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Abstract

Background: With the advent of DNA hybridization microarrays comes the remarkable ability,
in principle, to simultaneously monitor the expression levels of thousands of genes. The
quantiative comparison of two or more microarrays can reveal, for example, the distinct patterns
of gene expression that define different cellular phenotypes or the genes induced in the cellular
response to insult or changing environmental conditions. Normalization of the measured
intensities is a prerequisite of such comparisons, and indeed, of any statistical analysis, yet
insufficient attention has been paid to its systematic study. The most straightforward
normalization techniques in use rest on the implicit assumption of linear response between true
expression level and output intensity. We find that these assumptions are not generally met, and
that these simple methods can be improved.

Results: We have developed a robust semi-parametric normalization technique based on the
assumption that the large majority of genes will not have their relative expression levels changed
from one treatment group to the next, and on the assumption that departures of the response
from linearity are small and slowly varying. We use local regression to estimate the normalized
expression levels as well as the expression level-dependent error variance.
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Conclusions: We illustrate the use of this technique in a comparison of the expression profiles
of cultured rat mesothelioma cells under control and under treatment with potassium bromate,
validated using quantitative PCR on a selected set of genes. We tested the method using data
simulated under various error models and find that it performs well.

Background environment, and many other biological phenomena. The
Among the most fascinating open questions in biology today ~ answers to some of these questions have been moved a few
are those associated with the global regulation of gene expres-  steps closer to realization with the advent of DNA hybridiza-

sion, itself the basis for the unfolding of the developmental tion microarrays [1-6]. These tools allow the simultaneous
program, the cellular response to insult and changes in the = monitoring of the expression levels of hundreds to tens of
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thousands of genes - sufficient numbers to measure the
expression of all of the genes in many organisms, as is now
being done in the eukaryote Saccharomyces cerevisiae [7,8].

If we designate the intensity of a given spot in the microarray
as I and the abundance of the corresponding mRNA in the
target solution as A, we have, under ideal circumstances,

I=NA + error (1)

where N is a constant, unknown normalization factor. When
comparing two different sets of intensities, these factors (or
at least their relative sizes) must be determined in order to
make a relative comparison of the abundances A.

The simple normalization techniques commonly used at this
time assume Equation 1. Under these conditions, normaliza-
tion amounts to the estimation of the single multiplicative
constant N for each array. This task can be implemented by
whole-array methods, using the median or mean of the spot
intensities or by the inclusion of control mRNA.

We have found in a variety of different hybridization systems
that the response function is neither sufficiently linear, nor
consistent among replicate assays; the relationship between
the intensity and the abundance is more complicated than
that found in Equation 1. There may, for example, be a con-
stant term, interpretable as background:

I=N, +N,A + error, (2)

or the intensity may saturate at large abundance:

N,A
1+N,A

+ error. (3)

Both these situations render simple ratio normalizations
inadequate. The problems are not obviated by the use of
‘housekeeping’ genes as controls. First, their quantitative
stability is not a priori assured, nor has such stability been
demonstrated empirically, and second, even if such genes
were found, the nonlinearity of the response is not addressed
by this technique. Neither can extrinsic controls (such as
bacterial mRNA spiked into human targets) ensure adequate
normalization, as the relative concentration of control to
target mRNA cannot itself be known with sufficient accu-
racy. Even simultaneous two-color probes on the same
microarray do not eliminate the problems of normalization
because of variation in the relative activity and incorporation
of the two fluorescent dyes.

One possible approach to the normalization problem would be
to obtain detailed quantitative understanding of each step in
the process in order to develop a mechanistic model for the
response function. This approach is almost certainly important
for the optimization of array design, but may not be necessary
for data analysis. Alternatively, one may use the vast quantity

of data generated and the assumption of self-consistency to
estimate the response function semi-parametrically.

We have pursued the latter path. Our approach does not rely
on the consistency of an extrinsic marker or the stability of
expression for any given set of genes or on the correctness of
an a priori model for the response, but rather upon the
assumption that the majority of genes in any given compari-
son will be expressed at constant relative levels (Figure 1);
only a minority of genes will have their expression levels
affected appreciably. Thus, we normalize pairs or groups of
arrays relative to each other by maximizing the consistency
of relative expression levels among them.

