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Abstract

Background: Microarray experiments are generating datasets that can help in reconstructing
gene networks. One of the most important problems in network reconstruction is finding, for
each gene in the network, which genes can affect it and how. We use a supervised learning
approach to address this question by building decision-tree-related classifiers, which predict gene
expression from the expression data of other genes. 

Results: We present algorithms that work for continuous expression levels and do not require a
priori discretization. We apply our method to publicly available data for the budding yeast cell
cycle. The obtained classifiers can be presented as simple rules defining gene interrelations. In
most cases the extracted rules confirm the existing knowledge about cell-cycle gene expression,
while hitherto unknown relationships can be treated as new hypotheses.

Conclusions: All the relations between the considered genes are consistent with the facts
reported in the literature. This indicates that the approach presented here is valid and that the
resulting rules can be used as elements for building and explaining gene networks.
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Background 
Reconstructing and modeling gene-expression networks is

one of the most challenging problems of functional

genomics. Large-scale monitoring of gene expression is con-

sidered to be one of the most promising techniques for

reconstructing gene regulatory circuits [1]. There are differ-

ent approaches to describing gene networks, for example,

Boolean models, models based on differential equations, and

Bayesian networks, among others, but most share a common

element - the expression of each gene in the network

depends on the expression of some other genes [2-7]. To

reconstruct such a network we have to answer two questions

for each gene in the network: which genes affect it, and how

they affect it, for example, positively, negatively or in a more

complex way. 

Most gene-network models can be described as graphs in

which each node represents a gene and the presence of an

edge between two nodes indicates the existence of an inter-

action between the connected genes. Edges can have differ-

ent interpretations; they can mean either direct interactions

or simply observations in the data, which in turn may be the

result of either direct or indirect interactions. A control or

influence function associated with each node is needed if we

want to describe how input signals are affecting the particu-

lar gene. For example, conditional probability distributions
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play such a role in Bayesian networks, while Boolean func-

tions do so in Boolean nets [5,8].

Here we describe a different approach for reconstructing ele-

ments of gene networks based on predicting the expression

(or changes in the expression) of a given gene from the

expression (or changes in the expression) of other genes. We

present our prediction results in the form of so-called classi-

fiers - decision trees and decision rules. Our supervised clas-

sification approach has a number of advantages. First, it

allows one to identify genes affecting the target gene directly

from the classifier; second, we do not have to assume any

arbitrary discretization thresholds; third, each data sample

is treated as an example, and classification algorithms are

constructed in a way to learn from these examples (nor-

mally, the more examples the higher the accuracy, usually)

and finally, classifiers given in the form of decision trees or

decision rules are easy to interpret. 

In our model we assume that the transcription machinery of

a gene can be in a finite number of different states depend-

ing on the abundance of the other genes’ products, and that

the expression of the gene is determined by its state. For

simplicity, we consider the classifiers constructed to discrim-

inate only between two states, ‘expressed more than average’

and ‘expressed less than average’, although the model can be

generalized to any number of states in a straightforward

manner. At the same time, there is no single threshold for

absence/presence of gene products - the same gene product

may affect the state of different genes at different thresholds.

For instance, a particular level of a given gene product may

be sufficient to switch on the expression of one gene, but

may have to be raised to switch on the expression of a differ-

ent gene. Our results show that this is indeed the case in real

gene networks. In this way, our approach is rather different

from the Boolean networks and, in fact, from any approach

that depends on a priori discretization of expression data. 

Despite rather different formulations, there is a minor simi-

larity between the supervised classification and gene-expres-

sion data clustering, which helps to illustrate our approach. If

we know that a gene g belongs to a cluster of genes that share

similar expression profiles, then, given a new sample, the

behavior of the gene g can be predicted on the basis of the

behavior of other genes in the cluster. Such a clustering

approach can produce only ‘symmetric’ rules: for example,

gene g correlates (or anticorrelates) with gene h. The classifi-

cation rules that we derive are often more complex and can

involve more than two genes, for example, gene g is

expressed only if gene h1 is expressed and h2 is not

expressed. It is important that our classifiers are not black

boxes - they consist of sets of simple rules that can be used as

elements for building and explaining gene networks, and be

examined for their biological meaning. For each gene in the

network we know which genes affect it, as well as a precise

description of how they affect the state of the predicted gene.

We applied our methodology to the microarray datasets of

Spellman and Cho for the budding yeast (Saccharomyces

cerevisiae) cell cycle [9,10]. As an example, we considered a

set of well-described genes, which encode proteins important

for cell-cycle regulation. All extracted relations were examined

with respect to the known roles of the selected genes in the cell

cycle and in most cases the rules confirmed the a priori

knowledge, which indicates the validity of our approach.

