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Abstract

Background

In the pharmaceutical industry and in academia substantial efforts are made to make
the best use of the promising microarray technology. The data generated by
microarrays are more complex than most other biological data attracting much
attention at this point. A method for finding an optimal test statistic with which to rank
genes with respect to differential expression is outlined and tested. At the heart of the
method lies an estimate of the false negative and false positive rates. Both investing
in false positives and missing true positives lead to a waste of resources. The
procedure sets out to minimise these errors. For calculation of the false positive and
negative rates a simulation procedure is invoked.

Results

The method outperforms commonly used alternatives when applied to simulated data
modelled after real cDNA array data as well as when applied to real oligonucleotide
array data. In both cases the method comes out as the over-all winner. The
simulated data are analysed both exponentiated and on the original scale, thus
providing evidence of the ability to cope with normal and lognormal distributions. In
the case of the real life data it is shown that the proposed method will tend to push
the differentially expressed genes higher up on a test statistic based ranking list than
the competitors.

Conclusions

The approach of making use of information concerning both the false positive and
false negative rates in the inference adds a useful tool to the toolbox available to
scientists in functional genomics.

Background

The microarray technology  has revolutionized modern biological research by
permitting the simultaneous study of a great part of the genome. The blessings
stemming from this also brings the curse of high dimensionality of the data output.
Microarrays play an important role in finding drug targets. This application provides
the primary practical motivation for the method presented.

The main objective of this article is to explore one method for ranking genes in order
of likelihood of being differentially expressed. Since it is the ranking that is of main
interest, issues such as calculation of p-values and correction for multiple tests play
a secondary role. Rather it is the thinking expressed in [1]  that guide much drug
target identification research: "The number of genes selected would depend on the
size, aim, background and follow-up plans of the experiment". Often interest is
restricted to some so-called drugable class of targets, thus thinning out the set
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eligible genes considerably. Furthermore, the fact that a group of genes in the same
functional class show evidence of differential expression
may be much more telling than the individual p-values as such.  However the rank
order does play a role:  It is generally sensible to validate a target in the drugable
class with a smaller p -value prior to proceeding to one with a larger p -value.
Sometimes it is possible to be guided by the performance of known drug targets in
the choice of cut-off, but at any rate p -values have the greatest impact on decisions
by providing a preliminary ranking of the genes.  This is not to say that one should
never take multiplicity into account or that this method in some way replaces
correction for multiplicity. On the contrary samroc provides the basis for such
calculations, see Section Samroc.

The approach presented could be applied to different types of test statistics, but to fix
ideas one particular type recently proposed will be used. In the  [2] a methodology
based on a regularised t-statistic is described:

SS

diff
d

+
=

0

  (1)

where diff is an effect estimate, e.g. a group mean difference, S is a standard error,
and S0 is the regularising constant. This formulation is quite general and e.g. includes
the estimation of a contrast in an ANOVA. Putting S0=0 will yield a t-statistic. The
constant is found by removing the trend in d as a function of S in moving windows
across the data. The technical details are spelled out in [3].  The statistic calculated
this way will be referred to as SAM.

The basic idea with d is to eliminate some false positives with low values on S.  It
seems more relevant to optimise with respect to what is really the issue, namely the
false positive and false negative rates. This is the intuition behind the approach.

An alternative to the statistic (1) is d= diff/√(S0
2+S2), or d= diff/√(wS0

2+(1-w)S2) for
some weight w, which is basically the statistic proposed in  [4]. Its performance
appears to be very similar to that of (1) (data not shown). A more imaginative, but
rather unorthodox, approach to comparing two groups would be to use m=Σe-aXi/n,
where Xi is assumed positive, for a fold change calculation of the measures m1 and
m2 for the two groups: MG=max{ m1, m2 }/min{ m1, m2}.  The statistic m estimates the
moment generating function. The case a= 1 will be evaluated.

In this article another goodness criterion is proposed and argued. What is really
relevant in choosing a good method is choosing one with an attractive Receiver
Operating Characteristics (ROC) curve. By an attractive ROC curve is meant a plot of
Proportion False Positives against Proportion False Negative that is as close to the
axes as possible. This will minimise the number of genes that are falsely declared
positive and falsely declared negative for a given significance level α and value on
S0. It will also minimise the distance to the origin, which will be the criterion for finding
an optimal value on S0 as well as on α, see Fig. 2.

