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Abstract

Background: Methods for extracting useful information from the datasets produced by
microarray experiments are at present of much interest. Here we present new methods for
finding gene sets that are well suited for distinguishing experiment classes, such as healthy versus
diseased tissues. Our methods are based on evaluating genes in pairs and evaluating how well a
pair in combination distinguishes two experiment classes. We tested the ability of our pair-based
methods to select gene sets that generalize the differences between experiment classes and
compared the performance relative to two standard methods. To assess the ability to generalize
class differences, we studied how well the gene sets we select are suited for learning a classifier.

Results: We show that the gene sets selected by our methods outperform the standard
methods, in some cases by a large margin, in terms of cross-validation prediction accuracy of the
learned classifier. We show that on two public datasets, accurate diagnoses can be made using
only 15-30 genes. Our results have implications for how to select marker genes and how many
gene measurements are needed for diagnostic purposes.
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Conclusion: When looking for differential expression between experiment classes, it may not
be sufficient to look at each gene in a separate universe. Evaluating combinations of genes reveals
interesting information that will not be discovered otherwise. Our results show that class
prediction can be improved by taking advantage of this extra information.

Background

Microarrays can be used to obtain simultaneous measures of
transcript abundance for thousands of genes. A number of
projects have applied this technology to study differences
between diseased and healthy tissue (for example [1]) and
differences between different types and subtypes of diseases
(for example [2-4]). The aim is to help improve the under-
standing of the diseases at a molecular level and to develop
new diagnostic and prognostic tools. Microarray experi-
ments can also help identify marker genes.

Typically, such experiments have taken on the order of
50-100 samples of different patients and used microarrays
to measure the abundance (or relative abundance) of 5,000-
10,000 genes. In some cases the samples are labeled with
information about disease (for example, healthy/diseased,
disease type). In other cases, such labels are not given and
the aim can be to discover groupings of the samples, and
clustering and class-discovery methods can be applied.
When labels are given, the aim is to find sets of genes that
distinguish well between samples with different labels. The
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identity of such genes can help understand disease mecha-
nisms. Classifiers employing expression data for the identi-
fied genes can be used for diagnostic and prognostic
applications, that is, class prediction.

Finding sets of genes with expression values that allow class
separation may be achieved by the use of supervised or unsu-
pervised methods. The most common practice is to apply a
direct approach, where the class labels of the samples are used
in the search for separating genes (supervised). However,
there exist methods where partitions of the samples are found
in an unsupervised manner together with gene sets that
support these partitions, for instance by clustering [5]. If any
of the partitions correlate sufficiently with known class labels,
the gene set that supports this partitioning may be reported as
relevant for separating the sample classes.

Developing class predictors is in machine-learning terminol-
ogy a ‘supervised learning problem’. The expression data
constitute a training set of labeled examples where each
example is the expression profile for one sample. The aim is
to develop a model that correctly predicts the labels of new
examples. In order to test models it is standard practice to
not include all examples in the training set so that the result-
ing models can be tested on the examples not used to build
the model (the test set).

The models to be built will use some features of the exam-
ples. One problem with gene expression data is that each
example has too many features, and many of them are noisy
and irrelevant for the learning problem at hand. This is a
common problem in machine learning and pattern recogni-
tion and a number of approaches have been proposed to
select a subset of the features to be used. The problem of
finding the best subset is commonly referred to as the
feature subset selection (FSS) problem.

One approach is to consider each feature individually and see
whether it distinguishes examples with different class labels.
Let us restrict ourselves to the problem where we have only
two classes (for example, healthy/diseased). A perfect feature
would, for example, have high values for class 1 and low
values for class 2, and could be used by itself to predict class
membership of new examples. Such features rarely exist, and
more commonly one needs to find a set of features that
makes it possible to make a decision boundary that separates
most class 1 examples from most class 2 examples.

A few groups have published results obtained using different
FSS procedures on microarray data. These methods evaluate
each feature (gene) with respect to how well it distinguishes
between class 1 and class 2. Then they rank all genes accord-
ing to the result and select the top K genes as the feature
subset to be used. Some also employ a method to remove
redundancy in the selected gene set; for example, some
genes may behave very similarly and effectively provide the

same information [6]. Other groups have reduced the
dimensionality (number of features) by singular value
decomposition (SVD), also referred to as principal compo-
nent analysis (PCA), and used, for example, the first ten
principal components as the feature subset [4,7].

The methods considering each gene separately potentially
miss sets of genes that together allow good separation
between the classes while each of the genes individually does
not. We interpreted the results obtained by Xiong et al. [7] to
indicate that this may indeed be the case. They obtained sig-
nificantly higher accuracy using the seven first principal
components than using 42 genes that each separate well
between the classes.

Here we investigate new FSS methods that analyze pairs of
genes, making it possible to find pairs that distinguish well
between sample classes. Additionally we investigate the so-
called forward selection method for FSS, where a good
feature set is constructed by a ‘greedy’ selection procedure
[8]. The results of these procedures are compared to results
for previously reported FSS methods and the results show
that our new FSS method gives more stable and better classi-
fication accuracy than methods evaluating each gene sepa-
rately. The prediction accuracies achieved with our
pair-based methods are also comparable to the best results
reported in other papers.

