
http://genomebiology.com/2002/3/12/research/0082.1

Software
Apollo: a sequence annotation editor
SE Lewis*†, SMJ Searle‡, N Harris§†, M Gibson*†, V Iyer‡, J Richter¶,
C Wiel*†, L Bayraktaroglu¥, E Birney#, MA Crosby¥, JS Kaminker*†,
BB Matthews¥, SE Prochnik*†, CD Smith*†, JL Tupy*†, GM Rubin*†§¶,
S Misra*†, CJ Mungall¶ and ME Clamp‡ 

Addresses: *Department of Molecular and Cellular Biology, Life Sciences Addition, University of California, Berkeley, CA 94720-3200, USA.
†FlyBase-Berkeley, University of California, Berkeley, CA 94720-3200, USA. ‡Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire,
CB10 1SA, UK. §Genome Sciences Department, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA.
¶Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. ¥FlyBase-Harvard, Department of Molecular and Cell
Biology, Harvard University, Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138-2020, USA. #European Bioinformatics
Institute, Hinxton, Cambridgeshire, CB10 1SD, UK.

Correspondence: SE Lewis. E-mail: suzi@fruitfly.org

Abstract

The well-established inaccuracy of purely computational methods for annotating genome
sequences necessitates an interactive tool to allow biological experts to refine these
approximations by viewing and independently evaluating the data supporting each annotation.
Apollo was developed to meet this need, enabling curators to inspect genome annotations
closely and edit them. FlyBase biologists successfully used Apollo to annotate the Drosophila
melanogaster genome and it is increasingly being used as a starting point for the development of
customized annotation editing tools for other genome projects.

Published: 23 December 2002

Genome Biology 2002, 3(12):research0082.1–0082.14

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2002/3/12/research/0082

© 2002 Lewis et al., licensee BioMed Central Ltd 
(Print ISSN 1465-6906; Online ISSN 1465-6914)

Received: 7 October 2002
Revised: 13 November 2002
Accepted: 20 November 2002

Rationale 
Unadorned genomic sequence data is simply a string of As,

Ts, Gs, and Cs, with perhaps an associated confidence value

for each base. In this raw state, sequence data provides very

little biological insight. To utilize any sequence it must be

interpreted in the context of other biological knowledge.

This is the process of annotation, the task of adding explana-

tory notations to the sequence text. We define an annotation

as the biological evaluation and explanation of a specific

region on a nucleic acid sequence that includes, but is not

limited to, gene transcripts. Any feature that can be

anchored to the sequence - for example, an exon, a pro-

moter, a transposable element, a regulatory region, or a CpG

island - is an annotation. The genomic sequence will stabi-

lize and reach a finite endpoint, but the annotations will con-

tinue to evolve indefinitely, as biological knowledge

increases. To understand the genetic legacy of an organism

we must interpret its genomic sequence, translating

the information it contains in molecular form into human-

readable annotations.

Part of this process is purely computational, and in its sim-

plest terms can be described as a process of recognition: can

anything be located that is somehow already familiar? The

first obvious tactic is to collect sequences that may represent

interesting biological features and to search the genomic

sequence in order to discover the presence or absence of

similar sequences. The principle is the same whether the

sequences used in this comparison are expressed sequence

tags (ESTs), full-length cDNAs, repeated elements or highly

conserved sequences, and whether the sequences come from

the same species, a closely related species or a distantly

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research



related species; it is only the alignment algorithm that will

vary appropriately, for example, BLAST [1], Sim4 [2], or

BLAT [3]. The second general tactic is to utilize what is

already known about specific classes of sequence features to

construct an abstract model representing this combined

knowledge and to search the genomic sequence to identify

locations that match this model, for example, hidden

Markov models (HMM) [4-6] and stochastic context-free

grammars (SCFG) [7,8].

While these computational examinations reveal the general

character of the primary sequence the results are still of

limited use for further functional biological research [9-12].