A software implementation in R code [5, 6] is available at the supplementary web
page [7].  The R package SAG contains the function samroc, which provides an
implementation of the method.
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The structure of the article is the following. First the criterion is explained in detail.
Then the estimation problems concerning the false positive and false negative rates
are solved. Finally, the algorithm is outlined and tested on some simulated and some
real data.

Methods

The criterion

A comparison of methods in terms of their ROC curves is displayed in Figure 4 of
[1]. There a method whose ROC curve lies below another one is preferred, see
Figure 2. If we agree that it be sensible to compare methods with respect to their
ROC curves, then estimation procedures ought to find parameter estimates that
make the ROC curve optimal in some sense.  This section suggests a goodness
criterion for the ROC curve.

By False Discovery Rate (FDR) we mean the proportion of false positives among the
significant genes, seer e.g. [2]. Multiplying FDR by the proportion of genes that are
declared significant and dividing by the number of genes we
obtain the False Positive rate (FP ). Similarly we define the False Negative rate
(FN ).

Assume that we can, for given significance level α, estimate FP(α) and FN(α), and let
h be a spline approximating the regression of FP on FN. Let us require that FP is less
than or equal to  FPmax, and likewise  FN less than or equal to FNmax. Furthermore,
put h1(x)=min{h(x), FPmax}. The goodness criterion is then formulated in terms of the
distance of points on the curve h1  to the origin, which in mathematical symbols may
be put as

( ){ }xhxC FPx
2
1

2

max
min += ≤   (2)

Given a value on S0 a set of (FP(α), FN(α)) will come out, and from this a spline h is
given. Finally, calculate the criterion (2). Repeat the procedure for a number of S0

and α values and choose the combination with the smallest distance.

If one has an assessment regarding the relative importance of FP and FN, that may
be reflected in a version of the criterion  (2)  that incorporates
weights.

Other goodness criteria are possible such as the sum of FP and FN or the area
under the curve in Figure 2. For more details and other approaches see e.g. [8,9].
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Estimating FP

Using the permutation method to simulate the null distribution of no change we can
obtain a p-value for a two-sided test, as detailed below.

The data matrix has genes in rows and arrays in columns. Let  d(j)*k be the value of
the jth  gene statistic in the kth permutation of columns and the p-value for gene i
equals

( ) ( ) ( ){ }
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kk
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≥
=

** :#
  (3)

where M is the number of genes,  d(i) the observed statistic for gene i, and B the
number of permutations [2, 10, 11].

Thus given the significance level α the genes considered as differentially expressed
will have the proportion given by

( ) { }
M

Pi
p i αα ≤= :#

  (4)

, where ‘#’ denotes the cardinality of the set.

According to [12] FDR ≤  α / p(α); equality is assumed in their treatment.
Furthermore, there is a bound by Benjamini and Hochberg [13] that states that FDR ≤
M x P(i)/i, where P(i) is the largest ordered p-value which is declared  significant. In
terms of the entities above we have i= p(α) x M and P(i)=maxi {Pi: Pi≤ α}. Since P(i) is
the largest p-value called significant, we have P(i) ≤ α. In [14] the estimate FDR=p0 x
P(i) / p(α) is derived, where p0 is the proportion unchanged genes. This suggests that
the bound

( ) ( ) ( )ααα pppPpFDR i /ˆ/ˆ 00 ×≤×≈   (5)

could be used as a reasonable approximation of FDR.

The current version of samroc uses the estimate
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where qX is  the X% fractile of the d*, cf. [3].  This estimate makes use of the fact that
the genes whose test statistics fall in the quartile range will be predominantly the
unchanged ones. More material on this matter follows in the Appendix.

The proportion false positive equals the proportion of genes called significant times
the false discovery rate, or in symbols:
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( ) FDRppFP ×== α22 .

Although not perfect the estimate of FP will tend to follow the change in true FP quite
well, see Table 2.

Estimating FN

One way to attack the problem of estimating FN would be the following.

By definition the proportion false negative consists of all genes minus the true
negative and the positive.

Using the notation in Table 1 FN= p21. From this, we may proceed to
p0=p11+p22. Furthermore, p(α) = p12+p22 and p2 2= FP.  Thus
p11 = p0-p22. Finally p21 is identified from p21 = 1 - p11 - p 12  - p22.