We also list the genes chosen by our FSS methods and study
the differences compared with sets chosen by other methods.
Furthermore, we seek an explanation for the difference in
classification accuracy achieved.

Finally, we discuss the implications of our findings. Appar-
ently our FSS procedure provides an approach to finding
gene sets that allows good separation between different
classes and reveals better prediction results than other
methods. Further research in this direction is required - con-
sidering wrapped feature selection systems, for example.
The importance of considering combinations of genes in the
feature selection process may contribute to new approaches
to understanding diseases. Additionally, the importance of
gene combinations may inspire new ways of designing
microarray experiments for diagnostic and prognostic pur-
poses.

Results

To evaluate our methods we applied them to two public
datasets ([9,10]; see also Materials and methods) and used
two standard methods for comparison. The comparison is
indirect, meaning that we use the average error rate of a
learned classifier as a quality measure on the feature selec-
tion procedure. Here we describe our methods and the
results we have achieved using them. We also show that our
methods reveal better results than two standard methods.



We apply a novel FSS procedure for ranking genes based
on relevance for separating two experiment classes. Rather
than evaluating each gene independently of the other
genes, we consider gene pairs. Each gene pair is evaluated
by how well it separates two classes, assigning a separation
score to the pair. For a comparison study we use a greedy
method from machine learning called ‘forward selection’
and a gene-ranking method based on evaluating each gene
separately. We will subsequently refer to the latter as ‘indi-
vidual ranking’.

Gene pair ranking

We propose a filter method for evaluating pairs of genes by
how well they separate two classes. We give each pair of
genes a score reflecting how well the pair in combination
distinguishes two experiment classes. Figure 1 shows an
example of a pair of genes separating two classes well, along
with the diagonal linear discriminant (DLD) axis and the
decision boundary given by the axis (for an introduction to
DLD, see [11]). We evaluate a gene pair by computing the
projected coordinates of each experiment on the DLD axis
using only these two genes. We then take the two sample ¢-
statistic on the projected points as the pair score. We
propose two alternative methods for selecting a feature
subset based on pair scores, one exhaustive method called
‘all pairs’ and one faster method called ‘greedy pairs’.

The all-pairs procedure considers all pairs of genes. Given
pair scores for all pairs we select the top-ranked disjoint
pairs in a greedy manner. First, the pair with highest pair
score is selected, then all pairs containing any of these two
genes are removed from the list. Then the highest-scoring
pair from the remaining list is chosen, and so on.

By removing the already selected genes from the gene set, we
do not take the risk that one exceptionally high-scoring gene
can drag along several bad’ companion genes. If such a
high-scoring gene was left in the gene set, it would probably
be responsible for many of the top-ranked pairs. By remov-
ing selected genes from the gene set, a high-scoring gene will
only cause its best available companion to join it in the set of
selected genes.

As an alternative, less computationally expensive, method
we try an approach evaluating only a subset of all gene pairs
(greedy pairs). The greedy-pairs approach first ranks all
genes on the basis of individual ¢-score. Subsequently, this
procedure first selects the best gene g; ranked by gene t-
score, then finds the gene g; that together with g; maximizes
the pair t-score. These two genes are then removed from the
gene set and the procedure is repeated on the remaining set
until we have selected the desired number of genes. This
approach is computationally much faster than all pairs, as
only a subset of all gene pairs will be evaluated, but it may
miss some pairs with high score.
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Example of a good pair of genes in the colon dataset. The expression
values give almost full separation between normal and tumor tissues.
Along the x-axis (horizontal) are the expression values of M63391, and
along the y-axis (vertical) are the expression values of H08393. The points
marked ‘x’ are normal tissues, and the tumor tissues are marked by an ‘o’.
The expression values have been through the preprocessing steps
described in the text. Also plotted is the DLD axis and the class-decision
boundary for these two genes. Note that the DLD axis and the decision
boundary are orthogonal, but as a result of different scaling on the axes it
does not appear so in the plot.

Prediction accuracy results

For testing our methods we used two public datasets, one
representing colon (tumor/normal) tissues [10], and the
other representing acute lymphoblastic leukemia (ALL) and
acute myeloid leukemia (AML) [9] (see also Materials and
methods). For both these datasets we perform cross-valida-
tion tests on the two-class problem, distinguishing between
ALL and AML in the ALL/AML dataset and normal and
tumor in the colon dataset. By dividing the data into a train-
ing set and a test set several times, we compare the average
performance of different prediction methods on the test set
using four different feature subset selection (FSS) proce-
dures on the training set. In this study we use two linear dis-
criminant methods: diagonal linear discriminant (DLD) and
Fisher’s linear discriminant (FLD), and one local method; k
nearest neighbors (KNN) (for kNN and FLD, see [12]). The
FSS procedures we use are all pairs, greedy pairs, forward
selection and individual ranking. The application of several
prediction methods is to see if the differences between the
FSS procedures are specific to a particular prediction
method rather than more general. Instead of comparing the
different prediction methods we compare the ability of the
different FSS procedures to find feature subsets that gener-
alize the class differences. A comparison is done for feature
subsets of size 2, 4, 6,..., m, where m is the number of experi-
ments in the dataset. We also leave out different portions
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from the training data (1, 33%, 50%), to see what effect this
has on prediction accuracy.