For example, BLAST provides alignment results composed

of high-scoring pairs (HSPs) indicating local regions of simi-

larity, but in total these typically do not provide the best

global alignment over the entire length of the peptide to the

genomic sequence. Similarly gene-prediction programs can

generate quite different results depending on the length of

the genomic sequence analyzed and the gene density of the

surrounding sequence. Even systems that strive to make

adjustments and collate the results of all the analyses are

unable to consistently provide accurate biological models

(see [13] for a more detailed discussion). Our current com-

putational analysis capabilities are useful for primary anno-

tation, but the biological imprecision of the results,

especially within eukaryote genomes, makes expert evalua-

tion absolutely essential to ensure the correctness of the

annotations. In addition, this step is required to deepen our

understanding by connecting these annotations to all the

experimentally known biology of the organism.

Software developers are familiar with debugging tools and

techniques. Apollo is an analogous tool for debugging

genomic feature descriptions derived from automated

analyses and computational pipelines. It is also a tool to

facilitate connecting and comparing these annotations with

existing biological data. As an introspective tool, Apollo

makes it possible for researchers to closely examine and

compare explicit details and contrast them with their own

biological knowledge and apply any necessary corrections.

This evaluation is absolutely essential for progress in

genomics for three reasons.

First, we must improve our current algorithms and recogni-

tion techniques for protein-coding genes. Several groups

have augmented standard approaches based solely on

protein-coding potential by exploiting exact alignments to

cDNA and EST data and similarities to sequences from the

same or different genomes (see, for example [14,15]).

However, we are not yet at the stage where we can make

intelligent use of all the existing data automatically. Resolv-

ing the conflicts that exist between EST evidence, BLAST

similarities and computational predictions can be extremely

complicated and is still best done by manual inspection.

The simplifications that existing automated annotation

pipelines must make lead to a number of systematic errors,

including under- or over-predicting genes as well as

merging the exons from two genes in one gene model or

splitting the exons from one gene into two gene models. For

example, if the software discounts unspliced EST evidence

(a common simplification made to reduce the effect of

errors in EST databases), small genes can easily be omitted.

In addition, issues such as determining alternative

transcripts, understanding promoter usage, identifying

polyadenylation sites, distinguishing genes within the

intron of another gene, and recognizing dicistronic genes,

are all outstanding problems in the annotation of protein-

coding genes. Yet, as more genomes become available, we

cannot hope to provide a high level of manual examination

and correction to describe the genes present on these

genomes precisely. It is essential that we utilize the knowl-

edge we are gaining from these initial ‘well-annotated’

genomes to improve the existing computational methods,

both by generating more comprehensive training sets as

well as by refining the algorithms themselves.

Second, we must expand the available computational reper-

toire to include methods for annotating other biologically

important features. Current computational analyses are pri-

marily only capable of describing simple protein-coding

gene models and these are therefore the sole targets of most

automated strategies. There are other useful predictive pro-

grams for tRNA genes [16] and promoters [17-20], but a

large number of biological features still cannot be recognized

by computational methods alone. For example, there are no

fully automatic computational methods to detect biologically

important annotations such as pseudogenes and non-coding

RNA genes. Until a day arrives when we know all the feature

types that we are searching for, and precisely how to find

them in the genomic sequence, we will need to rely upon

expert inspection to augment automated analyses.

Third, we must deliver the annotations to the community as

quickly and as accurately as possible because the annotations

themselves are an important resource. Researchers depend

on the availability of complete peptide sets, gene structures

and other data. Moreover, to be truly useful these data must

be correct. Many people have noted and remarked upon the

current fallibility of first-pass protein-coding gene predic-

tions and other annotations (see, for example [9-12,21-23]).

The technology is not yet available to provide highly reliable

datasets. This impedes research that relies on these data. If

researchers in the community were provided with a means of

viewing the supporting data for each annotation as well as for

making corrections to annotations, then the accurate data

they require would become available much sooner.

Origins of Apollo 
In the year 2000, within the space of six months, both the

Drosophila genome [24] and the draft human genome [25]

2 Genome Biology Vol 3 No 12 Lewis et al.



were published. Both the Berkeley Drosophila Genome

Project (BDGP) working with Celera Genomics and other

researchers, and the Ensembl [26] project working on the

human genome provided the community with annotations in

a very short time. However, to those who were working

closely with the data it was obvious that in the longer term

this initial analysis would have to be refined, improved and

extended by manual curators. The genomics community

required tools that would provide more than simply a view of

these data, but that would enable professional curators, and

ultimately every researcher, to easily modify and correct the

annotations on an ongoing basis through direct interaction.

