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Abstract

Background: Microarray data are subject to multiple sources of variation, of which biological
sources are of interest whereas most others are only confounding. Recent work has identified
systematic sources of variation that are intensity-dependent and non-linear in nature. Systematic
sources of variation are not limited to the differing properties of the cyanine dyes Cy5 and Cy3 as
observed in ¢cDNA arrays, but are the general case for both oligonucleotide microarray
(Affymetrix GeneChips ) and cDNA microarray data. Current normalization techniques are most
often linear and therefore not capable of fully correcting for these effects.

Results: We present here a simple and robust non-linear method for normalization using array
signal distribution analysis and cubic splines. These methods compared favorably to normalization
using robust local-linear regression (lowess). The application of these methods to oligonucleotide
arrays reduced the relative error between replicates by 5-10% compared with a standard global
normalization method. Application to cDNA arrays showed improvements over the standard
method and over Cy3-Cy5 normalization based on dye-swap replication. In addition, a set of
known differentially regulated genes was ranked higher by the t-test. In either cDNA or
Affymetrix technology, signal-dependent bias was more than ten times greater than the observed
print-tip or spatial effects.
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Conclusions: Intensity-dependent normalization is important for both high-density
oligonucleotide array and cDNA array data. Both the regression and spline-based methods
described here performed better than existing linear methods when assessed on the variability of
replicate arrays. Dye-swap normalization was less effective at Cy3-Cy5 normalization than either
regression or spline-based methods alone.

Background variability are random but most are systematic and due to
Microarray data is almost always described as containing  specific features of the particular microarray technology.
large measurement noise or high variability. Some sources of =~ Systematic effects resulting from the biological process
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under study are of interest whereas other systematic sources
should be removed. Normalization methods are required for
controlling uninteresting variability and it is our belief that
much of the systematic variability in oligonucleotide array
data is controllable through careful normalization. Improper
normalization can lead to incorrect conclusions or unaccept-
ably high false-positive or false-negative rates. Here we
describe gspline, a non-linear method for controlling signal-
dependent sources of variability in Affymetrix oligonu-
cleotide array data, and show that the approach can also be
applied to cDNA array data.

Few microarray studies quantify specific sources of variabil-
ity and fewer still suggest methods for controlling them.
Much of the literature addressing microarray normalization
concerns cDNA array data, whereas only a few examples can
be found for oligonucleotide arrays [1-4]. Here we review
microarray normalization techniques, present the gspline
method and show its application to Affymetrix oligonu-
cleotide arrays of human T-cell cultures and ¢cDNA arrays of
Bacillus subtilis and Arabidopsis thaliana (H. Neested,
A. Holm, H.B. Nielsen, C.A. Harris, M.H. Beale, M. Ander-
sen, O. Mattsson and J. Mundy, unpublished observations).
The oligonucleotide array study compares human T-cell cul-
tures infected with human immunodeficiency virus (HIV) to
uninfected cultures and the B. subtilis arrays investigate
mutant strains for the genes ginA and tnrA. The A. thaliana
experiment compares wild-type to mutant strain and in this
context is used to illustrate the effects of normalization on a
dye-swap experiment.

Linear normalization methods

Linear methods are the predominant means of microarray
normalization. Scaling, the simplest linear approach,
assumes a linear relationship passing through the origin.
Forcing array distributions to have the same central ten-
dency (arithmetic mean, geometric mean, median) can be
accomplished by a scaling factor and has been the method
chosen by Affymetrix and others [5]. Linear regression [6,7]
and general linear modeling such as ANOVA [8,9] provide
offsets, scaling factors and other parameters, but again
assume linear relationships and properties of the data or log
data distributions, such as normality, that are not always
true. In all cases, linear approaches will fall short when the
signal bias is not linear.

Approaches for two-channel ¢cDNA arrays apply scaling in
order to zero a central tendency of the log expression ratios
[10-12]. These approaches may also be applied to pairs of
single-channel oligonucleotide arrays. Applying an additive
offset to the log data is equivalent to a multiplicative scaling
of one channel before taking the log. Moving the median or
mode of the log-ratios to zero makes the assumption that the
majority of genes are not differentially regulated. Additional
steps may scale the log-ratios by a measure of dispersion
such as the standard deviation or median absolute deviation

(MAD), possibly grouping spots according to the printing-
tip. This is equivalent to raising both channels to a power
before taking the log and is therefore a non-linear transfor-
mation of the original signals though giving rise to a linear
transformation of the log-signals. Unfortunately, systematic
biases are not always linear in log-space either.