The results are summed up in plots like the one shown in
Figure 2, with the number of genes along the x-axis and the
prediction accuracy along the y-axis. The curves in Figure 2
show performance using the different FSS procedures and
DLD prediction. Plots in Figure 2a,b illustrate prediction per-
formance on the colon dataset when one example is left out at
each round (often referred to as leave-one-out cross-valida-
tion or LOOCYV; Figure 2a) and when leaving out 31 examples
(50%; Figure 2b). Plots in Figure 2c,d show prediction

performance for the ALL/AML dataset leaving out one
(Figure 2c) and 36 (50%; Figure 2d) of the examples from
the training set. The complete set of plots, showing results
for all four FSS procedures and all three prediction methods,
are available as Additional data files.

For the colon dataset, the pair-based methods achieve much
better results than individual ranking and forward selection.
When leaving out only one example from the training set
there is no clear difference in prediction accuracy, except
that forward selection gives worse results than the other
methods (Figure 2a). Leaving out larger portions of the data,
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Figure 2

Plots of prediction accuracy on the colon and ALL/AML dataset using four different FSS procedures and DLD prediction. (a) Colon dataset: LOOCYV and
DLD prediction. (b) Colon dataset: L-31-OCV and DLD prediction. (c) ALL/AML dataset: LOOCYV and DLD prediction. (d) ALL/AML dataset: L-36-
OCYV and DLD prediction. Along the x-axis are the number of genes in the feature subsets, and average prediction accuracy is shown along the y-axis.
The FSS procedures individual ranking (IR), all pairs (AP), forward selection (FS) and greedy pairs (GP) are explained in the text.




the pair-based methods give superior prediction accuracy,
compared to both individual ranking and forward selection
(Figure 2b). For this dataset, the all-pairs ranking gives
slightly better results than the greedy-pairs ranked genes.

Using FLD and 3NN (kNN where k=3) prediction, the ten-
dency is also that pair-based methods give the best predic-
tion results, so the good results achieved with the pair-based
methods are not just specific for DLD prediction. Comparing
our results to those of Xiong et al. [7], we achieve results
comparable to what they achieved using the first seven prin-
cipal components and FLD prediction. Using FLD prediction
and the 20 top-ranked genes, selected by all-pairs ranking,
we achieve a prediction accuracy of 87.8% leaving out 32%
(20 examples) and 85.9% leaving out 50% (31 examples)
from the training data. The corresponding results achieved
by Xiong et al. were 87.0% and 85.7%. Weston et al. [13]
report an average error rate of 12.8% on the colon data when
leaving out 12 examples at each cross-validation iteration
using the top 15 genes from their own feature selection
method and a support vector machine [14] for prediction.
Using the top 14 genes from all-pairs ranking and DLD pre-
diction we achieve an error rate of 12.2%.

For the ALL/AML dataset there is smaller difference in
results using the pair-based methods (all pairs, greedy pairs)
and individual ranking, but it is still in favor of the pair based
methods. On this dataset, forward selection gives prediction
results far worse than the other methods. When leaving out 1,
24 (33%) or 36 (50%) of the examples from the training set,
the pair-based methods give slightly better results compared
to individual ranking using all three prediction methods.
Generally the prediction accuracy rises a bit faster with the
number of features using ranking by gene t-score than using
pair-based ranking. However, the pair-based methods give
slightly better prediction accuracy when the number of genes
in the feature subset increases. In all cases except one
(LOOCV and FLD prediction), all pairs or greedy pairs has
the best maximum prediction accuracy. For LOOCV and FLD
prediction, individual ranking, all pairs and greedy pairs had
the same maximum prediction accuracy.

Selected gene sets

Given the all-pairs ranking method, we study which genes
show up as highly relevant in pairs. For this study we use the
data for all experiments in each of the colon and ALL/AML
datasets. We ranked all pairs of genes for each dataset and
list the top-ranked 25 disjoint pairs in Tables 1 and 2.

For the colon dataset it is interesting that, taking all the
available data into account, the top-ranked gene pairs
contain several genes that are not among the top genes when
ranked individually. In fact, only 24 out of the top 50 genes
ranked by pair t-score are among the top 50 genes ranked by
gene t-score. Only 32 out of 50 genes are in the top 100
ranked by gene t-score.

http://genomebiology.com/2002/3/4/research/0017.5

For the ALL/AML dataset, 31 out of 50 genes, ranked by pair
t-score, are among the top 50 ranked by gene t-score. Forty-
two out of 50 were among the top 100 ranked by gene t-score.
The difference from the colon data set was that the all-pairs
ranking method selects far more genes not from the top indi-
vidually ranked genes. This could account for why we do not
see a larger difference in prediction accuracies for this dataset.