Both FlyBase-BDGP [27] and Ensembl shared this under-

standing, and in the summer of 2000 entered into a collabo-

rative agreement to achieve this aim.

Apollo has roots reaching back more than a decade, and

builds on previous generations of software and domain

knowledge. In the early 1990s the C. elegans project was

underway at the Sanger Institute and the Drosophila

genome project was beginning at Berkeley. Both projects

share the same informatics root because both began by using

ACeDB (documentation, code and data available by anony-

mous FTP from [28-30]). Berkeley developed a variant

called FlyDB [31] and was actively involved in porting

AceDB to the Macintosh computer platform. The Sanger

Institute coordinated the overall development of ACeDB and

has relied upon ACeDB for the ongoing annotation of

C. elegans and human genome sequence. 

In the mid-1990s, first Perl [32] and then Java [33] were

becoming widespread as programming languages for devel-

oping bioinformatics tools. Our groups explored the use of

both languages. Berkeley created bioTkPerl [34,35] and

became one of the early participants in BioPerl [36].

BioTkPerl was used in a number of applications, but most

notably in this context it was the underpinning for the anno-

tation tool Genotator [37]. Genotator has been widely dis-

tributed and in turn formed the basis for other Perl-based

genomic tools such as Genquire [38].

Initially we had hopes that Java would enable us to distrib-

ute both the data and the application software dynamically

over the internet, and thus solve the problem of providing a

far-flung community with both the freshest data and the

latest application releases simultaneously. In practice, both

the Berkeley and Ensembl groups use Perl for internet-based

data access [39] and Java for locally resident applications.

Our first Java applications were Artemis at the Sanger Insti-

tute [40] and CloneCurator at Berkeley. Artemis is widely

used for annotating microbial and other smaller genomes.

CloneCurator was used to annotate the 2.9 million base (Mb)

Adh region of Drosophila [41] and provided the baseline that

was used to evaluate the results of the Genome Annotation

Assessment Project [9] trial. Although both provided useful

tools for the tasks they were originally developed for, we

needed a more sophisticated, and easier to use, annotation

editor for a large, complex eukaryotic genome. There have

been two commercial products that originated with

CloneCurator and built upon its intellectual legacy, Annota-

tionStation (Neomorphic Software for TIGR) and Genome-

Browser (Celera), but neither was freely available. Apollo is

the most recent undertaking and builds upon all of this accu-

mulated experience.

Several general concepts were learned over this period as we

gained experience in working with genomic sequence data.

One was the importance of distinguishing the presentation

of the information from the underlying biological data

model. Searls [42] stated this concept most clearly as the

need to “drive semantics out” of the graphical presentation.

The second key concept was an appreciation of well-under-

stood and standard issues in data management and portabil-

ity. We needed a graphical annotation tool that could be

used easily at multiple sites with different data-management

environments. Taken together, these issues led to the devel-

opment of Apollo. 

Overview of Apollo from the curatorial
perspective 
To quote Edward Tufte: “There are only two industries which

refer to their customers as users, drugs and computers” [43].

In software engineering, a great divide has arisen separating

the people writing the code from the people using the code.

We sought to narrow this divide and wish to emphasize the

degree to which people with a strong biological research

incentive were integral to our team. Apollo’s development

was highly interactive and was entirely motivated by the sci-

entific needs of the curators. The curators had a fundamental

role in determining the design, requirements, and testing of

Apollo. This section provides an overview of Apollo and its

capabilities from a user’s perspective.

The primary Apollo user interface is superficially familiar to

anyone accustomed to genomic browsers; in addition,

however, Apollo offers researchers the ability to probe,

manipulate and alter the interpretation of the underlying

data. Within the various views, annotations can be created,

deleted, merged, split, classified and commented upon. For

example, Apollo enables exon-level refinements for creating,

deleting, splitting and merging exons, as well as adjusting

splice edges for individual exons. Unlike a simple browser,

Apollo is a tool with full editorial capabilities.