Non-linear normalization methods

Non-linear normalization methods have been shown to
control signal-dependent non-linear bias between Cys and
Cy3 channels of ¢cDNA arrays [11,13]. The promising
approach of Yang et al. [11] uses lowess local regression
[14] directly to paired data as a function of signal intensity.
For the cDNA data used by Yang et al. and Tseng et al.
[11,13], lowess was used for local linear regression of
log(R)-log(G) versus 1/2(log(R) + log(G)) where R, and G
are the intensities of the Cy5 and Cy3 channels respec-
tively. Rather than regressing log(R) directly to log(G),
these approaches correctly attribute uncertainty to both
channels by regressing to the geometric mean of the inten-
sity. Even so, standard regression techniques can be sensi-
tive to outliers, which are likely to occur in microarray
data. Robust regression techniques, as found in the
R version of lowess [15], are relatively insensitive to out-
liers. Robust regression techniques incur significant com-
putational costs and, in practice, a small random sample of
data must be used for today’s oligonucleotide arrays. The
approach taken by Tseng et al. [13] and Schadt et al. [4]
addresses the outlier issue by selecting non-regulated fea-
tures based on a rank invariant criterion where all signals
from both arrays are sorted and signals with ranks deviat-
ing by less than a threshold are included. Normalization of
replicate arrays raises the question of which signals should
be excluded when none of the genes are differentially
expressed. In the method we will describe, no data need to
be excluded for curve fitting and it is therefore global and
unbiased by subset selection.

Signal-dependent non-linear normalization

The goal of signal-dependent normalization is to make signal
distributions comparable across the intensity range. This
suggests that the expectation for the difference of paired
measurements, or log-ratios, should not significantly deviate
from zero anywhere over the intensity range. Again, this is
the motivation for centering Cys to Cy3 log-ratio distribu-
tions of ¢cDNA arrays, but now we consider multiple arrays.
If the log-ratio distributions between arrays or color chan-
nels are to be centered across the intensity range, then the
resulting correlation will be linear with intercept zero and
slope one. The resulting data correlation will retain stochas-
tic noise and, more important, the biological variation. This
linear data correlation presupposes that the distributions of
signals be roughly the same. Our approach seeks to trans-
form the distribution of one array to the distribution of a
target array in order to achieve this goal. If the target array is
chosen to be the geometric mean probe intensities over the



arrays in an experiment, then each array distribution is
fitted to an empirical estimate of the signal distribution for
the experiment. In principle, any measure of central ten-
dency may be used, although the geometric mean is a
natural extension of existing cDNA methodologies. Alterna-
tively, each array can be fitted to the theoretical quantiles of
a known distribution (for example, the log-normal distribu-
tion). This approach was not chosen here as the observed
distributions did not fit a theoretical model and contained
well determined, systematic features. In this work we seek
only to make the distributions similar to each other whatever
those distributions may be.

For Affymetrix data, all the arrays of an experiment can be
used to define a target array and thus a target distribution
that all arrays are normalized to. As a result of the dye
effects, data from two-channel ¢cDNA arrays display signifi-
cantly different Cy3 and Cys signal distributions, suggesting
that means calculated over both signal types may not make
sense for the definition of a target distribution. Instead,
either the geometric mean of the Cy3 or Cys channels are
used, and all channels from all arrays are normalized to a
single Cy3 or Cys distribution. This accomplishes both Cy3
to Cys normalization within and between arrays. The
approach described here can be used to normalize the Cy3
channel to the Cy5 channel within a single array or may also
be applied to pairs of Affymetrix arrays.

Qspline normalization

The normalization method described in this work, gspline,
uses quantiles from array signals and target signals, x and v,
to fit smoothing B-splines. The splines are then used as
signal-dependent normalization functions on the signals of
x. The target signals can be from another array or could be
means calculated from multiple arrays as just described.
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Splines are a natural and robust choice in that they are
capable of representing almost any smooth relationship and
will also work well if data is linearly related. Using quantile
information provides a much easier fitting problem and
avoids directly fitting the pairwise data which often requires
robust regression techniques. An example oligonucleotide
array signal distribution and quantile comparison can be
seen in Figure 1.

Spatial normalization

Spatial heterogeneity of signal can be observed in microarray
data and in particular in cDNA microarray data. Variability
in Cy3/Cys ratios has been shown to be generated, in part,
by the specific print-tip used during the spotting of the
cDNA probes [11]. In fact, an F-test found that at least one
print-tip was very significantly correlated to log-ratio (log(p-
value) less than -20) in all ¢cDNA arrays used in this study.
Spatial effects are not only caused by the printing device but
may also be related to; temperature or humidity during the
time of printing, the batch of cDNA represented by a specific
microtiter plate, reagent flow during the washing procedure
after hybridization, or from uneven or tilted glass surfaces
during scanning. Microtiter plate effects can appear as verti-
cal or horizontal bands across the array whereas other
effects may generate smooth gradients of arbitrary orienta-
tion. Signal gradients can be normalized by subtracting local
signal estimates (log intensities or log-ratios) and a prelimi-
nary approach for this was tested.

These effects, though not as significant as the Cy3 Cys bias,
can be quite pronounced, as will be observed in the
A. thaliana microarrays. Older-generation Affymetrix arrays
like those used in this study were subject to local signal
biases due to the adjacent placement of probes for each
gene-probe set. This bias has since been corrected in more
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Signal-distribution comparison and QQ correlation plot. (a) Example array distribution plots (left) from kernel smoothed density estimates versus the
log intensity data. The target distribution from v (black) is shown alongside that of an example array. (b) The QQ plot shows the correlation of the
quantiles from x to the quantiles of the target v and describes a normalizing curve.
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recent oligonucleotide array designs. Other spatial biases
can be observed for Affymetrix arrays and are best described
as smooth gradients.

