myod1       Myogenic factor 3
Calm1       Calmodulin 2 (phosphorylase kinase, delta)
G3bp2       Ras-GTPase activating protein SH3 domain-binding protein 2
Oazi       Antizyme inhibitor
FLJ21168 
Kiaa0781  KIAA0781 protein
Usp9x       Ubiquitin specific protease 9 

Hnf4g      Hepatocyte nuclear factor 4, gamma
Pla2g2a   Phospholipase A2, group IIA (platelets, synovial fluid)
Per2      Period 2
Elavl1      ELAV Hu antigen R
Cdc25c    Cell division cycle 25C

Ptprg      Receptor tyrosine phosphatase gamma (PTPRG)
Steap      Six transmembrane epithelial antigen of the prostate
GYPB      Glycophorin B (includes Ss blood group)
Gadd45g  Growth arrest and DNA-damage-inducible, gamma
Per1      Period 1
Klk7      Kallikrein 7
Ctbs      Chitobiase
Tbx5      T-box 5
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RE − + − +

0800 h(a)

(b)

(c)
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next day) after RE in both the exercised and non-exercised
leg. Tissue (200-300 mg) was obtained from the lateral por-
tion of each vastus lateralis muscle approximately 20 cm
above the knee with a 4-mm Bergstrom needle (Stille, Stock-
holm, Sweden) under local anesthesia with 1% lidocaine.
Blood and visible fat were removed, and the tissue was imme-
diately frozen in liquid nitrogen and stored at -80°C for later
analysis. Although relatively homogeneous when compared
to other tissues, skeletal muscle is a complex tissue consisting
of many cell types, and thus our results must be interpreted in
that context.

Sample preparation and analysis
Total RNA was extracted from frozen tissue with a polytron
homogenizer and Trizol (Invitrogen, Carlsbad, CA). Frag-
mented, biotin-labeled cRNA samples were generated from 5-
14 µg total RNA and hybridized to Affymetrix human U95Av2
arrays. For each array, the .cel files were generated with
Affymetrix Microarray Suite 5.0 and analyzed with Robust
Microarray Analysis (RMA) [53].

Preparation of expression array samples
Total RNA was extracted from 5-100 mg frozen tissue with a
polytron homogenizer and Trizol (Invitrogen) and purified
with an RNEasy kit (Qiagen, Santa Clara, CA). Depending on
the amount of starting material, 5-14 µg total RNA was
reverse transcribed with an oligo-dT primer containing a T7
RNA polymerase promoter (Affymetrix) and then converted
into double-stranded cDNA (ds cDNA) with a ds cDNA syn-
thesis kit (Invitrogen). After the second-strand synthesis, ds
cDNA was extracted with phenol-chloroform-isoamyl alcohol
and recovered by ethanol precipitation. Biotinylated cRNA
was generated from ds cDNA by in vitro transcription (IVT)
with an Enzo BioArray high-yield RNA transcript labeling kit
(Affymetrix). After a further round of purification with the
Qiagen RNEasy kit, IVT reactions yielded 30-70 µg bioti-
nylated cRNA, which was fragmented into lengths of around
100 base-pairs (bp) before hybridization.

Analysis of biotinylated cRNA with HG-U95Av2 microarray
IVT reaction products (5 µg) were hybridized to Affymetrix
Test2 arrays before hybridization to the HG-U95Av2 chip
(Affymetrix) to ensure full-length transcript representation of
GAPDH. Each chip was hybridized to 15 µg fragmented
cRNA. Arrays were hybridized and scanned with a GeneArray
Scanner (Hewlett-Packard/Affymetrix) at the Genomics Core
Facility of the General Clinical Research Center at San Fran-
cisco General Hospital.

Statistical analysis and comparisons
Three comparisons were made (Figure 7). Gene expression in
the exercised leg was compared with that in the non-exercised
leg at 6 and 18 hours after RE. The diurnal effects on gene
expression were assessed by comparing gene transcript levels
in the non-exercised leg at 2000 and 0800 hours. Two-tailed
paired t tests were used to compare each sample with its

respective baseline value. These t tests were validated using
permutation t tests. Human U95Av2 chip probe set to gene
annotations were obtained from NetAffx [54].

Gene Ontology (GO) analysis with MAPPFinder
Genes that were significantly upregulated or downregulated
(p < 0.05) were annotated with GO [55] information with the
MAPPFinder 1.0 program [28] (Table 1). MAPPFinder is an
accessory program to GenMAPP [56], a freely available soft-
ware tool that colors biological pathways with gene expres-
sion data [57]. MAPPFinder Z-scores, a statistical measure of
significance for gene expression in a given group, were calcu-
lated by subtracting the number of genes expected to be ran-
domly changed in a GO term from the observed number of
changed genes in that GO term. This value was then divided
by the standard deviation of the observed number of genes
under a hypergeometric distribution. Output from the MAPP-
Finder analysis was manually filtered to remove processes
that represented the same genes (typically parent-child
processes). The top six biological processes for each compar-
ison are listed in Table 1. For a biological process to be
included in the table, it was required that at least three genes
changed significantly (nested results) and the Z-score was >
2.