Viewing the data 
The curator can load data by specifying a region on a

selected chromosome. Depending on the source of the data

this region may be determined by absolute sequence posi-

tion, a file name, or, for Drosophila, gene name, cytological

region (map position), scaffold accession or sequence

(which will be mapped to a genomic location by BLAST

http://genomebiology.com/2002/3/12/research/0082.3

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research



similarity). After data from the desired region have been

loaded, a navigation bar allows the user to easily access

other regions of the genome - for example, the region

immediately upstream or downstream of the currently dis-

played sequence. Apollo can transparently access data

across the network from remote machines, as well as

reading files that reside locally.

The main Apollo screen shows genomic features layered on a

segment of DNA, where each genomic feature appears as a

colored shape (typically rectangles, as shown in Figure 1).

Features are grouped, meaning that the separate local align-

ments of subsequences derived from the same source

sequence (HSPs) are treated as a single composite feature,

and likewise the distinct exons from a prediction are

grouped together into a single feature (composite features

are typically drawn as lines connecting the rectangles repre-

senting member features). By default, the display shows fea-

tures on both the forward and reverse strands, with the

forward strand on top and the reverse strand on the bottom,

separated by a coordinate bar. For each strand, the inner

(light blue) panel contains annotations, showing exons and

introns for each transcript of a protein-coding gene. The

outer (gray) panel displays computational evidence to

support these annotations, such as gene predictions gener-

ated by programs such as GenScan [44] and Genie [45], and

other biological data, such as ESTs aligned using the

program Sim4 [2] and protein homologies revealed by

BLASTX [1].

The features representing the supporting evidence in the

outer panel are organized into tiers and types. A tier is a

horizontal row of supporting evidence placed at a specified

position on the vertical axis that can be labeled and con-

trolled as a single collection. A tier might be organized, for

example, to contain all gene prediction results from various

programs, or all BLASTX results from comparisons to

several different species databases. In addition to the tier,

each feature is associated with a particular data ‘type’. A

feature type is typically an association of that feature to the

results produced by a particular analysis, for example, all

features derived from a TBLASTX run against all mouse

ESTs in dbEST might be given the type ‘Mouse’. Each data

type can be individually assigned a shape and a color

(Figure 2). Users can control the maximum number of rows

shown in a tier and set a score threshold so that only results

above that threshold are visible. Operations on individual

tiers include setting a vertical coordinate position or setting

whether the tier is visible or hidden. The user can view the

data within a tier in a collapsed style, in which all features

within a tier are collapsed into one line (Figure 3), or in an

expanded style, in which each individual feature is posi-

tioned to avoid overlapping any other feature. These two

organizing principles of layout and category simplify

viewing the massive amounts of data.

A feature can be selected by clicking on it, at which point

detailed information such as name, sequence range and

score appear in the text panel at the bottom of the screen

4 Genome Biology Vol 3 No 12 Lewis et al.

Figure 1
A standard view in Apollo, showing a 250 kb segment of Drosophila chromosome arm 2L. The background colors for the result (gray), annotation (light
blue) and sequence (white) panels are configurable. The features and annotations on the forward strand are shown above the white sequence panel, and
those on the reverse strand are shown below it. There are seven tiers (or rows) of data presented here in the results panel (the number of tiers is
configurable). On the forward strand from top to bottom these results are promoter predictions (yellow), P-element insertions (turquoise triangles),
peptide homologies to other species (orange), peptide homologies to Drosophila (red), Drosophila EST alignments (light green), Drosophila mRNA
alignments (bright and dark green) and gene prediction results (lavender). The genomic region navigation bar is above the data displays and the
navigational and zoom controls for the current genomic region in the display are below. The user may increase the genomic region visible in the display
by using the ‘Expand’ button. They may also move to adjacent regions by clicking on the ‘<’ (5� upstream) and ‘>’ (3� downstream) buttons or move to
entirely new regions by changing the chromosome arm and the start and end positions. Within the display the most basic movement operations
(zooming and scrolling) are available from the controls at the bottom of the display.