Normalization comparison

Log-intensity scaling, lowess and invariant set normalization
approaches were compared to gspline for the reduction of
variation between replicate arrays in oligonucleotide and
cDNA array experiments. Six microarrays were used for each
of the HIV and B. subtilis studies. Three control replicate
and three treatment replicate single-channel arrays were
used in the oligonucleotide array study of HIV-infected
T-cells. Six replicate two-channel ¢cDNA arrays provided six
control and six treatment channels for each B. subtilis study.
In addition, a pair of dye-swapped replicate arrays from
A. thaliana were also normalized to investigate the various
normalizations methods versus dye-swap normalization.

The lowess normalization method for ¢cDNA array data was
taken from the Rarray module of the sma package (version
0.5.8) [16] and was used for the normalization of all cDNA
microarray data sets. For oligonucleotide array data, a
lowess method was adapted from Raffy module of the sma
package. Instead of averaging all pairwise array regressions
on a single random sample of feature pairs, iterative regres-
sions between an array and the target array were averaged
using a new random sample for each iteration. The former
method tended to significantly under-normalize whereas the
adapted method used essentially the same procedure but
performed significantly better.

In addition to print-tip normalization for cDNA arrays, a
spatial gradient normalization was devised using a two-
dimensional Gaussian function. This function was used to
estimate local background bias over a window of probes for
the log-ratios of cDNA and oligonucleotide array data. Log-
ratios for oligonucleotide array data were calculated versus
the geometric mean of each probe across arrays, as will be
seen throughout this work. Lastly, although it is only a
matter of preference, we used log base 2 throughout.

Results

Global assessment of normalization

The assessment of normalizations was first observed for
global features such as absolute signal distribution and rela-
tive signal distribution. Absolute signals result from the
image analysis and are the values extracted from the pixel
intensities of each spot, whereas relative signals are log-
ratios of absolute signals versus measured or calculated
background probe signals. The absolute signal distributions
of the six oligonucleotide arrays can be seen in Figure 2 for
the HIV (perfect-match (PM) distributions) and glnA (Cy3 G
and Cys R distributions) experiments both before and after
normalization. Distributions for replicate arrays or repli-
cated Cy3, Cys channels are shown in the same color.

Figure 2 shows that signal-distribution inconsistencies
between replicate oligonucleotide arrays are comparable to
those between treatments. For this example, distribution
discrepancies appear minor though we have encountered
Affymetrix experiments showing dramatically disparate dis-
tribution profiles. Scaling by the trimmed mean of PM-mis-
match (MM), as done by the Affymetrix GeneChip software
(MAS 4.0), was observed to separate PM intensity distribu-
tions more than is observed for unnormalized data and was
not considered in this study. Newer versions of the
Affymetrix software (MAS 5.0) incorporate additional log-
intensity scaling routines that improve normalization perfor-
mance but were not investigated in this study. Log-intensity
scaling used in this comparison also did not make signal dis-
tributions more comparable than the unnormalized case.
Both lowess and invariant set normalization methods
resulted in similar array distributions, whereas our version
of lowess normalization gave more comparable distributions
than the Raffy version. The gspline normalization resulted in
the most similar array distributions, which are indistin-
guishable from each other in Figure 2.

Normalized array distributions for the two c¢cDNA experi-
ments showed a similar trend, although ¢cDNA array distribu-
tions strongly depended on the cyanine dye and in all cases,
distributions were much less smooth. The dye bias can clearly
be seen in the unnormalized Cy3 and Cy5 signal distributions
shown in green and red respectively in Figure 2. Both global
and scaled print-tip lowess and gspline normalizations
showed similar signal-distribution comparisons. Lowess and
gspline normalizations generated more comparable Cy3 and
Cys distributions than scaling alone, whereas gqspline
methods generated the most similar signal distributions.

The effects of normalization on the relative signal distribu-
tions, log(x;/v), are shown in Figure 3 for both oligonu-
cleotide and ¢cDNA arrays for the same normalizations shown
in Figure 2. These probe-deviation distributions show the
variability from each v calculated over all the channels in an
experiment and therefore show log-intensity deviations from
the experiments’ centroid. The original signal intensities are
lost in these plots of relative information, but global biases
can still be seen. Comparable decreases in global array bias
were observed for lowess, gspline and invariant set normal-
ized results. Systematic differences between ¢cDNA Cy3 and
Cys5 channel distributions can be seen before normalization
but display similar distributions after signal-dependent nor-
malization. By visual inspection, print-tip scaling followed by
gspline normalization resulted in the greatest decrease of rel-
ative signal bias for the cDNA array data. Little if any differ-
ence was observed between global lowess and scaled print-tip
lowess with regard to relative signal distributions. The same
was observed for the two variants of gspline, suggesting that
print-tip effects are much smaller than the global biases. The
same trends were observed for the four channels of the dye-
swap replicate cDNA arrays.
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Figure 2

Signal distributions before and after normalization. Density estimates for the six oligonucleotide arrays of the HIV study (top row) and six cDNA arrays
of the gnA study (bottom row): before normalization (left column), after lowess normalization (middle column), and after gspline normalization (right
column). Scaled print-tip versions of lowess and gspline are shown for the gInA experiment and global lowess and gspline are shown for the HIV
experiment. Control samples are shown in green and treatment samples (HIV-infected cells and glnA mutants) in red, along with the geometric means
distribution in black for the six HIV arrays and the six Cy3 signals from glnA arrays. Signal distributions were calculated by Gaussian kernel density
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estimation.