Using (5) one obtains

( ) ( )αα pppFN −−−== 1ˆ1 021   (6)

The graph we want to study is the one of the estimate

( ) ( )αα ppFN −−−= 1ˆ1 0

versus the estimate of

( ) FDRpFP ×= α

The Samroc algorithm

The statistic (1) calculated in the following way will be referred to as samroc, and
comes with SAG 0.9-13.

Before the algorithm starts the S’s are smoothed as a function of the average
expression level of the gene, if the option smooth = T . By default smooth = F.

The algorithm suggested can be summarised by the following steps

1. Calculate the effect estimate, e.g. difference between group means
2. Calculate the standard errors
3. Generate effect estimates under the null hypothesis, through B permutations

(by default B = 100).
4. Calculate standard errors for these simulation estimates
5. Calculate the test statistic (1) for a given value of S0 for all previous steps, 1,

2, 3 and 4.
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6. Iterate over new values of S0, i.e. a number of fractiles of S, and a number of
α’s to find an optimum.

Samroc also outputs a suggested significance level as well as an optimal S0, that is
estimated to minimise the criterion (1). Furthermore, the function outputs the
observed test statistic, the simulation test statistic and the uncorrected p-values.
Thus, one may use this output to calculate corrected p-values, e.g. by using the
package multtest [15] to obtain the multiple test procedure detailed in  [10] (see also
[16]), or samfdr in SAG to obtain the decisions based on the FDR [2]. Additionally,
the R base package offers the function  p.adjust, which provides the multiple test
options Bonferroni, Holm and Hochberg.

Since the p-values they produce are monotone in the uncorrected ones they gives
genes the same rank order as the uncorrected p-values. One shall bear in mind that
the multiple test procedures tend to be very strict, and thus provide low power for
detecting changed genes. New and promising ideas based on the FDR concerning
how to increase power exist, e.g. [14]. The subject is important and complex, and
would easily fill up an article this size.

A modified algorithm which starts by fixing the number of genes to be selected will be
evaluated in the future.

Results

When testing methods in this field it is difficult to find suitable data where something
is known about true status of the genes.  If one chooses to simulate, then the
distributions may not be entirely representative of a real life situation.
If can find non-proprietary real life data, then the knowledge as to which genes are
truly changed may be uncertain.  The bulk of my experience with this method comes
from analysing proprietary data from experiments run on the Affymetrix U95
GeneChips. I have had very good results, but my telling so will not convince the
critical mind, so I have tried  to find both relevant simulation models and relevant
publicly available real life data.

It has been common to simulate data, as in [4, 1, 14]. All these use normal
distributions, in the case of [1] conditional normal distributions.
The data used in this article were simulated using mixtures of the distributions
described in [4]. These theoretical distributions were modelled after the real E.coli
cDNA data presented in   [17]. To make the situation a little more realistic the
distributions of the changed genes are now chosen randomly among the three last
bottom rows of Table 3. The null distribution was obtained by mixing the distributions
in the first three rows of Table 3. The simulation program, including the seed, is
available at the supplementary web site [7].

Ten thousand genes were simulated representing two groups of either different or
identical distributions. The groups were of size four. Here we compare the number of
false and true positives among the top 500 ranked genes. Choosing the number 500
is of course arbitrary, but resembles the real life situation were we have set aside
resources to follow up on a certain number of genes, and looking at 5% is not
unreasonable. The number one would follow up is smaller, but may vary depending
on what molecular classes are represented. Choosing  a much larger number than
500 will make the performance of the tests more equal and the comparisons less
relevant, and choosing a much smaller will make comparisons between methods
very uncertain.
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In the comparison samroc, t-test, Wilcoxon, MG, Fold Change, the Bayesian method
in  [1], and SAM [2] were competing.  By the t-test we mean the unequal variance t-
test: t= (mean1-mean2)/√(s1

2/n1+s2
2/n2) for sample means mean1 and mean2  and

sample variances s1
2, s2

2. The Wilcoxon rank sum test is based on the sum Ws of the
ranks of the observations in one of the groups Ws =R1…+Rn1 [18]. The Bayesian
method calculates the posterior odds for genes being changed (available as
functions stat.bay.est in the R package SAG, and stat.bayesian  in sma ([1],[5]).
Finally, Fold Change equals FC = max{mean1, mean2}/min{mean1, mean2}.