Discussion

The recurring question when working with diseases and
gene-expression profiles is which genes are involved and
which genes are suitable as marker genes. The focus of this
paper is on methods for finding gene sets that are suitable
for discriminating between experiment classes, like
disease/normal or between different subclasses of a disease.

We propose a conditional gene relevance measure, the pair
t-score, where genes are scored by how well they separate
experiment classes in the context of some other gene. This
approach may inspire some insight into the biological mech-
anisms behind a disease as we consider genes in combina-
tion with others. We believe our approach is a step in the
right direction to find the genes that are interesting for sepa-
rating experiment classes but do not show up as interesting
on an individual basis. Considering combinations of genes in
the feature selection process may contribute to new
approaches to understanding disease. Additionally, the
importance of gene combinations may inspire new ways of
designing microarray experiments for diagnostic and prog-
nostic purposes. Once a set of marker genes has been identi-
fied, this makes cheap production of diagnostic microarrays
possible, as such a microarray needs only a relatively small
number of marker genes spotted on it. Alternatively, other
methods of measuring gene expression can be used, as the
number of genes to be monitored is rather small. For the
ALL/AML and colon datasets we demonstrate that quite
accurate diagnoses can be achieved using only the gene-
expression levels of 20-30 and 15-20 genes, respectively.

We do not claim that our pair-based methods will find all
interesting genes, as there may be relevant genes that are
significant by themselves but may not appear in any of the
high-scoring pairs. However, we demonstrate that looking at
gene pairs will reveal some extra information about class dif-
ferences. Our methods are not meant as a substitute for
single gene evaluation, but rather as a supplement to already
existing methods.

An interesting point regarding cross-validation is that when
leaving one example out during training, the performance
curves shows a different picture from the one we get when
leaving out larger portions of the data. Leaving out larger
portions from the training data gives smoother performance
curves, showing a clearer picture of differences in prediction
performance. It is also interesting to study how much the
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Table |

Top-ranked 50 genes (25 pairs) for ALL/AML class separation using AP (all pairs) ranking

Pair rank  Gene ID Pair t-score  Gene t-score Gene rank  Gene annotation

| M84526_at 16.16 12.88 | DF D component of complement (adipsin)

| M92287_at 16.16 8.87 6 CCND3 Cyclin D3

2 M23197_at 15.43 11.72 2 CD33 CD33 antigen (differentiation antigen)

2 M31523_at 15.43 11.0 3 TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors
E12/E47)

3 U46499_at 13.56 9.14 5 Glutathione S-transferase, microsomal

3 M31303_rnal_at 13.56 6.52 36 Oncoprotein 18 (Opl8) gene

4 Mé63138_at 13.53 9.46 4 CTSD Cathepsin D (lysosomal aspartyl protease)

4 HGI1612-HTl612_at 13.53 847 10 Macmarcks

5 X62320_at 12.58 8.38 I GRN Granulin

5 Z14982_rnal_at 12.58 5.54 93 MHC-encoded proteasome subunit gene LAMP7-El (LMP7)

6 M31211_s_at 12.41 8.6l 9 MYLI Myosin light chain (alkali)

6 X62654_rnal _at 12.41 732 17 ME491 gene extracted from H. sapiens gene for Me491/CD63 antigen

7 M27891 _at 12.15 8.83 7 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)

7 U89922_s_at 12.15 5.24 115 LTB Lymphotoxin-beta

8 X59417 _at 12.14 7.99 12 Proteasome iota chain

8 X52056_at 12.14 6.52 37 SPI1 Spleen focus forming virus (SFFV) proviral integration oncogene spil

9 M19507_at 12.09 7.03 24 MPO Myeloperoxidase

9 M89957_at 12.09 6.92 28 IGB Immunoglobulin-associated beta (B29)

10 M84371_rnal_s_at  11.9 7.18 23 CDI19 gene

10 U16954_at 1.9 6.43 40 (AFIq) mRNA

I M63379_at 11.74 7.56 13 CLU Clusterin (complement lysis inhibitor; testosterone-repressed
prostate message 2; apolipoprotein J)

11 M83667_rnal_s_at 11.74 7.52 14 NF-IL6-beta protein mMRNA

12 M16038_at 11.72 7.31 18 LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog

12 Y08612_at 11.72 6.31 47 Rabaptin-5 protein

13 D88422_at 11.68 8.72 8 Cystatin A

13 MI11722_at 11.68 7.18 21 Terminal transferase mRNA

14 X66401 _cds|_at 11.67 5.89 69 LMP2 gene extracted from H. sapiens genes TAPI, TAP2, LMP2, LMP7 and DOB

14 Y00433_at 11.67 4.72 182 GPXI Glutathione peroxidase |

15 M63959_at 11.61 6.59 34 LRPAPI Low density lipoprotein-related protein-associated protein |
(alpha-2-macroglobulin receptor-associated protein |)