Quantitative results in Table 1 confirm the observations
from the distribution analysis. Variances were estimated
within each control or treatment group and served as a
measure of replicate error. Oligonucleotide arrays showed
large decreases of from 50 to 70% in replicate error, for all
normalization methods, whereas c¢cDNA replicate errors
showed decreases of from o0 to 50%, depending on the nor-
malization. Reductions in variability for lowess, gspline and
invariant-set methods were comparable for both treatment
and control replicates of oligonucleotide data. The largest
decrease in replicate variability for the HIV experiment was
observed for gspline and invariant-set normalization, where
both gave decreases of 59% and 68% for control and

infected, respectively. Including spatial normalization after
gspline improved on these decreases by an additional 1%.
Results for the cDNA experiments showed that global and
print-tip gspline provided greater reduction of replicate
error versus the lowess methods.

Signal-dependent assessment of normalization

To visualize signal-dependent bias, Figure 4 shows log-
signal deviations from v versus signal intensity for each of
the three HIV-infected samples (that is, log(x;)-log(v) versus
log(v)). As previously noted [11], MA plots, where
M=log(x/y) is plotted versus A=log(sqrt(x*y)) for signals x
and y, contain the same information as xy correlation plots
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Figure 3

Relative signal distributions before and after normalization. Relative signals (log-ratios) log(x)-log (v), for oligonucleotide arrays (HIV, top row) and cDNA
arrays (glnA, bottom row). One distribution is shown for each microarray before normalization (left) after lowess normalization (centre) and after gspline
normalization (right). Control samples are shown in green, treatment samples in red and normal distributions fitted to the median and MAD of all log-

ratios in black.

but are much better at visualizing deviations from the iden-
tity line. This representation clearly shows the need for
signal-dependent normalization between replicates, and
similar results were found for the three control replicates. A
comparison of normalization curves shows differences
between all normalization techniques and that the signal-
dependent methods were able to correct for non-linearities
in the log scale. The comparison of normalizing curves
shows that the lowess method generated smoother curves
than the cubic spline methods (gspline and invariant set)
and that the spline-based curves were very similar.

The signal-dependent biases for the individual channels of
c¢DNA array data can be seen for an example glnA microar-
ray in Figure 5 after print-tip scaling, lowess and gspline

normalizations. In this case, log(G) and log(R) signals are
compared to mean log(G) signals calculated over the six
arrays. Although gspline normalized to signals calculated
from all six arrays, normalization performance was compa-
rable if not better than the lowess method that only used the
Cy3 and Cys5 signals within each individual array. Additional
examples can be found in the additional data files available
with the online version of this paper (see Additional data
files and [17]).

Figure 6 compares lowess and gspline normalization to dye-
swap normalization for replicate arrays A and B, where G,
and R, were the control and mutant RNA samples on array
A and Gj and R, were the mutant and control samples on
array B. Dye-swap normalization effectively averages log
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Variance of replicates

Pre Scaled Lowess Lowess-tip Qspline Qspline-tip Spatial
T cells 0.140 0.062 0.062 - 0.057 - 0.056
HIV 0.097 0.042 0.032 - 0.031 - 0.030
glnA.Cy3 0.449 0.276 0.394 0.390 0.287 0.251 0.264
glnA.Cy5 0.643 0.634 0.553 0.539 0.389 0.326 0.366
gnrA.Cy3 0.400 0316 0.372 0.366 0.326 0.315 0.273
tnrA.Cy5 0.466 0.473 0.393 0.384 0.353 0.318 0.338
T cells - 55.4 55.9 - 59.5 - 60.1
HIV - 56.5 66.9 - 67.9 - 68.8
glnA.Cy3 - 386 12.2 13.1 36.1 44.1 41.2
glnA.Cy5 - 1.4 14.0 16.2 394 49.4 43.1
tnrA.Cy3 - 21.2 7.2 87 18.6 214 31.8
tnrA.Cy5 - 0.0 15.6 17.5 24.1 31.6 274

The top half of the table shows average log-signal variances of oligonucleotide array replicates (T-cell control, HIV-infected) and cDNA array replicates
(glnA.Cy3 and tnrA.Cy3 controls, gInA.Cy5 and tnrA.Cy5 mutants) before normalization (pre), after log-signal scaling (scaled), global lowess (lowess), scaled
print-tip lowess (lowess-tip), global and tip scaled gspline (gspline, gspline-tip) and spatial gradient normalization (spatial). The percent decrease relative
to prenormalized variance is also listed for each method in the lower half of the table.

intensities within each sample type and is used to calculate a
single set of log-ratios log((R,G5)/(G4Rp)). From Figure 6 it
is clear that dye-swap normalization alone is not enough to
account for signal-dependent biases for this example. Either
lowess or gspline alone provided more effective normaliza-
tion than dye-swap averaging. This was due to the fact that,
in this case, the dye bias was not consistent between repli-
cates and can be seen to be much worse in array B. Signal-
dependent normalization followed by dye-swap averaging
should provide significantly better results than either
approach alone.