The t-test is known to have an important optimality feature called Uniformly Most
Powerful unbiased when data are normal [19]. Basically, this means that the t-test is
hard to beat when data are normal. However, when the number of observations is
low the estimate of the standard error (SE) which goes into the
denominator can sometimes play tricks. When the SE is low there is an increased
risk of obtaining false positives as has been noted by several authors. This problem
predominantly appears at low expression levels.

Let us start by the simulated data that is expected to contain 5% changed genes, see
Table 4. When data are truly normal and there are as many as 4 observations
per group samroc performs best,  followed by SAM together with Wilcoxon, and the
MG method last, being a total disaster.  The program estimates p0 at 96%,  the
regularising constant S0 is set to  0, and the suggested cut-off is 0.02.

When the same data is exponentiated, thus giving lognormal distributions, MG
comes out first, followed by  samroc,  the t-test and Wilcoxon lag far behind, and Fold
Change is clearly a failure.  This time p0 is estimated at 96%, S0 is taken to be the
minimum S, and the suggested cut-off is 0.02.

When data are normal and the expected proportion of changed genes equals 10%,
p0 is estimated at 91%, 0 is chosen as the value of S0, the suggested cut-off is 0.03.
Now samroc comes out on top, followed by SAM and the t-test, and again MG cannot
cope with normal data, see Table 5.

These data were also exponentiated and p0 was then estimated at 91%, and S0 was
chosen to be the minimum of the S’s, while the cut-off was set to 0.03. The MG
method came out a clear winner, followed by samroc and Bayes, and Fold Change
trailing behind.

Next let us look at the leukaemia data from [20] which consists of 38 samples run on
the Affymetrix Hu6800FL oligonucleotide chip. The Average Difference values on
7129 probe sets were downloaded from [21]. The samples either belong to the acute
myeloid leukaemia (ALL) or the acute lymphoblastic leukaemia (AML) category, with
27 replicates of the first category and 11 of the second. A review of how three
methods fare with these data is presented in [22]. In that reference 50 genes are
listed that based on statistical analysis of the full set of 38 samples and on biological
evidence are believed to be differentially expressed when comparing ALL to AML.
With the full sample the results agree well between methods, and there is reason to
believe that the genes are truly differentially expressed. With a large sample size, the
choice of method is not so critical as with a small. However, a good method would
pick out these genes already at a smaller sample size. Therefore, it is reasonable to
score the methods by the average rank of the genes on the list.

The data are pre-processed by subtracting the median and dividing by its quartile
range as  in [22]. Other, possibly more efficient alternatives exist, especially if the
intensities are available, see e.g. [23]. But this normalisation is sufficient for the
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current treatise, where the relative merits of the methods for ranking genes is the
issue.

In Table 6 we can see the ranks of the genes among all genes. In the first two
columns we see the t-test and SAM, and it is evident that they agree quite well on
most genes, which is not so surprising, since SAM is a slightly modified t-test.
Looking at the over-all average ranks in the bottom row reveals that samroc tends to
push the differentially expressed genes higher up the list than the other methods.
Though its apparent similarity to SAM, samroc has a different behaviour. The Bayes
method may have some problems caused by the assumption of conditional normality
at  this sample size with these data.

Discussion

Whether to look at data on a log scale or not is a tricky question, and is beyond the
scope of this article. However, from the above it is appears that the best performance
by the tests considered is achieved when data are lognormal. But the methods are
tested on normal, lognormal and real life data, in order to supply a varied testing
ground.

The proposed method comes out better than the original SAM statistic in every test
performed. Obviously, the ordinary Fold Change is a disaster, as has been noted by
several authors before. The success of MG is rather unexpected and hard to
understand, and on top of that the statistic corresponds to a very general hypothesis.
But the fact remains that it is a tough contender when data are close to lognormal,
which is often the case.  In contrast to samroc, however, it suffers from being highly
sensitive to distributional assumptions. Maybe a calibration of a using the algorithm
outlined in this article can further extend its use. The samroc statistic d is robust and
flexible in that it can address all sorts of problems that suit a linear model.
The methodology adjusts the regularising constant when data are non-normal and
achieves an improved performance. The algorithm ranks the genes in a reliable
fashion, and also gives some rough idea of how many genes it makes sense to look
closer at.