Results 
Definitions 
Our starting point is a gene-expression data matrix, X, where

each row represents a gene and each column represents a

sample. Each element, xij, of X indicates the expression level

of a gene i in a sample j and is called a gene-expression value.

The exact meaning of expression values may be different for

different matrices, representing absolute or comparative

measurements [11]. Here we use gene-expression log ratios

obtained from comparisons of gene expression in a sample

versus control, although, in fact, any consistent way of mea-

suring gene expression can be used [12].

As already mentioned, we assume that the transcription

machinery of a gene can be in a finite number of different

states. Various definitions and biological interpretations of

the ‘state’ are possible. For example, one can use states

‘expressed’/‘not expressed’ [8] or ‘upregulated’/‘downregu-

lated’ [9]. The flexibility of the approach is that we can

exploit different interpretations of states. Here we distin-

guish between two different states ‘expressed more than

average’/‘expressed less than average’. More precisely, we

define the state, sij, of a gene i under condition j as follows

sij  = �+1, if xij >—xi , if
—xi is the average expression level of ith gene,

-1, otherwise

Given a gene g, we predict its state from expression mea-

surements of other genes. The gene g is called the predicted

gene, while the genes on which we make the prediction are

called the explaining genes. Note that the concept of state is

used here only for predicted genes, while the expression

values are used for explaining genes.

Having selected time-series datasets [9,10], we considered

three problems. Given a gene-expression matrix X and a

gene i, we are going to predict: one, the state of the gene i in

sample j from the expression values of other genes in the

same sample; two, the state of the gene i in sample j from the

expression values of genes from the previous

sample/samples; and three, the change in the state of the

gene i from the changes in states of other genes. Our ulti-

mate goal is to build classifiers that can be used as elements

of putative gene networks.
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We will use the notation ‘simultaneous’ for the events covered

by the first problem and ‘time delay’ for the second. The third

problem describes events, which may or may not be sepa-

rated in time and we use the notation ‘changes’ for them.

The functions determining states of predicted genes from

data are called classifiers, while algorithms building such

classifiers on the basis of data with known states are called

inducers or induction algorithms. Each expression profile

(the column of the expression matrix X) with a known state

of a predicted gene is called an example or an instance. The

set of examples used for classifier creation is the training set.

If a subset of the examples is separated from the training set

and is used for estimation of classification accuracy, it is

called a test set. 

In this study we use two types of classifiers: decision trees

and decision rules. A decision tree is a rooted tree in which

non-leaf nodes are labeled with explaining genes, the arcs

from non-leaf nodes are labeled with possible characteristics

of explaining genes, and the leaves of the tree are labeled

with the states of the predicted gene. An example of the deci-

sion tree for classification of the yeast gene CLN2 is shown

in Figure 1. Each pass from the root node to a leaf node in

the tree presents a rule that defines a state of the predicted

gene via expression levels of explaining genes. It follows that

every decision tree is equivalent to a list of decision rules

(see the next section for details).

To make the verification of the classification results more

straightforward we introduce a representation of classifiers

in the form of simple rules. The following language for rules

is used: ‘+A’ means that gene A is ‘upregulated’; ‘-A’ that

gene A is ‘downregulated’, ‘<==>’ is used for simultaneous

events, ‘==>’ is used to distinguish between events that are

divided in time. For instance, +A+B<==>-C means that C is

‘downregulated’ when A and B are ‘upregulated’; +B==>+A

means that A is ‘upregulated’ if B was ‘upregulated’ (for

example, in the previous time point for the time series);

�A�B<==>�C means that positive change in the expression

level of A along with simultaneous negative change in

expression of B coincides with simultaneous negative change

of C expression; �B==>�A means that positive change in

expression level of B precedes negative change of A expres-

sion. This method of representation allows the decomposi-

tion of decision trees of complex structure into simple and

compactly presented relations, which can be independently

compared to the existing knowledge. We carried out litera-

ture searches through PubMed [13] and the Yeast Protein

Database (YPD) [14] to find the biological relevance of the

extracted rules (see the following sections). For more

precise definitions and formulations of the three problems

see Materials and methods.

