http://genomebiology.com/2002/3/8/reviews/301 1.1

Protein family review

Toll-like receptors: a family of pattern-recognition receptors in
mammals

Myriam A Armant and Matthew J Fenton

Address: Pulmonary Center, Boston University School of Medicine, Boston, MA 02118-2394, USA.

Correspondence: Matthew J Fenton. E-mail: mfenton@bu.edu

Published: 29 July 2002
Genome Biology 2002, 3(8):reviews3011.1-3011.6

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2002/3/8/reviews/301 |

© BioMed Central Ltd (Print ISSN 1465-6906; Online ISSN 1465-6914)

Summary

The innate immune system uses a variety of germline-encoded pattern-recognition receptors that
recognize conserved microbial structures or pathogen-associated molecular patterns, such as
those that occur in the bacterial cell-wall components peptidoglycan and lipopolysaccharide.
Recent studies have highlighted the importance of Toll-like receptors (TLRs) as a family of
pattern-recognition receptors in mammals that can discriminate between chemically diverse
classes of microbial products. First identified on the basis of sequence similarity with the
Drosophila protein Toll, TLRs are members of an ancient superfamily of proteins, which includes
related proteins in invertebrates and plants. TLRs activate innate immune defense reactions, such
as the release of inflammatory cytokines, but increasing evidence supports an additional critical
role for TLRs in orchestrating the development of adaptive immune responses. The sequence
similarity between the intracellular domains of the TLRs and the mammalian interleukin-I and
interleukin-18 cytokine receptors reflects the use of a common intracellular signal-transduction
cascade triggered by these receptor classes. But more recent findings have demonstrated that
there are in fact TLR-specific signaling pathways and cellular responses. Thus, TLRs function as
sentinels of the mammalian immune system that can discriminate between diverse pathogen-
associated molecular patterns and then elicit pathogen-specific cellular immune responses.

Gene organization and evolutionary history

The Drosophila genome contains nine genes that encode
Toll and related receptors (dToll1 - dTollg), whereas ten
Toll-like receptor (TLR) genes have been identified in mice
and humans [1-6]. The human and murine TLR2 genes and

conserved and have evolved independently from a common
ancestor gene [8].

Characteristic structural features

the murine TLR4 gene have two 5" non-coding exons fol-
lowed by a third coding exon. In contrast, the human TLR4
gene has an additional 5° non-coding exon [7]. Gene-
mapping studies have revealed that TLR genes are dispersed
throughout the mammalian genome. Specifically, human
TLR genes reside on chromosomes 4 (TLR1, TLR 2, TLR 3,
TLR6 and TLR10), 9 (TLR4), 1 (TLR5), X (TLR7 and TLRS8)
and 3 (TLRo; see Figure 1). DNA sequence comparisons of
genes encoding Toll-related proteins in Drosophila, reptiles,
birds and in mammals have revealed that the genes are well

As shown in Figure 1, TLRs are a family of type I transmem-
brane receptors characterized by an extracellular amino ter-
minus. They have an amino-terminal leucine-rich repeat
(LRR) domain and a carboxy-terminal intracellular tail con-
taining a conserved region called the Toll/interleukin-1
receptor (TIR) homology domain. The extracellular domain
contains a varying number of LRR domains, which are pre-
sumably involved in ligand binding but may also be neces-
sary for TLR dimerization. The extracellular domain of TLR4
is highly polymorphic compared with the transmembrane
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Structural features of human members of the TLR protein family and the archetypal Drosophila Toll protein. Toll and its relatives are characterized by an
amino-terminal extracellular leucine-rich repeat (LRR) domain, which is probably involved in ligand binding, and an intracellular Toll/interleukin-|
receptor (TIR) domain required for signal transduction. Known ligands of different TLRs and chromosomal locations of the human TLR genes are
indicated. Red arrows indicate a possible dimerization between TLRI, TLR2 and TLR6. TLR9 is normally expressed intracellularly. Abbreviations:
MALP-2, macrophage-activating lipopeptide-2; LAM, lipoarabinomannan; details of other ligands mentioned in the figure are discussed in the text.

and proximal cytoplasmic domains of the protein [9]. In
addition, the extracellular domain of TLR4 contains an 82
amino-acid region that is highly variable and contributes to
species-specific differences in recognition of lipopolysaccha-
ride (LPS), the prototypic TLR4 ligand [10]. The intracellu-
lar TIR domain region spans over 200 amino acids and itself
contains three highly conserved regions [11]. The TIR
domain mediates protein-protein interactions between the
TLRs and signal-transduction components (see the Signal-
ing mechanism section); it is the defining motif of the