A typical run with real life data will take several hours on a desktop computer. To
make this methodology better suited for production it would be a good investment to
translate part of the R code, or the whole of it, into C.

In order to improve on standard univariate tests one must make use of the fact that
data are available on a large number of related tests. In this article
it has been shown one way of achieving this goal. The conclusion is that it is possible
and sensible to calibrate the test with respect to estimates of the false positive  and
false negative rates.
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Figure 1. Often with real microarray data the absolute value of the t-statistic is a
function of the standard error SE, and there is an erratic behaviour of the statistic for
small values of SE with an increased risk of false positives. By choosing the constant
S0 (1) wisely one can alleviate this problem.
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Figure 2. The FN vs the FP, given some significance level, and the distance to the
curve for a hypothetical test. According to the proposed criterion a good test would
constitute one, which will be as close to the origin as possible. In target discovery it is
desirable to keep both FN and FP low.
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Figure 3. A subset of the data from Golub et al consisting of the first four samples
from each group, was used to assess the performance of the t-test, SAM, samroc
and the Bayesian method. The upper panel shows the ordered observed d-statistics
versus the expected ordered statistics calculated from the simulation.  Looking at the
graph it appears that rather a lot of genes are changed. The lower panel shows the
estimated FDR as a function of the cut-off δ, such that genes with |d-dexpected| >δ will
be called differentially expressed. Choosing a cut-off of 0.7, i.e. calling genes that
fulfill |d-dexpected| > 0.7 differentially expressed will only give about 3% false positives.
The proportion of unchanged genes is estimated at 84%, and S0 in (1) is put to the
5% fractile of the SE’s.  The graph was produced by the samfdr function in SAG.
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Tables

 Negative  Positive
True  p11  p12  T
False  p21  p22  F

 N  P  1

Table 1. The unknown distribution of true and false positives and negatives. The
proportion of incorrectly called genes equals p21+p22.



http://genomebiology.com/2002/3/9/preprint/0007.17

normal
significance level

p0  parameter  0.02 0.05  0.1
 FP  213  492 970

 PF̂ 192 480 960

 FN  291  216 1610.95

 NF̂  205  139  86

 FP  173  447 920

 PF̂  182  455 910

 FN  611  442 3340.9

 NF̂  552  382 256

lognormal
 FP 191  492 940

 PF̂ 192 480 960

 FN  253  181 1330.95

 NF̂  267  183 139

 FP  144  415 834

 PF̂  182  457 914

 FN  529  366 2560.9

 NF̂  456  296 224

Table 2. The actual and estimated FP’s and FN’s for the simulated data in the
Results section. Often FP is quite well estimated, while
the estimate FN^ seems to have a bias, but nevertheless captures the changes that
takes place.
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Mean1 sd1 Mean2 sd2
-8  0.2   -8  0.2
-10  0.4  -10  0.4
-12  1.0  -12  1.0
-6  0.1  -6.1  0.1
-8  0.2  -8.5  0.2
-10  0.4  -11  0.7
Table 3. The normal distributions simulated, defined by their means and standard
deviations. The first three rows do not represent differential expression, while the last
three rows do.
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Method False positive  True positive
lognormal

samroc  262   238
t-test  296    204
Wilcoxon  303   197
Fold Change  454    46
MG  247  253
Bayes  284  216
SAM  286  214

normal
samroc 302  198
t-test 307  193
Wilcoxon 303  197
Fold Change 392  108
MG 454  46
Bayes 345  155
SAM 304  196

Table 4. Genes were ranked with the statistical methods in terms of degree of
differential expression, and the number of true and false positives among the top 500
was counted. Above are the number of true and false positives in the top 500 when
the proportion unchanged equals 5% and the number of genes equals 10000.
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Method False positive True positive
lognormal

samroc 115 385
t-test 161 339
Wilcoxon 197 303
Fold Change 411 89
MG 48 452
Bayes 128 372
SAM 143 357

normal
samroc 156 344
t-test 166 334
Wilcoxon 197 303
Fold Change 325 175
MG 411 89
Bayes 253 247
SAM 161 339

Table 5. False postives and true positives in top 500, when the proportion
unchanged equals 10% and the number of genes equals 10000.