The underlying idea is that the majority of genes will not have
their expression levels changed appreciably from one treat-
ment to the next (Figure 1). Clearly, there may be some treat-
ment pairs for which this is not a reasonable assumption, but
we argue that as long as the cell is alive, the basic mechanism
of cell maintenance must continue; the relevant gene prod-
ucts must be kept at relatively stable levels. This approach
can be viewed as a generalization of the method of using
‘housekeeping’ genes to normalize the array. But rather than
choosing a particular set of genes beforehand, assuming that
their expression levels are constant across treatments, we
assume that there is a stable background pattern of activity,
that there is a transcriptional ‘core’, and identify its con-
stituent genes statistically for each experiment.

The essential contrast between our method based on self-
consistency and that based on control genes determined
a priori is concisely captured in the following flow diagrams.

Normalization by controls identified a priori
1. Assume that some genes will not change under the treat-
ment under investigation.

2. Identify these core genes in advance of the experiment
(housekeeping genes, extrinsic controls)

3. Normalize all genes against these genes assuming they
do not change

4. Done.

Normalization by self-consistency
1. Assume that some genes will not change under the treat-
ment under investigation.

2. Initially designate all genes as core genes.

3. Normalize (provisionally) all genes against the core
genes under the assumption that the true abundance of
the core genes does not change.

4. Determine which genes appear to remain unchanged
under this normalization; make this set the new core.



Figure |

A pair of Clontech microarrays hybridized as described in Materials and
methods to mRNA from cultured rat mesothelioma cells. (a) Control
expression patterns. (b) Expression patterns from cells after treatment
with potassium bromate. Waf-| and HSP-70 are examples of genes that
seem to be upregulated as a result of potassium bromate treatment. Note
the apparently consistent overall expression pattern from one array to
the other, in spite of the toxic treatment received in (b).

5. If the new core differs from the previous core, then go to
step 3.

6. Else: done.

Modeling and estimation

We concentrate here on the experimental design with two
treatment groups and two or more replicate arrays per
group. Generalization to more than two groups is straight-
forward. Comparisons made without replicate arrays are
also possible, and much of the methodology discussed here
can be applied in that case as well, but the lack of true repli-
cates introduces unique non-trivial problems that will not be
considered here.

The basic model
Let Yy = logly denote the logarithm of the measured
intensity of the kth spot in the jth replicate assay of the ith
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treatment group. Thus, k ranges from 1 to G, the number of
genes per array, j ranges from 1 to r;, the number of repli-
cate arrays within the ith treatment group, and i takes
values from 1 to the number of treatment groups. The
examples in this paper use two treatment groups. The loga-
rithmic transformation converts a multiplicative normaliza-
tion constant to an additive normalization constant. We
also find that this transformation renders the error vari-
ances more homogeneous than they are in the untrans-
formed data. Then the error model corresponding to
Equation 1 is:

Vije = vy + oy + 8y + Coyip @))]
where the v;; = logN;; are now the normalization constants,
oy + 8y = logA;;. are the mean log relative abundance and the
differential treatment effects, respectively, and o, is the
error standard deviation. The treatment effects, &, are the
quantities of most direct interest for comparing expression
profiles. We assume that the residuals ¢ are independent
and identically distributed and have zero mean and unit
variance. For the significance tests below, we will further
assume that the errors are normally distributed.

Estimation by self-consistency

Estimation of the parameters in Equation 4 is carried out in
an iteratively reweighted least-squares (IRLS) procedures.
First, let ¢, indicate the assignment of the kth gene to the
core set: ¢, = 0 if gene k is not in the core and ¢, = 1/pG if
gene k is in the core, where pG is the number of genes in the
core. The vector c is thus normalized: >, ¢, = 1. These indica-
tors play the role of weights in an IRLS. Although they do
depend on other estimated parameters, in each iteration the
weights are treated as constants, depending only on parame-
ter estimates from the previous iteration.

The notion of self-consistency arises in the combined
processes of identifying the core and normalizing the data:
the choice of genes belonging to the core depends on the
normalization, and the optimal normalization depends on
which genes are identified with the core.

We start by minimizing the core sum of squares (SS,):
SS¢ = 21:' ¢ Vi - vii- o2 (5)
7

over o and v. Note that one can add a constant to v and sub-
tract the same constant from o without changing SS.. This
invariance corresponds to our inability to estimate absolute
abundances, but relative abundances only. We therefore
enforce an ‘identifiability’ constraint: >, e, = 0. The mini-
mization gives:

n; = Y.+ E Ck(Yijk - I7k> (6)
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where a and n are the estimators for a and v, respectively;
overbars indicate averages over the dotted subscripts, for
example, Yj; = =1/G 3, Yiy-
The normalized and scaled data are now given by

A
Yi = Y- ny

yk Y 2 ck (7)

Note that if all of the genes are placed in the core, we have

N

Y = Y- Yy ®
as expected.