When the signal-intensity range was separated into quar-
tiles, the median log-ratio versus the probe means v was
plotted for each array and each quartile. These medians can
be seen in Figure 7 for the HIV, glnA and dye-swap experi-
ments after the various normalizations. Separating these dis-
tributions by quartiles shows the performance of the
normalization methods relative to signal intensity and again
confirms the effectiveness of the methods described here.
The lowess methods used for cDNA data were only employed
to normalize within individual arrays and thus signal differ-
ences can still be observed between arrays. The R/G log-
ratio variability for each array was found to be comparable
for both single and multiple array normalization strategies.
Again, the results from global and print-tip methods were
not seen to differ.

The distributions of R/G log-ratios versus print-tip can be
compared for an example ginA array in Figure 8. After global
normalization, a print-tip dependence can still be observed

in most cases. Scaling the individual Cy3 and Cys log-signals
before gspline normalization is shown to correct for some of
this effect, although this method does not directly scale the
R/G log-ratios. The scaled print-tip lowess first performs
regressions by print-tip group, followed by tip-group scaling
of the log-ratios and, not surprisingly, generates the most
comparable print-tip log-ratio distributions. The prelimi-
nary spatial scaling technique also normalizes log-ratio
information and can be seen to generate comparable print-
tip log-ratio distributions.

Spatial effects can be more or less dependent on the print-tip
group, depending on the strength of the other spatial effects.
Figure 9 shows an example from the dye-swap experiment
where gradient effects tended to be as large as the print-tip
effects. Tip-group normalization alone can be seen still to
contain spatial bias within each tip sector. Spatial log-ratio
normalization after global normalization can be seen to give
the most homogeneous log-ratio signals across the surface of
the array. An example oligonucleotide array is shown before
and after spatial normalization, along with the values that
were used for the normalization in Figure 10. The distribu-
tion of the log-signal differences used for the spatial normal-
ization had a MAD of 0.014 for Affymetrix data compared to
0.3 for the cDNA array data of the glnA experiment, suggest-
ing that spatial bias is more than ten times stronger for
c¢DNA array data.

Biological assessment of normalization
A set of genes was known to be differentially regulated in the
glnA mutant strain of B. subtilis. These 41 genes were found
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Figure 4

Relative signal versus signal intensity. Deviation plots, log(x/v) versus log(v), much like the MA plots of Yang et al. [I ] for the three replicate
oligonucleotide arrays (from left to right) from HIV-infected samples. The top three plots show systematic deviations before normalization, and the
bottom three show deviations after gspline normalization. Plots for prenormalized data show a comparison of curve fits for: log-intensity scaling (red);

lowess (green); invariant set (magenta); and gspline normalizations (blue).

to rank higher in a t-test analysis after signal-dependent nor-
malization compared to rankings from unnormalized and
scaled log-signals (Figure 11). A paired Welch t-test was per-
formed on the individual Cys5 and Cy3 signals for each gene.
The top 20 ranking genes can be seen in Figure 12, where the
genes known to be differentially regulated are shown in
parentheses and up- or downregulation is shown in red or
green, respectively. Unnormalized data rankings showed
only one of the 41 genes in the top 20 and overall these genes
had an average rank corresponding to the 51st percentile, as
would be expected from randomly selected genes. Log-signal
scaling shifted the rankings of these genes to an average rank
corresponding to the 20th percentile, whereas signal-depen-
dent normalizations raised the average rank to correspond
with the 8th to 9th percentile (2nd to 3rd percentile for the
median rank). Seven of the 41 genes can be seen in the top
20 after scaled print-tip lowess and gspline. The spatial nor-
malization approach appears to adversely effect the top 20
ranking genes though the resulting mean and median ranks
of the 41 genes were comparable or better than the other
approaches. The lowest average rank was observed for the

global gspline method (8.1 percentile) followed closely by
global and print-tip lowess both at the 8.5 percentile. The
lowest median rank was seen for the spatial normalization
results (1.9 percentile) followed by global gspline (2.4) and
print-tip gspline (2.7).

t-tests were applied to gene-expression estimates calculated
from the Li and Wong [1] reduced model for the oligonu-
cleotide array data. Unfortunately, the set of genes believed
to be differentially regulated due to HIV infection was found
to be randomly distributed throughout the two sample t-test
rankings both before and after different normalizations. The
overall effects of normalization on the p-values can be seen
for the HIV and glnA experiments in Figure 12. For this
comparison, only the relative characteristics between nor-
malization methods are of interest. The actual p-values are
not correct as a result of multiple testing. Log rank versus
log p-value plots show differing trends for oligonucleotide
and cDNA array data. Unnormalized data show lower
p-values for genes in the lower half of the ranking in cDNA
because of the dye bias and lack of dye swapping over the six



http://genomebiology.com/2002/3/9/research/0048.9

8 < <
o
QA
o
o
s
8_I T T T T ﬁ-_ T T T T .I T T q-_ T :I.I I-I T T
6 8 10 12 14 16 200 1,000 10,000 200 1,000 10,000
log(x) ' v
- <t <t
o
QA
o
=
=
o
g_l T T T T ﬂ-_ T T T T T T T ﬂ-_ T I-I T T T T
6 8 10 12 14 16 200 1,000 10,000 200 1,000 10,000
log(x) v '
- ﬁ-_ ﬁ-_
o
QA
o
=
s
o
g_l T T T T ﬁ-_ T T T T T T T v_ T T T T T T T T
6 8 10 12 14 16 200 1,000 10,000 200 1,000 10,000
log(x) \' v