(Figure 4). ‘Rubber-banding’ regions allows one to select

multiple entries and view abbreviated information about

each in the text display table, which can be sorted by any

field (for example, name or score).

Further information about an annotation that is locally

maintained can be displayed by bringing up the text window,

which contains descriptive information about an annotation

(Figure 5). Many features originate from other databases

(for example, SWISS-PROT [46], EMBL [47] and GenBank

[48]), and we can obtain extra information by looking up

those features in their parent databases. Apollo allows the

user to access this information using a context-dependent

menu. By right-clicking a feature, the relevant report is

retrieved and shown in an internet browser.

Apollo allows the view to be scaled using zoom buttons that

magnify by 10x, 2x, 0.5x, and 0.1x. The magnification can

also be targeted to fit a selected feature. Apollo provides

‘semantic zooming’: some features that would clutter the

display at low zoom levels appear only when the user zooms

in. At a sufficiently high zoom level, start and stop codons

and the underlying genome sequence appear. Likewise, the

sequence level information is displayed for each evidence

type and annotation, either as nucleotides or amino-acid

residues (Figure 6). 

A view is also available that displays the translation of each

of the three frames of the genomic sequence. In this, start

and stop codon positions are colored green and red respec-

tively. Also when a transcript is selected, the specified coding

frame of each of its exons is highlighted.

In addition to the horizontal scroll bar, curators can move to

a specific position by specifying a coordinate, gene name, or

short sequence string (Figure 7). Users can also bookmark

genes of interest to find them easily again. The sequence of

any feature or set of features can be saved in FASTA format,

either as the raw DNA sequence or as a virtual cDNA, coding

sequence or translated amino-acid sequence. Apollo also pro-

vides a restriction enzyme finder, which allows the user to

find known restriction enzyme sites within a sequence, and a

GC base frequency analyzer, which displays a plot of GC

content from an adjustable sliding window over a sequence.

http://genomebiology.com/2002/3/12/research/0082.5

Figure 2
Some of the feature appearance options that are available. Each feature’s shape, visibility, color and panel position is configurable. The result panel can
display the complete portfolio of computational results. The top three rows of this figure use small vertical green lines to indicate the position of start
codons in the genomic sequence in all three possible translation frames. The second set of three rows does the same for stop codons (red). This enables
curators to easily discern ORFs. Beneath this, in orange, are BLASTX hits to other species. Every row represents a separate alignment in this expanded
view (see Figure 3 for a discussion of the expanded view). In each alignment the high-scoring pairs (HSP) are separated by two parallel lines to indicate
alignment gaps. Seeing what features share edges is important during annotation for adjusting exon-intron boundaries. When an item is selected,
corresponding edges of other items that end at the same nucleotide are highlighted with a white line (arrow A). The small turquoise triangle indicates the
site of a P-element insertion. The rows of light green rectangles are Sim4 alignments of Drosophila ESTs to the genome. When a 5� and a 3� EST are
derived from the same cDNA clone we connect them with a dashed line (arrow B). This contrasts with the solid lines used to represent the gaps,
corresponding to introns, introduced into an EST to permit its alignment to the genome. The final piece of computational evidence shown in this figure is
the gene prediction, shown in lavender. In this example, we have intentionally represented introns in two different ways - as straight or peaked lines - as
an illustration of Apollo’s configurable graphics. In the annotation panel, the curator has created two alternative transcripts for this gene, each of which is
supported by multiple pieces of EST evidence. Individual exons that the curator has selected are outlined in yellow. The translation start and stop sites
are shown as green and red vertical lines, respectively. Each individual curator has a signature color; any annotation that this particular curator creates is
shown in bright blue. In the sequence panel the scale is drawn in red to indicate that this gene is on the reverse strand.

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research



The most recent addition to Apollo is the synteny viewer and

editor (Figures 8,9), which displays features on two different

genomes at the same time. The need for this additional tool

was precipitated by the recent release of the mouse genome.

The synteny display is being used to improve annotations by

closely examining the mouse-to-human comparisons. We

are currently working to add editing capabilities to this view

and to present other genome comparisons, such as between

Drosophila and Anopheles.