Classification rules 
All major transitions in the budding yeast cell cycle are reg-

ulated by cyclins via associated cyclin-dependent kinase

(CDK) activity. To test our approach we chose a small group

of yeast genes. These are the cyclin genes CLN1-3 and

CLB1-6, and CDC28, MBP1, CDC53, CDC34, SKP1, SWI4-6,

HCT1, CDC20, SIC1, and MCM1, which are involved in cell-

cycle regulation and whose interactions are well described.

The same set of genes (with the addition of BCK2 and the

exclusion of CLB3, CLB4) was used by Chen et al. [15], who

presented a mathematical model of the cell-cycle events. As

no reliable data were found for CLB3 and BCK2 in the cdc15

dataset, we did not include them in our study (Table 1). Con-

sideration of such genes made it possible to compare our

results with existing knowledge. 

We carried out two computational experiments and compared

their results. In the first experiment we considered eight cyclin

genes, while in the second we added to them 12 other genes, the

products of which are known to be essential for cell-cycle regu-

lation (see above). We used the microarray data from Spellman

et al. [9] and Cho et al. [10] obtained for S. cerevisiae cell cul-

tures that were synchronized by three different methods: the

cdc15, cdc28 and alpha-factor datasets. The data-transforma-

tion method used by Spellman et al. represents background

corrected signal log ratios, with control as an average expres-

sion level extracted from “asynchronous cultures of the same

cells growing exponentially at the same temperature in the

same medium” (the dataset of Cho [10] was integrated with

other data using appropriate renormalization and included in

the analysis by Spellman et al. as the cdc28 dataset [9]). We

chose the cdc15 experiment for the training dataset because it

has the largest number of data points (samples), which conse-

quently, provided us with the largest number of instances. For

the first classification problem we used all the data, for the

other two problems we used only adjacent equidistant mea-

surements. The remaining experimental datasets, cdc28 and

alpha-factor, were used as test sets. 
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Figure 1
The decision tree for gene CLN2 of S. cerevisiae. Here CLN2 is the
predicted gene; SWI5, CLN1 and CDC28 are the explaining genes.
Expression thresholds of the respective explaining genes mark all the arcs.
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The accuracy of the classifiers for the cdc15 training set was

estimated in three different ways: by 10-fold stratified

cross-validation [16,17], and by cdc28 and alpha-factor

datasets [9] as test sets. Only those classifiers that have high

accuracy by all three estimations were selected for con-

structing decision rules. We ‘compressed’ all possible

expression intervals into ‘upregulated’/‘downregulated’ and

used the rule language described above. For example, the

decision tree for CLN2 given in Figure 1, implies only one

rule +SWI5<==>-CLN2, because only one branch of this tree

(‘SWI5 > 1.1’, meaning that expression of SWI5 is more than

110% of the average level) can be interpreted in terms of

‘upregulated’/‘downregulated’. The other branches are

more difficult to interpret; indeed, the fact that the expres-

sion of CLN1 is more than 80% of the average (CLN1 > 0.8)

does not unambiguously imply ‘upregulated’ or ‘downregu-

lated’. We do not consider any relations that cannot be

described in terms ‘upregulated’/‘downregulated’. Never-

theless, this does not mean that they are irrelevant; these

relations exist in the data and some additional analysis is

needed to confirm or to reject them.

The rules constructed from classifiers are presented in

Table 2. This table presents ‘simultaneous’, ‘time delay’ and

‘changes’ relations in gene activities. The absence of some

genes from Table 1 means that the algorithms used did not

extract reliable rules for them.

The three datasets selected for our experiments do not

contain all possible information about gene interactions,

and it is likely that information about some of the interac-

tions is not in all of them. Taking this into account, our

procedure of the classifier selection is rather conservative

and not all rules that are present in the data were

extracted. However, we use this conservative approach in

order to minimize the possibility of extracting some

‘strong’ but misleading dependencies by chance, that is, to

avoid false positives. The combination of our approach

with the follow-up validation of the results by other experi-

mental methods could help to confirm the questionable

rules presented in the lower part of Table 2. These rules

have clear biological explanations in the literature, but

they failed in one or two of the accuracy tests (see Addi-

tional data files for all accuracy estimates). For example,

the accuracy estimated by 10-fold cross-validation for SKP1

under ‘simultaneous’ events is almost 92%, but the perfor-

mance of the classifier was not confirmed by estimations

with cdc28 and alpha-factor test sets.

Examples of highly accurate rules are those created for genes

CLB1 and CLB2 (Table 2). The accuracy of the CLB1 classi-

fier for ‘simultaneous’ events (Table 3, 20 genes) is 95.8% by

the 10-fold cross-validation test along with 88.2% and

88.9% for the estimations where cdc28 and alpha-factor

were used as test sets. It means that not only does cross-vali-

dation produce highly accurate estimates, but the informa-

tion extracted for CLB1 from the cdc15 dataset is consistent

with the information about this gene contained in the cdc28

and alpha-factor datasets.