Now we estimate the differential treatment effects by mini-
mizing the residual sum of squares,

SS=> (v,

yk Tl 8ik)2 (9)
ik

of the normalized data over §, yielding

dy = Y, E Vi = ¥ ) (10)

Note that the matrix, d, of differential treatment effects
obeys X.;rdy. = 0, as we would hope.

Self-consistency requires that the vector of core indicators ¢
depend on the estimated differential treatment effects, d.
We have tried several methods for implementing an appro-
priate dependence and find that one of the simplest schemes
works very well. We simply fix the proportion p of genes in
the core, rank the genes by the square of the estimated dif-
ferential treatment effect >;r,dj; and remove from the core
for the next iteration those genes in the 1 - p quantile.

0 for Iind;>0
=9 1 (11)
< for 3 dlk =

where 6 is a threshold chosen to ensure that a fixed propor-
tion p of genes are designated core genes. Note that a possi-
ble improvement to the algorithm might be found by
appropriate optimization of p rather than simply fixing it in
advance.

We carry out the estimation iteratively. We start with ¢, = 1/G
for all k (all genes in the core) and estimate &; by Equa-
tion 10. We then update ¢ according to Equation 11 and
repeat the estimation of § with this new e¢. We stop when ¢
does not change from one iteration to the next.

The local regression model

What we find in the analysis of experimental data, however,
is that Equation 1 with N constant is not adequately realistic.
A more flexible approach that covers the contingencies of
Equations 1-3 and many others, is to generalize Equation 4 to

Vi = vy (o) + oy + 8y + ooy ey (12)
where v;; is the normalization function, now assumed explic-
itly to depend on the mean log abundance «;. The function
o, which scales the error variance, describes the hetero-
scedasticity, or non-constancy of the variance, which we here
assume depends only on the mean log intensity level. The
two functions are constrained to vary slowly and thus can be
estimated by local regression.

If Equation 4 is used to estimate the normalization, the
departures from linearity manifest themselves as systematic
bias in the residuals (Figure 2). In all the data we have exam-
ined, the resulting biases are small and slowly-varying func-
tion of the mean log intensity, and so can be estimated using
local regression on a, the estimator for the mean log abun-
dance. It should be noted that an additive component of the
variability with non-zero expectation, in addition to the mul-
tiplicative noise (Equation 2) can, when the logarithmic
transformation is applied, lead to such nonlinear response
curves. Our approach here is to develop a method flexible
enough to allow for all sources of nonlinearity, including
additive noise. We demonstrate the validity of this method
for these formally mis-specified models in our simulation
studies below.

Estimation of both the normalization function, v, and of the
heteroscedasticity o is carried out by local regression.

Local regression

Local regression is a generalization of the intuitive idea of
smoothing by using a moving average. In local regression,
one goes beyond computing the local average of a set of mea-
sured points by estimating, at each value of the predictor
variables, all of the coefficients in a Pth-order regression in
which the regression coefficients themselves are slowly
varying functions of the predictor variable. Computation of a
moving average is thus a zeroth order local regression. The
availability of inexpensive powerful computing has sparked
renewed interest in local regression techniques and its theo-
retical underpinnings have been extensively elucidated [9-11].

Modeling a response function v as a function of a predictor u
via local regression proceeds in two steps. First, we estimate
a function of two variables u and u/,

S ) = B + B(u-u) + ... + B -u)r.  (13)
For fixed u, flu’; 8 (w)) is a polynomial in v’ with coefficients
B;(w). These coefficients will be constrained to vary slowly
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(b)

Normalized log intensity, array 2

—2 0 2 4 6
Normalized log intensity, array 1

Figure 2

The normalized log intensity in a pair of replicate arrays. (a) Data normalized by subtracting the mean over all spots; that is, no bias removal. (b) Data
normalized by estimating the normalization function using local regression and then subtracting the inferred bias, as described in the text.