15 X51521_at 1.6l 6.44 38 VIL2 Villin 2 (ezrin)

16 Z15115_at 11.37 749 15 TOP2B Topoisomerase (DNA) Il beta (180 kDa)

16 U10868_at 11.37 5.55 92 ALDH7 Aldehyde dehydrogenase 7

17 Y12670_at 11.25 5.67 82 LEPR Leptin receptor

17 U77948_at 11.25 5.6 87 KAIl Kangai | (suppression of tumorigenicity 6, prostate; CD82 antigen
(R2 leukocyte antigen detected by monoclonal antibody 1A4))

18 U46751 _at 1.2 5.8 73 Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA

18 L06797_s_at 1.2 5.77 74 Probable G protein-coupled receptor LCRI homolog

19 M95678_at .19 573 77 PLCB2 Phospholipase C, beta 2

19 U72936_s_at .19 5.38 101 X-linked helicase Il

20 S76617_at 11.16 6.43 4| BLK Protein-tyrosine kinase blk

20 L09209_s_at .16 59 68 APLP2 Amyloid beta (A4) precursor-like protein 2

21 M55150_at 1111 6.7 32 FAH Fumarylacetoacetate

21 M96803_at (NN 4.74 180 SPTBNI Spectrin, beta, non-erythrocytic |

22 X17042_at 11.08 6.93 27 PRGI Proteoglycan |, secretory granule

22 X99920_at 11.08 5.15 124 S100 calcium-binding protein Al3

23 §50223_at 10.86 6.65 33 HKR-TI

23 U82759_at 10.86 4.39 229 GB DEF Homeodomain protein HoxA9 mRNA

24 J03589_at 10.83 5.62 85 Ubiquitin-like protein GDX

24 X12447 _at 10.83 5.16 122 ALDOA Aldolase A

25 X74262_at 10.8 5.89 70 Retinoblastoma binding protein p48

25 L19437_at 10.8 5.13 127 TALDO Transaldolase
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Table 2

Top-ranked 50 genes (25 pairs) for colon tumor/normal class separation using AP (all pairs) ranking

Pair rank  Gene ID Pair t-score  Gene t-score Gene rank  Gene annotation
| Mé63391 10.02 557 2 Human desmin gene, complete cds
| H08393 10.02 5.47 4 Collagen alpha 2(XI) chain (H. sapiens)
2 X12671 9.85 5.37 5 Human gene for heterogeneous nuclear ribonucleoprotein (hnRNP) core
protein Al
2 750753 9.85 5.09 9 H. sapiens mRNA for GCAP-Il/uroguanylin precursor
3 R87126 9.58 6.37 | Myosin heavy chain, nonmuscle (Gallus gallus)
3 X63629 9.58 4.86 12 H. sapiens mRNA for p cadherin
4 M36634 9.27 4.65 15 Human vasoactive intestinal peptide (VIP) mRNA, complete cds
4 HI11084 9.27 3.55 65 Vascular endothelial growth factor (Cavia porcellus)
5 J05032 8.96 5.2 8 Human aspartyl-tRNA synthetase alpha-2 subunit mMRNA, complete cds
5 Ul19969 8.96 3.05 132 Human two-handed zinc finger protein ZEB mRNA, partial cds
6 02854 8.94 5.28 7 Myosin regulatory light chain 2, smooth muscle isoform (human)
(contains element TARI repetitive element)
6 R54097 8.94 3.93 46 Translational initiation factor 2 beta subunit (human)
7 H06524 8.89 4.18 29 Gelsolin precursor, plasma (human)
7 U22055 8.89 3.77 51 Human 100 kDa coactivator mRNA, complete cds
8 M76378 8.74 4.8l 13 Human cysteine-rich protein (CRP) gene, exons 5 and 6
8 T62947 8.74 4.12 34 60S ribosomal protein L24 (Arabidopsis thaliana)
9 D21261 8.67 3.46 76 SM22-alpha homolog (human)
9 H20709 8.67 2.69 203 Myosin light chain alkali, smooth-muscle isoform (human)
10 X86693 8.64 4.16 30 H. sapiens mRNA for hevin like protein
10 D14812 8.64 2.66 211 Human mRNA for ORF, complete cds
I H09719 8.35 2.57 237 Tubulin alpha-6 chain (Mus musculus)
I L07648 835 2.31 321 Human MXI1 mRNA, complete cds
12 X12369 8.25 3.27 97 Tropomyosin alpha chain, smooth muscle (human)
12 R98842 825 3.05 131 Prothymosin alpha (H. sapiens)
13 J04102 8.11 3.06 128 Human erythroblastosis virus oncogene homolog 2 (ets-2) mRNA, complete cds
13 Ul4631 8.11 2.84 164 Human || beta-hydroxysteroid dehydrogenase type Il mMRNA, complete cds
14 Té63133 8.06 2.85 160 Thymosin beta-10 (human)
14 T61661 8.06 2.51 255 Profilin | (human)
15 T92451 8.06 4.12 33 Tropomyosin, fibroblast and epithelial muscle-type (human) 3
15 u09587 8.06 346 74 Human glycyl-tRNA synthetase mRNA, complete cds E‘
16 T71025 8.0 434 24 Human 8
16 LI1706 8.0 3.18 104 Human hormone-sensitive lipase (LIPE) gene, complete cds 3
17 748541 7.96 3.14 120 H. sapiens mRNA for protein tyrosine phosphatase §
17 D25217 7.96 2.54 249 Human mRNA (KIAA0027) for ORF, partial cds a
18 M76378 7.94 5.04 10 Human cysteine-rich protein (CRP) gene, exons 5 and 6 7
18 T56604 7.94 3.89 48 Tubulin beta chain (Haliotis discus)
19 X54942 793 4.42 23 H. sapiens ckshs2 mRNA for Cks| protein homolog
19 R44301 7.93 3.36 85 Mineralocorticoid receptor (H. sapiens)
20 T90280 7.86 3.52 70 Ribophorin Il precursor (human)
20 T51534 7.86 3.01 137 Cystatin C precursor (human)
21 R96357 7.81 2.89 156 Polyadenylate-binding protein (Xenopus laevis)
21 R46753 7.81 2.64 216 Cyclin-dependent kinase inhibitor | (H. sapiens)
22 M76378 7.75 451 20 Human cysteine-rich protein (CRP) gene, exons 5 and 6
22 D00860 7.75 3.38 8l Ribose-phosphate pyrophosphokinase | (human)
23 X14958 7.56 4.53 19 Human hmgl mRNA for high mobility group protein Y
23 X87159 7.56 2.63 221 H. sapiens mRNA for beta subunit of epithelial amiloride-sensitive
sodium channel
24 T51023 7.55 4.12 32 Heat shock protein HSP 90-beta (human)
24 D31716 7.55 2.83 168 Human mRNA for GC box binding protein, complete cds
25 M26383 7.52 5.53 3 Human monocyte-derived neutrophil-activating protein (MONAP) mRNA,