TLR/interleukin-1 receptor superfamily, which includes the
receptors for the cytokines interleukin (IL)-1 and IL-18 and
is likely to be one of the earliest signaling domains to have
evolved [8]. A TIR-like motif is also present in several plant
receptors that are known to confer disease resistance [11],
including the N protein, which conveys resistance to the
tobacco mosaic virus, or the L6 flax rust resistance protein.
Although the IL-1 receptor and TLRs have very different
extracellular domains, their TIR domains allow both recep-
tor types to activate similar signal-transduction pathways.



Localization and function

TLR distribution

Consistent with their role in pathogen recognition, TLR
family members are expressed by cells involved in the first
line of host defense, including neutrophils, macrophages,
dendritic cells, dermal endothelial cells and mucosal epithe-
lial cells. TLR2 and TLR4, which are the major receptors for
bacterial lipoproteins and LPS, respectively, are also
expressed on B and T cells, which mediate the more complex
adaptive immunity via a large repertoire of antigen-specific
immunoglobulin-class receptors [12]. With the exception of
TLR9, which is an intracellular receptor, most TLRs are
expressed on the cell surface. Interestingly, the subcellular
localization of TLR4 has been shown to differ in
macrophages and intestinal epithelial cells. In macrophages,
TLR4 is expressed on the cell surface and is internalized fol-
lowing engagement of the ligand, whereas in epithelial cells
it resides in the Golgi apparatus [13].

TLR agonists and their recognition

The first indication that TLRs may function as pattern-
recognition receptors in mammals came from the discovery
that the phenotype of Ips mice, which do not show the sys-
temic inflammatory response usually triggered by LPS,
resulted from loss-of-function mutation in the TLR4 gene,
thus establishing TLR4 as a receptor for the LPS of Gram-
negative bacteria [14]. Subsequent studies using TLR4
knockout mice corroborated this finding [15]. Ex vivo
studies, later confirmed by gene-knockout experiments,
showed that there are additional agonists for TLRs. A
variety of chemically diverse pathogen-associated molecular
patterns are now known to be TLR agonists, as indicated in
Figure 1. Studies using TLR2 and TLR4 knockout mice have
revealed that these receptors mediate cellular responses to
cell-wall components of Gram-positive and Gram-negative
bacteria, respectively [16]. These components include LPS,
other bacterial glycolipids, peptidoglycan, and bacterial
lipoproteins. TLR4 has also been implicated in the recogni-
tion of coat proteins (for example, protein F) of the respira-
tory syncytial virus (RSV), which is a major cause of
bronchiolitis in infants [17]. TLR3, TLR5 and TLR9 have
been implicated in the recognition of viral double-stranded
RNA, bacterial flagellin and bacterial CpG DNA, respec-
tively [18-20]. Recently, TLR7 was shown to be involved in
cellular activation by small anti-viral compounds, including
imidazoquinoline compounds, although the natural ligand
for this receptor remains unknown [21]. In addition to their
role in pathogen recognition, recent evidence suggests that
some TLRs respond to endogenous factors produced by
stressed or damaged cells. These factors include heat-shock
proteins (Hsps) [22-24], fragmentation products of the
extracellular matrix components fibronectin and hyaluro-
nan [25,26], and mammalian chromatin [27]. The putative
capacity of TLRs to heterodimerize may explain, at least in
part, how TLRs are capable of recognizing so many chemi-
cally diverse agonists.
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Little is known about how microbial products activate TLRs.
In Drosophila, Toll does not directly bind microbial prod-
ucts, but instead binds a proteolytic fragment of the secreted
growth factor Spaetzle. The current view is that microbial
antigens interact with a yet unidentified recognition receptor
upstream of Toll to activate zymogens in the fly’s
hemolymph, ultimately leading to cleavage of Spaetzle to its
active Toll ligand form [12]. In contrast, TLR4-dependent
recognition of LPS by mammalian cells requires two acces-
sory proteins: the high-affinity LPS acceptor protein CD14, a
glycosylphosphatidylinositol (GPI)-anchored protein, and
the small secreted protein MD2, which associates with the
extracellular domain of TLR4 [28-30]. Physical contact
between LPS and TLR4 was recently demonstrated [31,32],
but to date, there is no evidence for direct ligand binding and
recognition for all other TLRs.