with u, the quantitative rates of change specified by a para-
meter introduced below. Second, we estimate v(u) as

b (W) = f(w; b)) (14)

where b is the vector of estimators for 8. In other words, we
estimate the coefficients and evaluate the function at u'=u.
The terms of order greater than o vanish, but the estimates for
the remaining zeroth-order terms depend nevertheless on the
estimated higher-order coefficients, as follows. Given a dataset
consisting of n pairs (u;,v,), 1 € (1,...,n), we estimate the coeffi-
cients at a point u (not necessarily corresponding to any u; in
the dataset), by minimizing a weighted sum-of-squares over f3:

SS() = X w; )y~ Flug; B (15)

The weighting functions w are given by

u;-u
w; (u) = W< ! ) 16
TORYE 16)
where W is a symmetric function having a simple maximum
at the origin, strictly decreasing on [0,1] and vanishing for
u > 1. For our application in this paper, we use the efficiently
computed tricube function

ci(1-x]8)3  for |x| <1

Wi(x) = (17)
o) otherwise

The function h is known as the bandwidth, and controls just
how slowly f varies with u. We choose the bandwidth so as to
give equal span at all points u. The span is defined as the
proportion of points u; contained in a ball of radius h(u).
This choice of bandwidth function is used in Loess regres-
sion [11]. For all of the computations in this paper, we have
used a span of 0.5.

Minimization of Equation 15 over the coefficient vector S(u)
results in linear equations of the form

b;(w) =L;(wv (18)

Where L, is the linear operator appropriate to the ith coeffi-
cient and v is the vector with components v,. Note that the L;
depends on the order P of the local regression. For any given
value of P, the L; can be explicitly written down, but quickly
become algebraically complicated.

The local regression estimate of f{u;B(u)) is

J/‘\(u; B @) =b,(u) =L, (wWv (19)
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Because of this linearity, the sampling distributions for these
coefficients are known and we can compute their sampling
variances in a straightforward manner [11].

To adapt this method to the problem of normalization, and
simultaneously to implement self-consistency, we take for
the weighting functions the product of a tricube and a core
indicator:

a-a,3
cl1-| h(a)k| )2

for |a - a;| < h(a)
wk(a) = (20)
0 otherwise

where c, is the core indicator as given in Equation 11 and the
a, are given by Equation 6. In these terms, the local regres-
sion estimate n of vis given by

n(a)=Y..+ }k‘, Ly (a) Yy -Y.p) (21)
with the normalized data given by

Yig = Y- ny (@) (22)

and the differential treatment effects by

dy= Y- Y - ; Ly (@) (Ve - Yop)- (23)

Again, we have >r;d; = 0. The core indicator vector c is then
iterated to fixation as described in the previous section but
with X.rd;2 compared against 6s(¢;) where s2(a) is the
estimated local variance, discussed in the next section.

Local variance estimation

In addition to local nonlinearities in the response curve, we
also find that the data are heteroscedastic: the error variance
shows a clear dependence on the estimated abundance. The
logarithmic transformation removes a substantial part of this
dependence, but does not flatten it out entirely. One might try
an a priori accounting of the sources of error and thereby
provide a parametric model for it, but the number of poten-
tial error sources is large, so we instead choose a flexible error
model and estimate local variance by again using local regres-
sion. The technique involves computing the local likelihood
and the effective residual degrees of freedom and is described
in detail in [11]. Their ratio of the local likelihood and the
effective degrees of freedom provides a smooth estimate of
the local variance. The estimated residuals are not strictly
linear functions of Y because of the implicit dependence of
the indicator vector ¢ on the data Y and because of our use of
the estimator a, rather than a strictly independent variable,
as the predictor for the local regression. We expect these cor-
rections due to nonlinearities to be small and thus neglect
them in our estimates of the local variance.

At this stage, we have computed a first-order approximate
solution for the estimation problem. We may now perform
another iteration (in addition to the iterated solution for the
core indicator ¢) to improve the approximation, reweighting
the data by the inverse of the estimated local variance. Our
experience, however, has been that the first-order correc-
tions are sufficient and the higher-order corrections are
more difficult to compute and make little difference in the
final analysis. For the applications and validation tests that
follow, we use just the first-order corrections.

Pairwise expression-level comparisons
We perform individual pairwise hypothesis tests for each
spot in the array by computing the statistic

g = d1k'd2k (24)
k s(a) V 1/r,+1/r,

where s(a,) is the square-root of the local variance at the
mean relative expression value q;. We test z as a standard
normal under the null hypothesis of no expression difference.