complete cds
25 T47377 7.52 4.11 35 S-100P protein (human)
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prediction accuracy drops when leaving out more than one
example from the training set. The all-pairs and greedy-pairs
methods are here shown to be more robust than individual
ranking and forward selection in terms of loss of prediction
accuracy, as shown in the plots in Figure 2.

Further work will include integrating our methods into the
J-Express software package [15], to make them available to
the biological community. Other methods for evaluating
combinations of genes will be investigated, and we will con-
sider other prediction methods, like support vector
machines and artificial neural networks [12], testing whether
better prediction accuracy can be achieved. We will also con-
sider feature redundancy, which might lead to even smaller
feature sets than we currently achieve. In these studies we
will also include additional datasets.

Conclusions

We propose a new method for evaluating combinations of
genes. Comparing the top-ranked genes ranked by gene-pair
evaluation to the gene sets selected by two standard methods,
we demonstrate that the gene sets selected by the pair-based
approaches are more robust in terms of their ability to distin-
guish experiment classes. These results indicate that in evalu-
ating each gene independently one risks overlooking some
interesting genes. The improved prediction accuracy indi-
cates that the genes we find might be at least as interesting to
study as the top-ranked genes found by an independent eval-
uation of each gene. Looking at gene pairs, we find some
genes that are not obviously good discriminators alone, but
discriminate well when used in pairs with other genes. Thus,
we discover some interesting genes that will not be discov-
ered unless one looks at gene combinations.

We expect that some high-scoring pairs can occur just by
chance because of the vast number of pairs evaluated. But if
the pairs we select are high scoring by chance, we do not
expect an improvement in prediction accuracy. Thus, by
demonstrating a better ability to generalize class differences
when using high-scoring pairs, we also show that these pairs
give some extra information on the experiment classes.

Materials and methods

Datasets

For testing purposes we use the datasets published by Golub
et al. [9] and Alon et al. [10]. The dataset published by Golub
et al. [9] consists of 72 samples, of which 47 were acute lym-
phoblastic leukemia (ALL) and 25 samples were acute
myeloid leukemia (AML). Gene-expression levels were mea-
sured using Affymetrix high-density oligonucleotide arrays
containing 7,129 genes. The Alon et al. data [10] consists of
62 samples, of which 22 are normal and 40 are colon tumor
tissue. Gene-expression levels were measured using
Affymetrix oligonucleotide arrays complementary to more

than 6,500 genes. Published along with the Alon et al. paper
was a dataset [10] containing expression levels for the 2,000
genes with highest minimal intensity across the samples,
and this is the dataset we study in this paper. We refer to the
Golub et al. dataset [9] as ‘ALL/AML’ and the Alon et al.
dataset [10] as ‘colon’. Before analysis, we carried out the
following preprocessing steps on both datasets: base 10 loga-
rithmic transformation; and for each gene, subtract the
mean and divide by the standard deviation.

Because the ALL/AML dataset contains a lot of negative
intensity values, we first use the following preprocessing
steps (similar to those proposed by Dudoit et al. [16]) on the
ALL/AML dataset: thresholding with a floor of 1; and filter-
ing by excluding genes with max/min < 5 and (max - min) <
500. This leaves us with a dataset of 3,934 genes.