http://genomebiology.com/2002/3/9/preprint/0007.21

Gene   t-test rank  SAM rank  samroc rank Bayes rank
M55150  78  82  380.5  1419
M21551  2212    2135   927  444
M81933  926  969  1383  2036
U63289  1411  1399  433  215
M11147  252  176  44  43
U41767  739  573  1411  2404
M16038  5978   5918   4898  3086
U50136  75  83  41  104
M13485  873  893  281  136
D49950  844  630  459  642
M80254  2827  2756  1856  1323
U51336  664  576  724  1298
X95735  83  76   18  15
M62762  36  12  191  1310
L08177  64  11  4  10
Z30644  5475   5410   4672  3635
U12471  225  330  1034  2130
M21904  994  1012  653  702
U05681  1316  1405  1215  1428
U77604  305  113  25  17
D50310  2623  2386  1163   596
Z48501  122  100  63  189
M81758  827  799  212  97
U82759  864  744  1024  1693
M95678  294  231  124  222
X74262  69  45  11  9
M91432  333  171  80  133
HG1612-HT1612  397  462   626  1247
M31211  350  317  1520  2755
X59417  748  423  122  69
Z69881  30  6  270  1654
U22376  62  30  24  123
L07758  39  16  3  2
L47738  133  156  186  610
U32944  1645  1222   379  177
U26266  395  164  39  29
M92287  318  161  60   76
U05259  143  127  56   101
M65214  183  72  15   11
L13278  44  17  10  27
M31523  167  95  162  676
M77142  341  201  55  40
U09087  221  143  109  321
D38073  432  392  214  315
U38846  537   303  68  31
J05243  1  2  34   591
D26156  168  118   84  256
X15414  522  340  1013   2107
S50223  321  269  501  1244
X74801  404  235  98  134
Average  762.2  686.12  579.49  758.64
Table 6. Results for Leukemia data using only the first four samples from ALL and
AML. For the full results see the supplementary web page.
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Appendix

Estimation of p0

Using the model in [12] where the distribution is assumed to be a mixture of
differentially expressed genes (denoted 1) and rest (denoted 0), such that in terms of
densities f(x)=p1 f1(x)+(1- p1) f0(x), the entries of Table 1 may be estimated given a
value on p1 . Let p0 = 1- p1, which is not identifiable without strong parametric
assumptions. There exist however a number of suggested solutions.
From the relation  (3.9) in [12] p1≥ 1 – min{f0 / f}. Similarly one may show that p1 ≤ f(z)
/ f1(z) = p1

*/(1-p0
*f0(z)/f(z)), taking p0

* and p1
* from the previous relation. The right

members of the two previous relations may be estimated by a bootstrap explained in
the reference. This procedure basically uses the data and the bootstrapped data to
estimate the log odds for having an observation of one type versus the other in an
interval and smoothes the log-odds as a function of the test statistic with a spline. A
third way to estimate p0 is to use the assumption that the expected difference under
the null hypothesis is zero E0[d] = 0, and a variance decomposition. From E[d] = µ =
p1 µ1 and the variance decomposition σ2 =Var[d]= p1 (µ1 -µ)2 + p0 µ2 + p1 σ1

2+ p0 σ0
2
 ,

we have, disregarding p1 σ1
2 and using µ1 = µ / p1, the inequality σ2 ≥ p0 {µ2(p0/ p1 +

1)+ σ0
2}. The moments are estimated from the sample and the bootstrap, and by

assuming equality, and thereby inflating p0 a bit, we can solve for p0. Assuming
equality in the first of the two previous inequalities, using the result in the second and
assuming equality also there, and taking the mean of the three estimates,

In a short series of simulation  tests the estimate (3) performed best. But other
options will be considered in preparation for the next release
of samroc.

Why it is not enough to control FDR

If one agrees that, in the notation of Table 1, it is desirable to minimise the proportion
of incorrectly called genes p12+p21 (or in general some increasing function of these),
then it will not suffice to minimise FDR. The FDR ≈ p0 x α  / p(α), with α the
significance level, tends to decrease with decreasing α, but at the same time the
power will decrease as well [18]. The real issue then becomes to keep the FDR low
at the same time as achieving a reasonable power.  In the context of microarrays,
however, it is not possible to calculate power since that requires a specification of the
alternative hypothesis, which is not practical. Instead of trying the impossible it is
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better to balance FDR and power by using the information on p21 and p12 that we
have through FP and FN.
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