Validation

We illustrate the use of the computational methods by fixing
p = 0.9 and applying them to data generated in an experi-
ment carried out on cultured, spontaneously immortalized
rat peritoneal mesothelial cells to determine the transcrip-
tional effects of treatment with potassium bromate. The data
consist of measured intensities of G = 596 genes from each
of four arrays: two replicates r, = r, = 2 in each of two treat-
ment groups. A complete discussion of the biological results
obtained in these experiments can be found in [12].

Results and discussion

The gene-expression pattern observed for rat mesothelial
cells was indicative of oxidative stress, mitotic arrest and
possibly increased apoptosis. (All changes listed are signifi-
cant at the 0.05 level). Oxidative-stress-responsive genes for
heme oxygenase-1 (HO-1), quinone reductase/NMOR/DT
diaphorase (QR), growth arrest and DNA damage 45
(GADD45), heat-shock protein 70 (HSP70), among others,
showed increased expression, as did transcriptional regula-
tory genes for c-Jun, c-Fos, Jun D, Jun B, c-Myc and
inhibitory kB subunit (IxB). Proteasome components
involved in protein repair (RS, RC10-II, C3, RC-7, HR6B
ubiquitin-conjugating enzyme and ubiquitin) and genes for
DNA repair proteins proliferating cell nuclear antigen
(PCNA), mismatch repair protein 2 homolog (Msh2), and
0-6 methylguanine DNA methyltransferase were upregu-
lated. The lipid peroxide excision enzyme phospholipase A2
(PLA2) exhibited increased expression, as did apoptogenic
genes for tumor necrosis factor v (TNF-v), inhibitory nitric
oxide synthase 1 (iNOS1) and Fas ligand (FasL). Other com-
ponents involved in apoptosis including the anti-apoptotic



B-cell lymphoma 2 (Bcl-2), and the pro-apoptotic Bcl-2-
associated X protein v (bax v), Bcl-XL/Bcl-2 associated
death promoter homolog (Bad) and Bcl-2 related ovarian
killer protein (bok) (at 12 hours), and cell-cycle control ele-
ments known as cyclins (at 4 and 12 hours), were downregu-
lated. Several genes that inhibit the cell from entering the
cell cycle were increased significantly at both time points.

Confirmation by quantitative PCR

Quantitative PCR analysis confirmed nine gene changes. The
tenth, PLA2, could not be confirmed because of lack of signal
in both treatment groups and was therefore likely to be due
to a problem in the PCR for that gene [12].

Morphologic analysis revealed complete mitotic arrest by
4 hours post-exposure, with increased numbers of con-
densed cells with pyknotic nuclei, believed to be apoptotic.
Strong HO-1-specific staining was observed in treated cells,
whereas control cells showed weak nonspecific staining, or
no staining at all.

Statistical characteristics of the data

A histogram of mean log spot intensities (Figure 3) shows
that nearly a quarter of the 596 spots on the array show little
or no signal. The remainder of the distribution shows a very
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gradual maximum followed by a long tail skewing the distri-
bution to the right. The total range is about 9 (natural) logs,
corresponding to approximately 9,000-fold change from
highest intensity to ‘background’.

The estimated variance of the log intensities increases from the
lowest log intensities for about one (natural) log to peak at a
value of about 0.25 and then decreases to asymptote at about
0.04 for intense spots. This suggests that the error is domi-
nated by different sources in the two intensity regimes. Fur-
thermore, the fact that the variance of the log intensity
decreases for large intensities indicates that the variance scales
like o4, where g < 2. g = 2 corresponds to lognormal behavior
with constant coefficient of variation and g = 1 corresponds to
the Poisson-like behavior of independent counting processes.

The four arrays in this study also showed non-negligible bias
(Figure 4). The root-mean-square (RMS) bias over all four
arrays was 17.5 x 1072, This should be compared to the esti-
mated standard deviation of the residuals after bias removal
of 19.2 x 1072; it is clearly comparable. This bias is not likely
not to be an artifact of the fitting procedure. Application of
the fitting procedure to simulated data without bias (see
below) results in a range of RMS bias that is much smaller
than that seen in the real data (Tables 1-3).

0.251 - 0.07
0.20
> - 0.05
g 0.157 &
=) Q
o =]
(9] Q
Lt D
0.101 - 0.03
0.051
- 0.01
0.00 — T T T .
-2 0 2 4 6
Mean log abundance (a)

Figure 3

Histogram of estimated mean log abundance levels, a,, and local variance (solid line) from the potassium bromate experiment. This distribution of x and
this local variance curve were used as input for the simulation studies. The dashed curve gives the variance estimated in a randomly chosen member of

the simulation datasets.
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In addition to the experiments reported here, we have exam-
ined data from several other microarray platforms and find
that in terms of the heteroscedasticity and apparent bias,
they are qualitatively similar (not shown).