We can compare our classification rules with the analysis of

expression time series, performed by Spellman et al. The

authors evaluated and ranked all genes by a specific score.

The better the score the more likely the gene is to be periodi-

cally regulated. By establishing a threshold for the score

values the authors identified cell-cycle-regulated yeast

genes. Among those genes selected for our experiments

there are eight that have scores lower than threshold defined

by Spellman et al. These are SKP1, MBP1, CDC34, CDC53,

SWI6, HCT1, CDC28 and MCM1. We obtained no accurate

rules for these genes, except for the questionable ones for

SKP1, MBP1 and CDC34. All these questionable rules have

high 10-fold cross-validation accuracy on cdc15 data and are

inconsistent with cdc28 and alpha-factor datasets. The

reason for this is clear: these genes have much stronger

signals during the cdc15 experiment than during the other

two (signal peak to trough ratio for cdc15 is two or even three

times higher than for cdc28 and alpha-factor datasets). The
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Table 1

The list of genes considered

ORF Gene name Description

YMR199W CLN1 Cyclin, G1/S-specific

YPL256C CLN2 Cyclin, G1/S-specific

YAL040C CLN3 Cyclin, G1/S-specific

YGR108W CLB1 Cyclin, G2/M-specific

YPR119W CLB2 Cyclin, G2/M-specific

YLR210W CLB4 Cyclin, G2/M-specific

YPR120C CLB5 Cyclin, B-type

YGR109C CLB6 Cyclin, B-type

YMR043W MCM1 Transcription factor of the MADS box family

YLR079W SIC1 Inhibitor of Cdc28p-Clb protein kinase complex

YLR182W SWI6 Transcription factor, subunit of SBF and MBF 
factors

YBR160W CDC28 Cyclin-dependent protein kinase

YDL132W CDC53 Controls G1/S transition, component of SCF-
ubiquitine ligase complexes

YDL056W MBP1 Transcription factor, subunit of the MBF factor

YDR054C CDC34 E2 ubiquitin-conjugating enzyme

YDR146C SWI5 Transcription factor

YDR328C SKP1 Core component of SCF-ubiquitin ligase 
complexes

YER111C SWI4 Transcription factor, subunit of SBF factor

YGL116W CDC20 Cell division control protein

YGL003C HCT1 Substrate-specific activator of APC-dependent 
proteolysis



situation is rather different for CDC53, SWI6, HCT1, CDC28

and MCM1: their expression levels are not significantly dif-

ferent across all three experiments. Their scores indicate

that they can serve as negative controls and, indeed, no accu-

rate rules were obtained for these genes. This fact reflects

that our rule-extraction procedure performed well and that

we did not extract rules randomly.

It should be noted that the size of the used training sets is

relatively small for a machine-learning approach. Classifica-

tion is an individual problem in the case of each gene, and

the size of the training set sufficient to achieve good accuracy

can vary from gene to gene. The advantage of our approach

is that to make classification more precise one can just add

new experimental data (expression profiles) to the dataset.

We also plan to biuld an expert system for gene network

reconstruction, based on the method presented here.

Discussion 
To verify the biological relevance of our results we consider

the expression of the genes in association with the consecu-

tive phases of the cell cycle, G1, S, G2, M, M/G1, which are

usually used in the literature. The highest-accuracy classi-

fiers were obtained for the group of cyclins for which almost

all possible known relations were reconstructed:

+CLB5<==>+CLB6; +CLB6<==>+CLB5; ±CLB2<==>±CLB1;

-CLB1<==>-CLB2; -CLB2<==>+CLN2; +CLN2<==>+CLN1 and

+CLB6==>-CLB1; +CLB6==>-CLB2; ±CLB1==>�CLN2. Our

rules are consistent with the knowledge that the maximum

of CLB2 transcription is in G2 phase, whereas CLN1, CLN2,

CLB5 and CLB6, whose expression patterns are very similar,

all have their expression maximum in G1 [15,18]. The rules

obtained are in agreement with CLB2 and CLB1 being

expressed simultaneously in G2 [19]. Questionable rules,

��CLN2<==>��CLB5 and -CLB2==>+CLN1, from the lower
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Table 2

Classification rules

Gene name ‘Simultaneous’ rules Supporting information ‘Time delay’ and ‘changes’ rules Supporting information