Prediction methods

We use three prediction methods: one local method, k nearest
neighbors (kNN), and two linear discriminant methods, diago-
nal linear discriminant (DLD) and Fisher’s linear discriminant
(FLD). We consider an expression profile x = (x,, x,, ..., X,)
to which we want to assign a class label (1 or 2). Formally we
wish to estimate the function f{x) — {1,2} based on the avail-
able training data with as small error rate as possible. There
are many approaches to estimate f, making different assump-
tions about the distribution of the classes. kNN only consid-
ers the neighborhood around x, whereas DLD and FLD aim
to find a best possible linear separating rule between classes
based on all the available training data.

Many variants of the kNN algorithm exist. We choose to find
the k nearest neighbors by Euclidean distance, using the
selected feature subset, and let each of the k neighbors get a
vote of weight 1. We then predict x to be of the class getting
the majority of the votes. Thus if k = 3 and there were two
examples of class 1 and one example of class 2 among the
three nearest neighbors of x, we would predict that x
belongs to class 1. kNN is a local method as it only considers
the neighborhood of the experiment x, and does not con-
sider the information in the rest of the training data. We use
a fixed value of k = 3 in our tests.

DLD and FLD are two discriminant methods for which a dis-
criminant axis a is computed on the basis of the available
training data. The prediction using a is class 1 if

al(x —;— (4 + ) > O ®

and class 2 otherwise. The parameters y, and p, are here the
mean expression profile of classes 1 and 2, respectively. The
difference between DLD and FLD is in how the discriminant
axis is computed. The DLD axis is computed as

a=81 (,ul - :uz) (2)



where S is the diagonal variance matrix whose elements are
the common variance estimate

- 2 - 2
o = (n, 1)(5L§i+(n2 1)62,%
gi

(n,+n,-2)

To compute the FLD axis, S is substituted by the covariance
matrix X in equation 2. S and X will have the same values on
the diagonal, while Z will also contain covariances between
genes.

When only using a subset G = {gﬁ,...,gﬂ} of the genes (I<n),
some modifications to the equations above have to be done.
For DLD it is sufficient to define a feature subset matrix
F = Diag({o, 1}"), where F;;= 1if and only if g; € G. Equation
1 can then be replaced with

a’F (x ;— (1, + pp)) > O (3)

This equation corresponds to setting every element a; where
g;2Gtoo.

For FLD the matrix £ will contain information on gene
redundancy in the whole gene set. This is not the case for S,
which is a diagonal matrix. It would therefore not be correct
to do the same modifications to the equations as for DLD.
For a feature subset of [ genes, an [ x [ covariance matrix X'
has to be computed, considering only the genes in G. Fur-
thermore will the vectors a’, i/, and y', be [ x 1 instead of n x
1 vectors. X' is now the vector containing only the expression
values of the genes in G. The equations stay the same as
before, except that %, a, u, 1, and x are now substituted with
,a,y,1,andx.

Feature selection

When considering which feature (gene) subset to select for
class prediction or for study in the wet lab, we need some
method of eliminating the least interesting and highlight the
most interesting before a choice is made. A natural choice is
to rank the features after some relevance measure and then
select some of the features with highest score for further use.

As the main focus of this paper is class prediction, we will
discuss feature selection in this context. In the machine-
learning literature, Kohavi and John [8] divide features into
two main categories: irrelevant and relevant, of which the
relevant genes can be separated into strongly relevant and
weakly relevant. Strongly relevant features are the obvious
ones, distinguishing well between classes independently of
other features. Weakly relevant features, on the other hand,
are not that obvious, and may not be relevant except in the
context of other features. These features might be difficult to
discover, as combinations of genes have to be evaluated in

http://genomebiology.com/2002/3/4/research/0017.9

some manner. Furthermore there may be redundancy
among the features. The machine-learning feature selection
problem is to select the minimum optimal feature set,
meaning that we want to find the smallest subset of features
that gives optimal prediction accuracy. No algorithm exists
for solving this problem except trying all feature subsets and
choosing the best, which is not feasible if there are more
than a trivial number of features. For microarrays, where the
number of features is in the thousands, this is not an alterna-
tive at all. The approach normally used is filter methods or
wrapper methods. Filter methods evaluate each feature
independently of the prediction method to be used, whereas
wrapper methods evaluate the feature set relative to the pre-
diction method.

Standard methods

A large number of measures have been proposed for scoring
genes, starting with Golub et al. [2] that proposed using
| £ |. Other gene measures in the literature include both
non-parametric measures like the TNoM score of Ben-Dor et
al. [17] and information gain (proposed by Xing et al. [6]),
and parametric measures like t-score [7], Fisher score [13],
naive Bayes global relevance [18] and between- to within-
variance ratio [16]. These methods reward genes that allow
(approximate) separation of experiment classes on the basis
of the gene-expression levels. For instance, the measure pro-
posed by Golub et al. [2] rewards genes where the mean
expression levels in the two classes are far apart but at the
same time the standard deviation in each class is small.