Simulation studies

To determine the reliability of our methods, we generated
simulated data under a number of models based on the sta-
tistical characteristics of the data obtained in our
hybridization experiments. All of the simulated data was
produced using FORTRAN programs calling IMSL subrou-
tines for sorting, cubic spline interpolation and random
number generation.

For each model and each set of conditions we ran 100 inde-
pendent realizations. The data from each of these realiza-
tions was used as input to our normalization routines, which
performed normalizations in two ways. First, we normalized
according to Equations 4, 10 and 6, that is, without bias
removal and without accounting for heteroscedasticity; this
procedure is referred to as ‘naive’. Then, we normalized
according to Equations 12, 21 and 23 and p = 0.9 with bias
removal and estimation of heteroscedasticity. The software
that implements the latter method is referred to as NoSe-
CoLoR, for Normalization by Self-Consistency and Local
Regression [13]. For judging the relative performance of the

two methods, we recorded the number of true positives and
the number of false positives for each simulated dataset.

Homoscedastic error model
In the first set of tests, the data were generated by simula-
tions of the model

(25)

_ 0
Yije = v+ qvi]-(cxk) + oy + By + G

where the values for v were generated as normals with mean
0 and standard deviation 0.2, the o, were taken to be the
values a, estimated from the experimental data, o2 = 0.039
(this is the value estimated from the experimental data,
treated as homoscedastic) and & were generated as stan-
dard normal. The treatment effects were generated by choos-
ing at random a fixed number of genes 7G (10% or 20% of
the total number G) and within this set, letting §,, = 7, logf
and J,, = 0. Outside this set, §; = 0. Here, 7, are indepen-
dently drawn from {-1,1} with equal probability, and f'is the
‘fold change’, or ratio of expression level between treated
and control groups.

The function vy(a) representing nonlinearity and bias was
taken to be proportional to the corresponding function n;
estimated in the above data analysis (Figure 4) and com-

pleted by cubic spline interpolation. The constant of

—— Experiment
044 N\ @ - Simulation
0.2 1
» 0.0
8
m
—0.2 1
—0.4 1
—0.6 1
T T T T T T
-3 -1 1 3 5 7
Mean log abundance (a)

Figure 4

Biases in the four arrays in the potassium bromate experiment (solid lines). These biases were then used as input to the data simulation as described in
the text. A simulation dataset was chosen at random and biases were estimated from it (dashed lines).




Table |
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Table 2

Assessment of algorithm performance on data simulated
according to the homoscedastic error model

Assessment of algorithm performance on data simulated
according to the heteroscedastic error model (Equation 26)

Power Rate of false positives RMS bias (x10-2)
7 f q Naive NoSe- Naive  NoSe- 5th 95th
(%) ColoR ColLoR percentile percentile
10 1.5 0 0318 03I5 1.024 1.035 0.937 1.710
10 1.5 1 0.127 0.300 0.929  0.933 16.559 17.872
10 25 0 0989 0.974 1.004 I.181 1.524 3.292
10 25 | 0.689 0971 0.955  0.968 15.776 17.163
20 1.5 0 0327 0314 0.975 1.002 1.079 2.226
20 1.5 1 0.129 0295 0.883  0.973 16.380 17.742
20 25 0 0985 0.939 1.000 1.662 3.359 5.763
20 25 | 0684 0.941 0.889 1.298 15.279 16.823

Power Rate of false positives RMS bias (x102)
7 f q Naive NoSe- Naive  NoSe- 5th 95th
(%) ColoR ColLoR percentile percentile
10 1.5 0 0312 0.346 1.577  0.890 0.933 1.669
10 1.5 I 0.130 0.342 0.775  0.784 16.536 17.763
10 25 0 0982 0.939 1.482  0.970 1.474 3.447
10 25 | 0.683 0.939 0.749  0.855 15.740 17.271
20 1.5 0 0313 0345 1.600  0.878 0.930 2.091
20 15 1 0.128 0.324 0.784  0.803 16.320 17.722
20 25 0 0983 0.905 1.560 1.367 3.113 5.967
20 25 | 0685 0.909 0.751 1.078 15.299 16.821