Figure 5

Relative signal versus signal intensity of cDNA array data. Signal distributions (left column) and MA plots (middle and right columns) for an example
microarray after print-tip scaling (top row), scaled print-tip lowess (middle row) and scaled print-tip gspline (bottom row). Cy3 channels are shown in

green, Cy5 channels in red and a running median curve is plotted in black.

replicates, and suggest poorer signal-to-noise characteris-
tics. Lack of normalization in the HIV experiment showed
less significant p-values over all genes. Log-signal scaling
showed slightly higher p-values whereas lowess, invariant
set and gspline showed comparably lower p-values.

Discussion

Three important assumptions must hold for signal-dependent
normalization methods. The first two were suggested by Zien
et al. [18] in their linear centralization approach: the majority
of genes are not differentially regulated (assumption 1);

and the number of upregulated genes roughly equals the
number downregulated (assumption 2). The third assump-
tion is that these two assumptions hold across the signal-
intensity range. Assumption 1 was used as a justification for
centering log-ratio distributions and is likely to hold when
an unbiased selection of thousands of genes is measured. If
assumption 1 is true, then assumption 2 can be relaxed as
long as random effects on non-differentially expressed genes
are equally positive and negative. The third assumption is
important for signal-dependent normalizations and is sup-
ported by the intuition that genes with 100 to 1,000 mRNA
copies per cell will be no more or less biased toward up- or
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Figure 6

Effects of normalization on R/G ratios of dye-swapped arrays. MA plots for replicate arrays A and B showing log(R,/G,) (left column) log(Ry/G;) (centre
column) and dye-swap normalized log((R, Gg)/(G, Rg)) (right column). The top row shows standard dye-swap normalization of otherwise unnormalized
data. The middle and bottom rows show scaled print-tip lowess and scaled print-tip gspline normalization of the individual arrays and the subsequent

dye-swap averaging normalization.

downregulation than genes with 10,000 to 100,000 copies
per cell. Microarrays with a small number of genes may be
biased to over- or underexpression and could generate data
that do not conform to any of the listed assumptions. We
believe that future microarrays will only include more fea-
tures and genes, making these assumptions even more valid.
In coming years, oligonucleotide arrays for humans will
contain all 35,000 genes (or however many there may be)
and therefore will not contain a biased selection of genes.

A potential fourth assumption motivates spatial- or pin-spe-
cific normalization and would state that assumption 2 should
hold spatially across the surface of the array. These effects
were observed to be more significant for cDNA microarrays,
whereas global signal-dependent biases dominated over
spatial effects for oligonucleotide array data. The MAD for the
difference of log(PM) before and after global normalization
was 30 times larger than the MAD of the difference between
globally normalized and spatially normalized (0.3 versus
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Figure 7

Median log-ratios by signal-based quartiles. Plots showing the median log-ratios (y axis) by quartiles (x axis) for each channel or array of experiments
(rows) and for the different normalization methods (columns). The top row shows medians for the six arrays of the HIV experiment (control in green,
HIV-infected in red) for data before normalization, after log-intensity scaling, lowess, rank-invariant set and gspline, respectively. The middle row shows
medians for the |12 channels of the six glnA arrays (Cy3 in green and CyS5 in red) for data before normalization, log-intensity scaled by print-tip, scaled
print-tip lowess, scaled print-tip gspline, and spatially scaled and smoothed (from left to right), respectively. The bottom row shows the four channels of
the A. thaliana dye-swap replicate arrays ‘A’ and ‘B’, with wild-type channels in lower case, mutant in upper case, and with the same normalizations from

left to right as were used in gInA plots above.

0.01). For the glnA experiment, the spatial effect as mea-
sured by a similar MAD was ten times larger than that of the
HIV experiment but still roughly ten times smaller than the
global cDNA effects (1.3 versus 0.1). Although spatial effects
may not always be significant, probe-specific effects are a
significant issue for oligonucleotide arrays, and must be
addressed by other techniques such as the method of Li and
Wong [2]. The preliminary spatial normalization method

presented in this work will require further validation and
development as the current method, by visual inspection,
appears to be overfitting the cDNA data. Probe placement
and microarray designs do not always correctly randomize
strongly or weakly expressed genes, and may contain spatial
biases that should not be removed. That said, the ranking of
genes known to be regulated did not change significantly as a
result of this overfitting.
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Figure 8

Box plots for R/G log-ratios by print tip. A strong print-tip bias can be seen after (a) global lowess or gspline but (b) is partially removed after scaling the
R and G signals within each print-tip group before gspline normalization. Normalizing for (c) the spatial signal bias and (d) scaled print-tip lowess show

more comparable tip distributions.