SWI5 -CLB1<==>-SWI5 [19] - -

-CLB2<==>-SWI5 [33]

CLN1 +CLN2<==>+CLN1 [22] - -

-CDC20<==>+CLN1

CLN2 -CLB2<==>+CLN2 [20] ±CLB1==>�CLN2 [20]

+SWI5<==>-CLN2 [18] [18]

CLB1 ±CLB2<==>±CLB1 [19] +CLB6==>-CLB1 [19]

��CLB2<==>��CLB1 [21]

CLB2 -CLB1<==>-CLB2 [19] +CLB6==>-CLB2 [19]

��CLB1<==>��CLB2 [21]

CLB5 +CLB6<==>+CLB5 [15] - -

CLB6 +CLB5<==>+CLB6 [15] - -

MBP1 �CDC34<==>±MBP1 [34] ��CDC34<==>��MBP1 [34]

CDC34 +MBP1<==>-CDC34 [34] - -

SKP1 +MBP1<==>-SKP1 [15] ��CDC34<==>��SKP1 [35]

SWI5 - - �CLN2<==>�SWI5 [18]

±CLB1==>±SWI5 [20]

-CLB1-CLN3==>+SWI5

CLN1 - - +SWI5==>-CLN1 [20]

-CLB2==>+CLN1

CLB5 - - ��CLN2<==>��CLB5 [18]

Classification rules with high accuracy in all three accuracy tests (CV-10 and cdc28, alpha-factor test sets) are shown in the upper part of the table.
Questionable rules (see Classification rules for explanation) are shown in the lower part of the table. 



part of Table 2 have the same explanations (see Classifica-

tion rules for explanation of questionable rules).

Rules that we obtained for the expanded set of genes do not

conflict with the ones for cyclins. They confirm several addi-

tional details about coordination of cyclin transcription with

expression of genes involved in cell-cycle regulation. For

example, transcription of SWI5 and CLB1 is G2/M specific

and activated in late S phase; the expression pattern of SWI5

is similar to that of CLB1 and CLB2 and the peak of mRNA

concentration of SWI5 is in G2 [20,21]. The following

classification rules for CLN1, CLN2 and SWI5 are in agree-

ment with these data: +SWI5<==>-CLN2, -CLB1<==>-SWI5,

-CLB2<==>-SWI5 and questionable rules �CLN2==>�SWI5,

+SWI5==>-CLN1.

Clearly, ‘simultaneous’ as well as ‘changes’ rules for MBP1

and CDC34, SKP1 (Table 2, lower part) can be explained by

the fact that their activities as parts of the MBF and SCF

complexes are completely separated in time. 

The classification rules for CLN1 are: +CLN2<==>+CLN1,

-CDC20<==>+CLN1. CDC20 is transcribed in late S/G2 phase

and its product is required for metaphase-to-anaphase tran-

sition [20,22], whereas CLN2 and CLN1 have their tran-

scription maximum in G1.

At the same time, there is a group of eight genes for which no

accurate classifiers were obtained. There are several possible

reasons for this and we discussed some in Classification

rules. One obvious restriction of the microarray methodol-

ogy is that it gives us information about gene regulation only

at the level of transcription. Furthermore, mRNA extractions

in the cdc15 experiment were made every 10 minutes during

three cell cycles, which may not be frequent enough to

observe all events. The sensitivity of microarray experiments

is insufficient to see minor fluctuations of expression. For

example, some of the selected genes are expressed at a low

and nearly constant level, making the detection of slight

changes in mRNA concentrations difficult. CDC28 is

assumed to be expressed constitutively, as it is involved in all

cell-cycle phases. It is required for initiation of mitosis, DNA

replication, polarization of the actin cytoskeleton, spindle-

pole-body duplication and bud emergence [23-26]. Further-

more, most of the regulatory interactions of CDC28 are at

the protein level, which cannot be straightforwardly detected

by the microarray experiments considered. The data-quality

issues in the context of gene-network reconstruction are dis-

cussed in [2].

There are a few rules among those extracted that reflect

symmetric relations between genes, and which, therefore,

can be potentially obtained by clustering. For instance,

CLB1 and CLB2 rules are symmetric reflections of each

other. However, the majority of extracted rules have a

structure that is sufficiently different from the clustering-

like one. Dependencies between explaining and predicted

genes of the decision trees, from which the rules were con-

structed, are even more complex and hardly can be

retrieved by clustering algorithms (for decision trees see

Additional data files).