The proportion, 7, among all genes of those for which the expression
level has been changed is either 10% or 20%. The ratio, f, of treated
expression level to mean control expression level is varied between 1.5
and 2.5. The bias multiplier q is either zero (no bias) or | (bias as
measured in the analysis of the real data). The power is the mean number
of correct discriminations achieved in the test divided by the number of
true changes (59 and | 19 for 7 = 10% and 7 = 20%, respectively). The
false-positive score is the mean number of incorrect discriminations
divided by the expected number at the nominal type-l error rate of 0.01.
The expected number of false positives is 5.4 when 7 = 10% and 4.8 when
7= 20%. The RMS bias is computed from the bias as estimated as
described in the text. Reported here are the 5th and 95th percentiles
over the simulated datasets.

proportionality, designated g in the tables, regulates the
size of the bias.

What we find (Table 1) is that the power of the test for the
naive analysis is diminished by the presence of bias. For
the local-regression analysis (NoSeCoLoR), the power is
unaffected by the presence of bias. Furthermore, when the
proportion, rz, of affected genes among all genes is small
(7 = 10%), the power of the two methods is about the same.
When 7 = 20%, the naive method has slightly better power
when bias is absent.

Heteroscedastic error model

As discussed above, even the log-transformed data are not
homoscedastic, but have variance that varies with the mean
intensity level. The second set of simulations is similar to the
first, but differs in that the constant o, in Equation 25 is
replaced by the function o (o) estimated from the Clontech
array experiments (Figure 4). All other details are as for the
previous simulation.

In this case (Table 2), we find as before that bias diminishes
the power of the naive procedure, but not that of NoSe-
CoLoR. In addition, the rate of false positives is now notably
high for the naive method. NoSeCoLoR yields consistently

Details as in Table I.

smaller false-positive rates, although when large proportions
of genes are affected and have large effect size, the rate of
false positives with NoSeCoLoR is also larger than nominal.

Compound error model

The model given by Equation 12 is intended to be flexible
and to be a reasonable approximation to a variety of models.
One particularly common source of nonlinearity is additive
error (on the untransformed data), or background with non-
zero mean (Equation 2). We have therefore simulated data
according to a model given by

Iijk =exp {oy + Vi + Oy + Sijk} + exp {Qij+ nijk} (26)

Table 3

Assessment of algorithm performance on data simulated
according to a model with homoscedastic multiplicative error
plus additive (background) error

Power Rate of false positives RMS bias (x102)
7 f q Naive NoSe- Naive  NoSe- 5th 95th
(%) ColoR ColLoR percentile percentile

10 I.5 0 0266 0380 1.607 1.089 1.840 6.824
10 1.5 I 0.127 0317 7.791 0.888 7227 34413

10 25 0 0628 0.636 1.687 1117 1.859 8.019
10 25 | 0292 0.630 9.987  0.970 9.842 37617
20 1.5 0 0275 0.384 1.468 1.031 2.006 6.927
20 15 1 0.126 0.296 8857  0.895 9.741 34.407
20 25 0 0635 0.646 1.361 1.384 2.228 7.120

20 25 | 0282 0.608 8.887 1.063 10.778 34.203

Details as in Table I.
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where the terms «, v, 5 and ¢ have the meanings assigned
above and are computed as in the first simulation. In partic-
ular, ¢ has zero mean and constant variance with ¢ = 0.2.
The second exponential represents an additive background.
This background is modeled as lognormal. The component
¢ common to all spots in an array is chosen as a normal
random deviate with mean zero and standard deviation q.
Differences in ¢ from one array to the other can create
apparent biases in the log-transformed data (Figure 5). The
gene-specific term in the background 7, has mean zero and
standard deviation 0.2.

It is in this simulation that the naive method fails most dra-
matically. For all datasets, the naive method gives false-posi-
tive rates significantly greater than nominal, some as much
as ten-fold higher than nominal. NoSeCoLoR has much
better error rates, although as seen before, performance
starts to suffer when larger numbers of spots are affected.
The power of comparisons using NoSeCoLoR is again much
more resistant to changes in the effective bias level (c in
Table 3) than is the naive method.

Conclusions
We have presented a method for normalizing microarray
data that relies on the statistical consistency of relative

expression levels among a core set of genes that is not identi-
fied in advance, but inferred from the data itself. The nor-
malization and variance estimation are both performed
using local regression. We are then able to perform standard
comparison tests. This technique reveals biologically plausi-
ble expression-level differences between control mesothe-
liomas and mesotheliomas treated with a potent inducer of
oxidative stress. The expression changes identified by our
normalization methodology were confirmed by quantitative
PCR in all cases but one where there was no detectable PCR
amplification at all.