The process of comparing and validating these methods
should depend most heavily on the biological assessment.
Unfortunately, this evidence was found to be the most unre-
liable. Genes from the list that were known to be differen-
tially regulated were found throughout the t-test ranking in
both the HIV and the glnA experiments. Statistical mea-
sures, such as reproducibility, were less ambiguous, but
showed similar performance for global and print-tip,
although clear print-tip biases were present. Each microar-
ray system presented different sources of bias and in the
end, no one criterion was sufficient for assessing whether
microarray data was properly normalized. Observing global,
signal-dependent and spatially dependent distributions is
recommended in all cases.

Conclusions

Assessments of normalizations were shown globally for
array signal and relative signal distributions as well as for
signal-dependent MA-style plots and medians of relative
signals by quartile. In all cases, these analyses showed
favorable results for lowess, invariant set and gspline
methods. Certain aspects of the spline-based methods make
it preferable to the other methods. First, the gspline method
is computationally more efficient than the lowess methods;
second, owing to the random sampling procedure, lowess-
based methods will give slightly different results for each
data fitting whereas the spline methods are deterministic;
and third, the quantile-based approach of gspline can nor-
malize arrays with different numbers of features. Only
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Figure 9

Spatial effects of normalization on R/G ratios. One of the two cDNA arrays from the dye-swap study showing Cy5/Cy3 log-ratios with a yellow-cyan
color scale and indications defining the print-tip sectors. Upregulated probes are shown in yellow, unchanged in black and downregulated in cyan. (a) log-
ratios after global gspline normalization where spatial and/or print-tip effects can clearly be seen. (b) The array after scaled print-tip lowess
normalization; a noticeable improvement over the global approach is shown, but spatial bias within print-tip sectors can still be seen. (c) After spatial

normalization little if any spatial bias can be seen.

through population-based methods, such as gspline, can
arrays with different features be normalized for signal
dependent bias.

Materials and methods

T-cell cultures infected with HIV

Ten million MT-4 cells were incubated with either 1 ml virus
stock (2 multiplicity of infection (MOI) units of strain ITIB)
or 1 ml mock virus for 3 h at 37°C. After extensive washing
the cells were transferred to 80 ¢cm3 Nunclon bottles in 20
ml culture medium (RPMI 1640 with 10% fetal calf serum
and antibiotics) and cultured at 37°C, 5% CO, for 7 days.
Messenger RNA was extracted using QTAGEN RNeasy Mini
kit and prepared for hybridization to Affymetrix HuGeneFL
chips according to protocols provided by Affymetrix.

The Affymetrix HuGeneFL arrays contain about 1.4 x 105
PM, MM probe pairs. Probe-based normalization was found
to work on both PM and pooled PM, MM values, although
the MM values were ignored in this analysis (We believe that
MM values are unreliable indicators of cross-hybridization
and can be shown to have a confounding effect on all but the
top 20% of the signal intensity range.) Control features
designed for grid alignment, spiked controls and ALU con-
trols ("AFFX”, “hum_ alu”) were removed.

Bacillus cultures on cDNA microarrays

Cells were grown at 37°C in a modified Spizizen salt-buffered
minimal medium as described previously [19] supplemented
with 100 pg/ml L-tryptophan. Na,SO, was used instead of
(NH 4)2SO 4 and glutamine (0.2%) was added as the sole
nitrogen source. At an OD = 1 (450 nm), approximately 100
ml of culture was harvested by centrifugation at 7,000 rpm
for 5 min. The pellet was resuspended in 400 ul water and
RNA was isolated from this by the use of four tubes from the
fastRNA kit blue (BIO 101, Carlsbad, CA) and as recom-
mended by the supplier. cDNA synthesis, dye coupling of
probe, array, hybridization and scanning were carried out as
described by DeRisi and co-workers (protocol available at
[20]). RNA preparations were run in duplicate and each
sample was hybridized to triplicate arrays. In all cases the
control RNA was labeled with Cys and treatment RNA with
Cy3. Each of the 4,100 genes was spotted on the array twice,
which gave 12 measurements per gene per experiment.

Microarray normalization
The variance within replicate group was estimated for each
normalization described below,

n(n”11-1) 2 2 (log(x;) - log(vy))? )
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Figure 10

Spatial effects on oligonucleotide arrays. An example oligonucleotide
array showing log-ratios of PM versus geometric mean PM in a yellow-
cyan color scale. The omitted MM probes, shown in black, appear as
horizontal stripes. (a) Relative PM values after global normalization; (b)
results after spatial normalization. (c) The difference (of log(PM))
between the two, representing the spatial bias used for normalization.

where i is an index over n probe signals, and j is an index
over m replicates.

Global scaling of log intensities

As a comparison with the signal-dependent gspline and
lowess approaches, a scaling of log intensities was carried
out as follows. Probe intensities were log-transformed (in all
cases, we used log base 2 on signal-intensity data) and a
measure of central tendency, ¢, was calculated for each array
and for the entire matrix (c). The mean of the log values was
used but the median was found to work just as well. Each
array was then scaled in the log-space to the global mean,
log(xj)(c/ cj). This simple transformation often accounted for
much of the variability between oligonucleotide arrays. The
approach used on cDNA array data scaled each Cy3 and Cys
channel to the same central tendency with the additional
constraint that each print-tip group also had the same Cy3
and Cys central tendency.