Instead of comparing different relevance measures, we
choose to use t-score as our relevance measure, as the focus
of this paper is on FSS methods rather than relevance mea-
sures. Given the DLD axis, we try the greedy feature-selec-
tion method called forward selection. The greedy forward
selection first selects the best gene, meaning the gene with
highest t-score, and in the subsequent steps adds the gene
that leads to the highest two-sample t-statistic score. The t-
score at step 1 is computed on the projected data points on
the DLD-axis using only the expression values of the i
selected genes.

Evaluating feature subset selection (FSS)

performance

To evaluate the robustness of our pair-based approaches, we
evaluate their performance compared to individual ranking
and forward selection by cross-validation. To rank genes on
an individual basis, we use the two-sample t-statistic on the
expression values of the gene across the experiments.

Given a training set, we study how well the different FSS
procedures do in finding feature subsets that generalize the
differences between two experiment classes. Success is mea-
sured by how accurately a prediction method predicts the
correct class labels of a set of labeled experiments (the test
set) on the basis of the selected feature subset only. The FSS
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procedures are compared by studying the performance of a
prediction method in the context of which FSS method is
used to select feature subsets. Thus, if we use the same pre-
diction method, but we get varying prediction accuracy
results using alternative FSS procedures, we can draw con-
clusions about how ‘good’ each of the FSS methods is. It is
important to note that the training set and test set should
have no common examples. Otherwise, the learning algo-
rithm (either the FSS procedure or the prediction method)
could take advantage of information on the examples of
which it is going to predict the class labels during the learn-
ing process. The procedure for cross-validation is as follows.

(A) Repeat a number of times the following procedure:

1. Partition the examples randomly into a training set
and a test set, including x% of the examples in the
training set;

2. Use the FSS procedure on the training set;

3. Train a classifier using the training set and only the
selected features;

4. Use the classifier to predict the class labels of each
example in the test set and count the number of
correct and false predictions.

(B) Output the percentage of correct predictions.

Using different FSS procedures in the feature selection step,
we plot the performance of the three classifiers kNN, DLD
and FLD for feature subsets of size 2, 4, 6, ..., m. The result is
plots like the ones shown in Figure 2, showing a comparison
of the prediction accuracy using the four different FSS pro-
cedures. We also perform tests for different values for x, typ-
ically 50% and 66%. In addition we do LOOCYV tests.

Cross-validation procedure

The prediction accuracy estimate p is the average perfor-
mance over all iterations performed in (A). Thus 1’)\ is a
random variable drawn from a distribution with mean p, the
true prediction accuracy, and a standard deviation o. The
more iterations of the above cross-validation procedure used
to compute p the smaller o will become and the better p will
estimate the true value of p. Empirical studies showed us
that taking a randomly chosen test set at each iteration pro-
duced p curves that sometimes had large deviations from the
true p curve, even when taking 62 iterations for the colon
dataset as done by Xiong et al. [7]. We also tried an approxi-
mation to another cross-validation procedure called k-fold
cross-validation. In k-fold cross-validation the dataset is
split randomly into k equally large subsets. Then k iterations
of cross-validation is carried out, at each round taking one of
the subsets as the test set, and the rest of the data as the
training set. As the datasets we used could not always be split
into equally large subsets, that is, m is not a multiple of the
training set size s, we used a modified version of the k-fold
approach. We solve this by making the test sets one by one,
randomly drawing s experiments out for a test set at each
iteration. In addition, we keep a count on how many times

each experiment has been left out so far. By not allowing any
experiments to be left out, the 7 + 1th time before all experi-
ments has been left out i times, we ensure that all experi-
ments are left out the same number of times in the long run.
Compared with the other approach, we found that using the
approximate k-fold cross-validation, p converged much
faster towards p, giving better estimates using the same
number of iterations. Nonetheless, we chose to run 5m itera-
tions using the approximate k-fold cross-validation
approach, such that the prediction accuracy estimates
should show a trustworthy comparison of the different FSS
procedures.

Additional data files

Additional data files are available giving plots of average pre-
diction accuracy performance, using three prediction
methods and holding back different portions of the data
from the training set. L-24-OCV stands for leave-24-out
cross validation, and so on. Each curve shows the perfor-
mance for feature sets of varying size selected by four feature
selection methods. These files are also available at our
website [19].

ALL/AML dataset plots using: 3NN prediction and LOOCV;
3NN prediction and L-24-OCV; 3NN prediction and L-36-
OCV; DLD prediction and LOOCV; DLD prediction and L-
24-OCV; DLD prediction and L-36-OCV; FLD prediction
and LOOCV; FLD prediction and L-24-OCV; FLD prediction
and L-36-OCV.

Colon dataset plots using: 3NN prediction and LOOCV; 3NN
prediction and L-20-OCV; 3NN prediction and L-31-OCV;
DLD prediction and LOOCV; DLD prediction and L-20-
OCV; DLD prediction and L-31-OCV; FLD prediction and
LOOCYV; FLD prediction and L-20-OCV; FLD prediction and
L-31-OCV.
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