The relationships between genes discussed here have simple

biological meaning. These relationships may not be the

optimal for constructing the full network of gene interac-

tions; nevertheless, they exist in the data and may be clearly

explained with the help of existing knowledge. Using the

obtained results we can construct networks of gene inter-

relationships by connecting genes by directed edges accord-

ing to classifiers. Classifiers in such a network are

considered to be the control functions, which map the

expression levels of other genes into the state of a corre-

sponding gene.

Connecting genes from Table 2 gives us the network pre-

sented in Figure 2, which is simply a graphical representa-

tion of the dependencies between gene-expression levels

contained in the extracted decision rules. Every node in this

graph represents a gene, and every arc indicates the relation

between genes defined by the corresponding decision rule.

An advantage of network reconstruction using our approach

is that, given accurate classifiers, one is able to construct a

network correctly, reproducing the architecture and the logic

of a network consistent with the data. Moreover, one can

easily improve classifiers by adding new expression profiles

to the dataset. It is important that such iterative improve-

ments can be part of an interactive process, when the

researcher decides when to stop adding new data and what

biological meaning is comprised in the network. Thus, our
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Table 3

Accuracy of final classifiers for ‘simultaneous’ events in the
cdc15 dataset

Gene
name cdc15, 20 genes cdc15, cyclins

10-CV cdc28 � 10-CV cdc28 �

CLN1 82.8% 76.5% 94.4% 91.1% 76.5% 94.4%

CLN2 69.9% 88.2% 77.8% 73.5% 88.2% 77.8%

CLB1 95.8% 88.2% 88.9% 95.3% 88.2% 88.9%

CLB2 95.8% 88.2% 77.8% 95.0% 88.2% 77.8%

CLB5 76.0% 94.1% 83.3% 76.0% 94.1% 83.3%

CLB6 83.7% 88.2% 88.9% 84.4% 88.2% 88.9%

SWI5 73.7% 88.2% 83.3%

Estimates are shown for C4.5 by Quinlan with wrappers by Kohavi on the
cdc15 dataset with continuous features discretized by the Fayyad and Irani
method. 10-CV, 10-fold cross-validation; cdc28 and �, accuracy estimations
where cdc8 and alpha-factor datasets were used as test sets. See Materials
and methods for the algorithm description.



methodology can be considered as a basis for an interactive

expert system for gene-interaction network reconstruction.

Conclusions 
All the extracted classification rules are consistent with the

data reported in the literature and even though the selected

microarray experiments were not designed specifically for

gene-network reconstruction, we were still able to find

several features of gene transcriptional activities.

Although here we apply our approach to a relatively small

subset of genes, it seems likely that it can be applied to larger

gene sets. Time-course data are not the only type of data to

which our approach is applicable. It is possible to explore

various cases where potential dependencies between dif-

ferent experimental samples might occur. A future goal is

to use the method described to deduce larger gene-interac-

tion networks and to investigate groups of genes with

unknown interactions. We also plan to build an expert

system for gene-network reconstruction, based on the

method presented here.

Materials and methods 
First, we give more formal definitions and formulations of

the problems informally introduced in Definitions. The

columns yj = (x1j,…,xkj) of the gene-expression matrix X

are called sample expression profiles. We also define a

partial expression profile yj/i, where the expression value

of gene i is missing. As already discussed, we assume that

the transcription machinery of gene i can be in a finite

number of different states sij for sample j. More precisely,

we define the state function �i for an arbitrary given gene I

as a function such that given a real value x it returns a

value from a discrete domain. Let us assume here that �i is

a function, which returns ‘+1’ if gene i is ‘upregulated’ (xij >
—xi)

and ‘-1’ if it is ‘downregulated’ (xij <
—xi), where —xi is the

average expression value of gene i. Thus, in this particular

case �i(x) �{-1,+1}. Given the expression value xij of gene

i, and the function �i, we can define the state of the gene

as sij = �i(xij).

Our goal is, given a gene-expression matrix X and a gene i, to

predict: one, the state of the gene i under condition j from

the expression values of other genes in the same sample

(that is, from the partial expression profile yj/i); two, the state

of the gene i under condition j from the expression values of

genes from the previous sample/samples (that is, from the

partial expression profile yj-1/i); three, the change in the state

of the gene from the changes in states of other genes. 