Lowess normalizations

The Affymetrix normalization method found in the Raffy
module of the sma package uses the lowess function (‘loess’)
with a robust local linear regression mode (‘symmetric’). The
Raffy method performed all pairwise normalizations
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Figure |1

Top 20 t-test rankings for the glnA experiment. The B. subtilis genes found
to be most significantly differentially regulated by the different
normalization methods are shown. Genes known to be differentially
regulated are in parenthesis. Genes in red are upregulated in the mutant
strain whereas genes in green are downregulated.

between the six HIV arrays and averaged the five results
(m-1) for each array. The process was then repeated on the
new data, which resulted in 30 total fits for the six arrays.
Instead of averaging all pairwise array regressions on a
single random sample of feature pairs, the modified version
averaged iterative regressions between each array and the
target array using a new random sample on each iteration.
This resulted in 18 total fits for the six arrays. The former
method tended to undernormalize and did not perform as
well as simple log-intensity scaling. The adapted method
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t-test rank versus log p-value. Log-log plots showing the distribution of p-values for (a) the HIV study and (b) the glnA study (right). p-values from
unnormalized data (black) are compared to log-signal scaling (red), lowess (green), rank invariant (magenta), gspline (blue) and spatial normalization
(cyan). Scaled print-tip lowess and gspline are shown for the cDNA data of the glnA experiment, whereas their global versions are shown for the

oligonucleotide data.

used essentially the same procedure and code but performed
significantly better when used in this scheme.

The six replicates for each glnA and tnrA experiment were
normalized to a prototype, v, defined by the median or geo-
metric mean of the six Cy3 channels used to measure the
control mRNA (wild type). By this method, all 12 channels
from the six arrays were normalized to each other and at the
same time the Cys5 channels were normalized to the Cy3 chan-
nels. The ¢cDNA normalization method found in the Rarray
module of the sma package uses the lowess function (‘lowess’)
with analogous settings as described for oligonucleotide array
normalization. Both global and scaled print-tip group lowess
normalization were performed (norm = 1" and norm = ‘s,
respectively). The scaled print-tip mode performed lowess
normalization for within each print-tip group and then scaled
the log-ratios of each group by its respective MAD [11].

Cubic spline normalization using quantiles

For this approach, all signal channels are normalized to a
target array. The same method was used for ¢cDNA and
oligonucleotide array data.

The geometric mean of each probe was calculated over all
arrays, X;, in the experiment,

m 1/m
v; = {H xij} (2
J

where j indexed over the m = 6 arrays and i indexed over the
n probes.

From each array and the vector v, 100 quantiles were taken,
q; and q, (percentiles). The size of the quantile sample rep-
resented < 0.1% of n. Figure 1 shows an example comparison
of array signal distributions x; and v along with a quantile-
quantile plot showing the correlation between the corre-
sponding q; and q,. Each q,,q; pair was used to fit a cubic
spline function, s; = f(q,,q;), where f was a spline function
generator that fits the parameters of a natural cubic spline
(B-spline). The splinefun function in the R base package was
used for this purpose. Spline parameters were fit for each
interval between consecutive quantiles. The interpolating
spline function defined over the kth interval, is defined for
the parameters a; and y; in Equation 3. For an unsmoothed
cubic spline, y; = g

8§00 = gy + QoY) + Wiy (Y2 + Ay, -y )3 (3)

In an iterative approach, quantiles were resampled from per-
centiles shifted by a small offset np,/k where p, was the first
percentile and k the number of iterations (defines the differ-
ence in rank between consecutive quantiles). This provided a
different set of evenly spaced quantiles for each curve fitting.
For the normalizations performed here, the results from five
interpolations were averaged. The gspline method was
implemented in R and included in the Bioconductor
package, which will be described elsewhere and is available
from the web [21].

Data for cDNA experiments were gspline normalized with
percentile samples and fitted in an iterative approach as
described for the oligonucleotide arrays. The signal distribu-
tions were found to contain many non-smooth features not
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common for both channels. To account for the print-tip
effect, an additional normalization was performed where
Cy3 and Cys signals were scaled within each print-tip group,
as described in global scaling of log intensities, before
gspline normalization as just described.

Spatial normalization

Local signal (log-ratio) was estimated for each probe using a
weighted mean of neighboring probe signals. A sliding
square window centered on the each probe (50 x 50 for
oligonucleotide arrays, and 10 x 10 for cDNA) was used to
define the local neighborhood. Weights were defined by their
Euclidean distance to the center probe using a Gaussian
function (standard deviation 19 for 50 x 50 neighborhood
and 3 for the 10 x 10 neighborhood). For both oligonu-
cleotide and ¢cDNA array data, this adjustment was made
after global gspline normalization.

Additional data files

Additional data files showing MA plots and signal distribu-
tions from all the HIV, glnA, tnrA arrays for the different
normalizations are available with the online version of this
paper and at [17].
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