Gene expression analysis in mSkM
Adult male C57BL/6J mice were subjected to a 12-hour light/
12-hour dark cycle for 2 weeks before tissue collection (n = 3
per time point). Mice were sacrificed every 4 hours for 24
hours, and quadriceps muscle was dissected and rapidly fro-
zen on dry ice. Total RNA was extracted from frozen samples
with Trizol (Sigma) and diluted to 0.1 mg/ml. TaqMan real-

Diagram of the experimental protocolFigure 7
Diagram of the experimental protocol. Each volunteer performed a bout 
of resistance exercise (RE) consisting of 10 sets of eight repetitions of 
isometric knee extension at 80% of the predetermined one-repetition 
maximum with a single leg. Biopsies were obtained 6 and 18 hours after 
RE in both the exercised and non-exercised (contralateral) leg. Arrows 
denote the three comparisons of gene expression in the biopsy samples.

Exercised leg

Exercise

Non-exercised leg

6 h after RE

Volunteers
1,2,3 and 4

Volunteers
1,2,3 and 4

Volunteers
2,3 and 4

Volunteers
1,2,3 and 4

18 h after RE

Diurnal
comparison

Time
1400 h 2000 h 0800 h

E
xe

rc
is

e

B
io

ps
y

B
io

ps
y

Genome Biology 2003, 4:R61



http://genomebiology.com/2003/4/10/R61 Genome Biology 2003,     Volume 4, Issue 10, Article R61       Zambon et al. R61.11

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

time RT-PCR assays were performed using the comparative
amplification detection threshold of target gene expression
(CT) method, an ABI 7700 Sequence Detector, and TaqMan
EZ RT-PCR kit reagents (Applied Biosystems, Foster City,
CA). Probe and primer sets were designed with Primer
Express software (Applied Biosystems). mRNA levels were
measured by determining the cycle number at which CT was
reached. In each sample, CT was normalized to GAPDH
expression, performed in parallel (∆CT). Normalized ∆CT val-
ues from each time point were then subtracted from the aver-
age ∆CT value at all time points (∆∆CT) to determine the
relative abundance values (2-∆∆CT).

Linking databases for determining rat and mouse 
orthologs
To relate diurnally regulated hSkM genes to known circadian-
regulated genes (potential hSkM circadian genes), we linked
human U95Av2 probe sets to mouse U74Av2 ortholog probe
sets using three public databases: NCBI Homologene [58],
TIGR Resourcerer [59], and NetAffx. A similar approach was
used to link the human and rat orthologs regulated 6 hours
after RE (U95Av2 to U34A probe sets). 'Overlap genes' were
defined as those exhibiting a fold change greater than 20% at
a significance level of p < 0.05 that corresponded to signifi-
cantly changed rodent orthologs based on the statistical fil-
ters used in the published studies [8,19,20].

Hierarchical clustering analysis
For hierarchical clustering, we used data from the 3,260
genes (of 12,626 examined) that resulted from a p < 0.05 in
any of three comparisons. The analysis was performed with
Cluster and TreeView [52]. As input for Cluster, the average
(N = 4) log2 truncated value of the unexercised 2000-hour
biopsies (control leg) was used as the baseline. All 3,260
genes were clustered by correlation uncentered similarity
metric, using complete linking clustering. Figures were gen-
erated with TreeView.

Additional data files
The following additional data files are available with the
online version of this article: two Excel sheets containing the
Affymetrix data (MAS 4.0, target intensity 800) from rat 6
hours after exercise [8] total and polysomal (Additional data
file 1); two Excel sheets containing log2 RMA signal values,
fold changes, P values and probe level annotation, and
descriptions of column titles, respectively (Additional data
file 2); two sheets with information for linking orthologous
probe sets between Affymetrix Hs. U95A, Mm. U74A and Rn.
U34A arrays (Additional data file 3); two sheets (Hs RE/rat
total RE and Hs RE/rat polysomal RE) of 6 h after exercise-
regulated gene orthologs regulated in this study and those
published by Chen et al. [8] (Additional data file 4); four
Excel sheets containing the putative circadian overlap genes
(Additional data file 5); and, finally, five sheets each with the
unfiltered output results from the MAPPFinder analysis

(Additional data file 6). All of the data, including RMA
expression values, annotated chip information, GenMAPP
expression dataset [57], MAPPFinder results [28], lists of
links between the human and rodent probe sets, and full lists
of ortholog matches, are also available for download from the
GenMAPP site [60].
Additional data file 1The Affymetrix data (MAS 4.0, target intensity 800) from rat 6 hours after exerciseThe Affymetrix data (MAS 4.0, target intensity 800) from rat 6 hours after exerciseClick here for additional data fileAdditional data file 2Log2 RMA signal values, fold changes, P values and probe level annotation, and descriptions of column titlesLog2 RMA signal values, fold changes, P values and probe level annotation, and descriptions of column titlesClick here for additional data fileAdditional data file 3Information for linking orthologous probe sets between Affymetrix Hs. U95A, Mm. U74A and Rn. U34A arraysInformation for linking orthologous probe sets between Affymetrix Hs. U95A, Mm. U74A and Rn. U34A arraysClick here for additional data fileAdditional data file 4Hs RE/rat total RE and Hs RE/rat polysomal RE of 6 h after exer-cise-regulated gene orthologs regulated in this study and those published by Chen et al.Hs RE/rat total RE and Hs RE/rat polysomal RE of 6 h after exer-cise-regulated gene orthologs regulated in this study and those published by Chen et al.Click here for additional data fileAdditional data file 5The putative circadian overlap genesThe putative circadian overlap genesClick here for additional data fileAdditional data file 6The unfiltered output results from the MAPPFinder analysisThe unfiltered output results from the MAPPFinder analysisClick here for additional data file
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