These three problems can be considered as standard classifi-

cation problems in the following way. Let Y = {y1,…,yn} be

the set of all sample expression profiles and Y/i = {y1/i,…,yn/i}

be the set of partial sample expression profiles for the given

gene i from matrix X. Let us define a classifier, C, as a func-

tion that maps a vector y to a discrete value s. Sometimes, in

the context of classification, vector y is called a feature

vector, while s is a label. The subset of y vectors with correct

labels assigned to them is called a dataset, D, for a particular

classification problem. An induction algorithm I maps a

dataset D into a classifier C. Thus, to solve the problems

above we need to define datasets and then choose appropriate
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Figure 2
The network of gene interactions constructed using the decision rules for the cdc15 dataset (see Table 2). The network is a graphical representation of
the information comprised in the extracted decision rules. Every node in this graph represents a gene and every arc indicates the relation between the
genes defined by the corresponding decision rule. Note the existence of two separate modules in the constructed network.
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induction algorithms. Now we can formulate the three prob-

lems more precisely.

We want to predict the state of gene l from matrix X. Induction

algorithm I maps the dataset Dl = (Y/l,sl), into the classifier Cl.

(We use index l for Dl and Cl in order to emphasize that they

correspond to the lth gene.) For the given dataset Dl, we

want to create a classifier that predicts the state of gene l cor-

rectly, that is, I(Dl,yj/l) = Cl(yj/l) = slj. For the first problem,

the predicted gene l and the explaining genes belong to the

same sample j.

Formulation of the second problem is the same, except that

the dataset now is Dl = (Y�/l, s�l ), where Y�/l = {y1/l,…,yn-1/l}

and s�l = (sl2, …, sln). The classifier Cl is said to classify gene l

for sample j correctly, if Cl(yj/l) = slj+1. Note that for this

problem the explaining genes belong to the sample preced-

ing the sample of the predicted gene g.

To define the third problem we construct a matrix D consist-

ing of elements dij = sij+1-sij, where sij = �i(xij). The formula-

tion of the third problem is equivalent to that of the first if

we use dij instead of xij and consider the pair (Y/l, dl) as the

dataset for the third problem. Note that now yj/l = (d1j,…,dl-1 j,

dl+1 j, …, dkj) and dl is the row from the new matrix of dij

values associated with the predicted gene g. As a result, fea-

tures and labels in this particular case belong to the same

domain {-1,0,+1}, where ‘+1’ means that gene changed its

state from ‘downregulated’ to ‘upregulated’, ‘-1’ means the

opposite change and ‘0’ is used for the situation when the

gene’s state remained unchanged in the transition from one

sample (experimental condition) to another.

To solve the first two problems defined above, we have to use

classifiers for continuous data, that is, any discretization

should be a part of the classification algorithm. This enables

us to find abundance thresholds of explaining genes, which

are specific for different gene interactions in the network

and sufficient for the switching of the predicting gene from

one state to the other. This way every gene has its own

unique discretization thresholds for input signals.

As a part of the classification problem it is necessary to find

which genes are relevant to the prediction of a particular

gene. This is known as the feature subset selection problem.

Two kinds of methods for feature subset selection have been

generally presented in the literature - filter and wrapper

methods [16,17]. In the filter approach, the feature set is fil-

tered to find the ‘most promising’ subset by evaluating some

objective function before running the induction algorithm.

The weak point of this approach is that the properties of a

particular induction algorithm are ignored. In the wrapper

approach, the selection algorithm uses the induction algo-

rithm itself to evaluate the objective function. The wrapper

approach of Kohavi was reported as performing better than

the filter approach for many real and artificial datasets [17].

The idea of the wrapper algorithm is to tune parameters of an

induction algorithm assuming it to be a black box in order to

optimize some objective function (for example, the accuracy

of a classifier). The set of attributes relevant to classification

may be considered as parameters of an induction algorithm.

Selecting the parameters that maximize the objective func-

tion gives us a list of ‘good’ features. For the details of the

selection algorithm see Kohavi [17]. The classification rules

that we obtain support the validity of the assumption that

only a limited number of explaining genes are sufficient for

accurate predictions.

In this paper we use two types of induction algorithms. The

first exploits the wrapper approach for feature subset selec-

tion [17]. This one is C4.5 by Quinlan [27], with wrappers by

Kohavi [17]. The second is C4.5 itself. C4.5 is an algorithm

that constructs the classification model inductively, general-

izing information from given examples of correct classifica-

tion, and was selected as an algorithm of proven

performance for a large variety of datasets.