Our simulation studies show that our normalization tech-
nique performs well. The worst case occurs when the
response curve is perfectly linear, the variance constant and
a large proportion of genes experiences sizable expression-
level changes. Under these conditions, our method has a
false-positive rate somewhat greater than nominal and self-
consistent normalization without local regression performs
slightly better than that with local regression. On the other
hand, our method is insensitive to bias and heteroscedastic-
ity, both of which have a significant deleterious effect on the
naive method. Furthermore, bias and heteroscedasticity are
both measurably present in all data that we have examined
from microarrays from a number of different manufacturers
and from several different laboratories. In these cases, local
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Figure 5

The normalized log intensities from simulated data generated according to Equation 26. (a) The data normalized without local regression, as in Figure |.
(b) The same data normalized using local regression for bias removal. Note that the apparent curvature is induced simply by adding a background term

with non-zero expectation.




regression performs better than self-consistency alone.
When the data are generated by an additive-plus-multiplica-
tive error model, the naive method completely breaks down,
whereas our method continues to perform well.

We have applied these methods to the analysis of microarray
data in toxicogenomic studies [12,14], where the results
made good biological sense and, where relevant, were con-
firmed by subsequent experimentation. All data-analytic
techniques benefit from extensive use and assessment using
several platforms and diverse biological systems. To facili-
tate this process for the methods described here, and to
provide them to the interested research community, we have
made the software used to implement them available for
non-commercial use [13].

DNA hybridization microarrays promise unprecedented
insight into many areas of cell biology, and statistical
methods will be essential for making sense of the vast quan-
tities of information contained in their data. Efficient and
reliable normalization procedures are an indispensable com-
ponent of any statistical method; further development and
analysis of error models for microarray data will be a worth-
while investment.

Materials and methods

Clontech microarrays

This is a brief description of the experimental methods;
complete details can be found in [12]. Immortalized rat peri-
toneal mesothelial cells (Fred-Pe) developed in-house were
grown in mesothelial cell culture media as previously
described [12] for several months before experiment with
weekly subculturing. Cells plated at 1 x 107 cells/150 mm
dish in 30 ml media were grown for 24 h and treated with
the pre-determined ED,, concentration of 6 mM KBrO, for 4
or 12 h. Cells were detached using a cell lifter and cen-
trifuged at 175g for 3 min. The supernatant (medium) was
removed by aspiration and cells were re-suspended in 1 ml
sterile PBS and frozen at -80°C until RNA extraction. The
Atlas Pure Total RNA protocol for poly(A)* mRNA extrac-
tion was used. Samples were hybridized in manufacturer-
supplied hybridization solution (Clontech ExpressHyb) for
30 min at 68°C. After hybridization, the membranes were
washed, removed, wrapped in plastic wrap, and placed
against a rare-earth screen for 24 h, followed by phosphoim-
ager detection and AtlasImage analysis before application of
the software tools described in this paper.

Quantitative PCR

Confirmation by Tagman (Perkin-Elmer) quantitative PCR
was performed for nine selected genes as described in [12].
The genes selected for confirmation were those for cyclin D1,
GADD45, GPX, HO-1, HSP70, Mdr-1, QR, prostaglandin H
synthase (PGHS), p21WAF1/CIP1 and PLA2. Two control
and two treated samples from the 4-h time point, and two

http://genomebiology.com/2002/3/7/research/0037.1 |

control and one treated from the 12-h time point, were ana-
lyzed. Each plate contained duplicate wells of each gene, and
16 no-template control (NTC) wells divided evenly among
four quadrants.

Analysis

Software for the implementation of the statistical estimation
and testing procedures described above was written in
FORTRAN and run on desktop PCs [13]. Additional statistical
computations were performed using S-plus 4.5 (MathSoft).

Additional data files

The additional data files available with the online version of
this paper or from [13] consist of several files for implement-
ing the methods described here: NoSeCoLoR.exe is the exe-
cutable file, compiled for Windows, for the program itself;
NoSe-CoLoR-The-Manual.pdf is the user’s guide and con-
tains information on input formatting and the interpretation
of output files; README.txt contains instructions for instal-
lation and start-up;. there are several sample input files and
associated output files.
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