TLR function

Collectively, TLRs function to alert the immune system to the
presence of microorganisms. Engagement of TLRs with their
ligands leads to the production of various pro-inflammatory
cytokines, chemokines, and effector molecules, depending on
the cell type that is activated [33-35]. TLR knockout mice
have been used to study the roles of TLRs in the immune
response against different pathogens in vivo. For example,
TLR2-deficient mice are highly susceptible to lethal infec-
tions with the sepsis-causing pathogen Staphylococcus
aureus [36]. In contrast, infections with Haemophilus
influenzae or with RSV persist longer in the lungs of TLR4-
deficient mice than in those of control animals [17,37].

Signaling mechanism

Activation of signaling through TIR domains results in
recruitment of the cytoplasmic adaptor proteins MyD88 and
TOLLIP (Toll interacting protein) [38] (Figure 2). The IL-1
receptor-associated kinases IRAK-1 and IRAK-2 interact
with the death domain of MyD88, a motif found in many
apoptosis-inducing signaling molecules, and are recruited to
the TLR complex. TOLLIP can also recruit IRAKs to the
complex, albeit with different kinetics. Upon recruitment,
TRAK-1 and TRAK-2 associate with TNF receptor-associated
factor 6 (TRAF6), another adaptor protein. Very recently,
two groups [39,40] have identified another serine-threonine
kinase, termed IRAK-4, as an early component of the TLR-
signaling cascade, possibly acting upstream of IRAK-1.
TRAF6 induces activation of TGF-B-activated kinase (TAK1)
and the mitogen-activated protein (MAP) kinase kinase
MKK®6, which, in turn, activate the transcription factor
NF-«B, the c-Jun N-terminal kinase (JNK) and the p38 MAP
kinase. The importance of MyD88 and TRAF6 in TLR sig-
naling has been confirmed by targeted gene disruption.
Homologs of many molecules involved in TLR signaling in
mammals have been identified in Drosophila.

An additional TLR4 signaling pathway was revealed through
the observation that certain LPS-induced responses did not
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TLR signal transduction pathways. All TLR proteins utilize the adapter protein MyD88 to activate a signaling pathway leading to the activation of MAP
kinases and the transcription factor NF-«kB in a TRAF-6-dependent manner. These signaling events culminate in expression of the pro-inflammatory
cytokines IL-13 and TNF-a. TLR4 uses an additional adapter molecule, called TIRAP or Mal, to induce the expression of IL-6 and IFN-B. Via an
autocrine/paracrine mechanism, IFN-[3 engages the type | IFN receptor (IFNAR), which leads to the activation of the Jak and Tyk kinases. These kinases
phosphorylate the transcription factor STATI at tyrosine 701 and serine 727, thus allowing STAT| to translocate to the nucleus. Nuclear STATI,
together with NF-kB, activates the STAT |-dependent genes inducible nitric oxide synthase (iNOS) and IFN-y-inducible protein (IP-10). The + symbols
indicate that the two contributing signal transduction pathways must be triggered concomitantly in order to get gene activation.

require MyD88 [41]. Subsequently, two groups [39,40] identi-
fied a molecule called TIR domain-containing adapter protein
(TIRAP) or MyD88-adapter-like (Mal), which interacts with
TLR4 and mediates MyD88-independent TLR4 signaling.
Although downstream components of this pathway remain to
be identified, engagement of TLR4 with its ligand was recently
shown to induce the secretion of the anti-viral interferon-f
(IFN-B) via a TIRAP/Mal-dependent, but MyD88-indepen-
dent, mechanism [42]. Autocrine or paracrine production of
IFN-B was also shown to be required for the expression of
selected genes that could not be induced via engagement of
TLR2, including inducible nitric oxide synthase (iNOS) or
interferon inducible protein 10 (IP10; Figure 2).

Frontiers

It is clear that engagement of TLRs activates a variety of
inflammatory and innate immune responses in mammals.
Ongoing efforts in many laboratories have led to the identifi-

cation of TLR-specific signaling components and cellular
responses, and more will be discovered in the future. It is
also likely that TLRs work in combination with additional
pattern-recognition receptors and co-receptors to add
further diversity to their functions in vivo. How the host
integrates the information that is signaled through TLRs and
any co-receptors will ultimately control the progression of
the immune response to pathogens. Understanding this
process will undoubtedly lead to the development of novel
therapeutics and immune adjuvants.
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