We compared two different strategies for discretization. In

the first, the data prediscretized by an entropy-based scheme

with Fayyad and Irani stopping criteria [28] were used in the

inducer with wrappers. This supervised discretization tech-

nique uses the information entropy of the partitions induced

by different thresholds to find the appropriate discretization

boundaries, and it stops the search following the stopping

criterion based on the so-called minimum description length

principle (MDL) [16]. Thus the information entropy is used

as the objective function in the search for the best splitting

boundaries and, as the inductive splitting procedure requires

some termination conditions, MDL is used as a criterion for

termination. Because C4.5 was constructed as an algorithm

that can be applied to continuous data [27], in the second

approach we used C4.5 without additional discretization

techniques. In addition, as used by Kohavi and Sahami [29],

C4.5 can be used as an alternative to the Fayyad and Irani

method for data discretization. All the classifiers were con-

structed with the help of the WEKA package of machine-

learning tools [30].

The main reasons for selecting the classification techniques

described above are that their results (in the form of decision

trees) are easy to interpret, they are algorithmically simple

and there exist numerous comparisons of their performance

in the literature. Moreover, these techniques have become

benchmark algorithms for different machine-learning

studies. Although each classification problem requires several

classification techniques to be compared, and it is possible

that more sophisticated and efficient induction algorithms

exist for the datasets we used (although this is not proven),

comparative analysis of induction algorithms and their

development are not the topics of this study. The reader may

consult the excellent studies of Kohavi [17] and Lim et al.

[31] for a more detailed discussion of this problem.
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All the algorithms were run with default settings in order to

use the results of comparisons of induction algorithms

already reported in the literature and to avoid the additional

bias associated with the tuning of parameters.

The accuracy estimates shown in Table 3 are for those

‘simultaneous’ events classifiers for which the performance

of classifiers on the test sets is high. The table presents

estimates for C4.5 with wrappers on the data predis-

cretized by the Fayyad and Irani method. The accuracy of

all extracted classifiers is presented in the additional data

files. Because of the high variability of the estimates for

cross-validation, it was repeated 30 times for different

random partitions of the training sets for each selected

classifier and the average values are shown. As two inde-

pendent test sets were used, the cross-validation accuracy

estimates serve only as an additional indicator of the per-

formance of the created classifiers.

As the number of training instances is small, estimating

the confidence limits for the accuracy mean is not straight-

forward. Moreover, as has been pointed out by many

researchers [17,32], the common assumptions concerning

independence of different estimates are violated when

cross-validation is used. In the presence of two indepen-

dent test sets we did not do a rigorous analysis of stability

of the classifiers, but, nevertheless, we observed that most

of the final classifiers (not the questionable ones) were

stable under different 10-fold splits. As is common prac-

tice, cross-validation estimates are given along with stan-

dard deviations. At the same time, 95% confidence

intervals are shown for the accuracy estimates when the

test sets were used. As the number of instances is small in

both cdc28 and alpha-factor test sets, standard methodol-

ogy based on the normal approximation of the binomial

distribution is not applicable here. Instead, we estimated

confidence intervals with the help of the Beta probability

distribution using the methodology proposed in [32].

Additional data files 
The following additional data files are available with the

online version of this paper.

Additional data file 1 is a list of the classifiers for C4.5 by Quinlan

with ‘wrappers’ by Kohavi on the cdc15 dataset with continuous

features discretized by the Fayyad and Irani method. 

The first three tables in additional data file 1 present the classi-

fiers for the set of 20 genes and the last three for the set of cyclins.

The notation ‘simultaneous’ is used for the classifiers corre-

sponding to the first problem, ‘time delay’ to the second problem,

‘changes’ to the third problem (see Definitions above). Addi-

tional data file 2 is a list of the classifiers for C4.5 by Quinlan on

the cdc15 dataset with continuous features discretized by C4.5

itself. The content is organized as in additional data file 1.

Additional data file 3 contains accuracy estimates for the

classifiers provided in additional data file 1.

Abbreviations: 10-CV, 10-fold cross-validation; cdc28 and �,

accuracy estimates where cdc28 and alpha-factor datasets

were used as test sets; Overall, test accuracy that was esti-

mated by forming the unified cdc28-alpha-factor test set and

testing the classifiers on it.

Cross-validation estimates are presented only for the classi-

fiers from Table 2 to discriminate them from the others.

Bold font is used for the final rules, excluding the question-

able ones, and normal is used for the questionable rules.

Cross-validation estimates are shown along with the stan-

dard deviations, while 95% confidence intervals are pre-

sented for those estimates where the test sets were used.

Test accuracy was estimated under the assumption that the

measurements of the cdc28 and alpha-factor test sets are

independent. Additional data file 4 contains accuracy esti-

mates for the classifiers provided in additional data file 2.

The content is organized as in additional data file 3.
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