Editing the data 
Apollo’s editing functionality allows curators to manually

create and modify gene annotations. Annotation in Apollo is

supported by the ability to detect and display edge matches,

start and stop codons and potential splice sites. New gene

models can be created easily by dragging a feature from the

evidence panel into the annotation zone. When a new gene

model is created, Apollo automatically creates an annotation

using the longest possible open reading frame (ORF) for the

transcript. Curator comments can then be attached to the

gene annotation or to an individual transcript annotation.

6 Genome Biology Vol 3 No 12 Lewis et al.

Figure 3
A tier organizes a collection of one or more feature types into a single horizontal row in the view. One of the viewing options is whether the features
within that tier are ‘collapsed’ or ‘expanded’. In the collapsed view (top) features lie on top of one another and thus appear along a single line. In this
view the EST alignments (shown in light green) are collapsed. In the expanded view (below) the tier disallows overlapping features and thus as many lines
as needed are used. The individual EST alignments (one line per EST) now appear separately. The tiers that flank the EST tier, alignments of peptide from
other species (orange) or from Drosophila (red), are shown collapsed in both the top and bottom panels.

Figure 5
A textual display provides detailed information for individual annotations.
Annotations can be selected either from the menu on the left or by
selecting an annotation in any other window. The types of annotations
that can be generated by a curator are part of the initial configuration and
appear in the menu shown above. A list of comments in a controlled
vocabulary that can be used by the curator to add remarks about an
annotation is also provided as part of the configuration (one example is
shown above in the lower middle portion of the panel). These
standardized comments facilitate future querying.

Figure 4
This figure shows the feature description tables. Each row in the top
panel describes a single feature. The columns provide the feature type
(here designated as ‘organism’ name), the aligned accession, the genomic
position of the alignment and the BLASTX score. Clicking on any column
heading will sort the rows according to the values held in that column
(the initial sorting order is specified in the configuration file). Detailed
information for the selected feature in this table (highlighted in yellow)
appears in a second table, shown in the lower panel. The table header
displays the name of the aligned sequence, its full length and a full
description. The columns are configurable, and for each feature type only
those columns that have been specified for that type will be shown. In this
example of BLASTX alignments to other species, the available information
includes the BLASTX score, BLASTX expectation and the location and
length of the alignment on both query and subject sequences.



Modifications are time-stamped and associated with the cura-

tor’s name, providing a complete history of the annotation.

As alternatively spliced transcripts are added to a gene

model, they are sequentially named and numbered to associ-

ate them with that annotation. Apollo automatically creates

alternatively spliced transcripts for a gene whenever the

ORFs of transcripts overlap. In Drosophila overlapping

untranslated regions (UTRs) are observed frequently

between adjacent transcripts, but this does not necessarily

indicate that the transcripts are for the same gene, so Apollo

offers the option to make these new transcripts into distinct

overlapping genes. Curators may add exons to existing tran-

scripts by dragging the selected evidence down until the fea-

tures are positioned directly over an existing transcript.

Curators may set a splice site by selecting an exon and one

evidence feature and choosing either the ‘Set as 5� end’ or

‘Set as 3� end’ option from the annotation pop-up menu.

Sequence-level adjustments are possible with Apollo’s exon

editor. This allows the curator to modify intron-exon bound-

aries base by base, split and merge genes, and export

genomic or translated sequence. The exon editor (Figure 10)

allows one to view the genomic sequence of a single strand

and its three-frame conceptual translation, with start and

stop codons highlighted.

Overview of Apollo from the developer’s
perspective 
In the future we anticipate that Apollo will be available to

any researcher who is interested in annotating particular

areas of biological interest. For this to be possible,

researchers must be able to readily configure and customize

Apollo as needed, and to access data from remote database

sites as well as incorporate local information. This section

discusses the different means of customizing and extending

Apollo so that it is optimized for a particular environment

and can meet the requirements of individual researchers.

The first part of the section simply describes how to config-

ure Apollo and personalize it. The second part briefly

describes how one might add an adaptor to interact directly

with an internal database server, a personal file format, or an

external source over the network. The third part focuses on

how to add a class to draw features in a new shape or style.

The final part is an overview describing the addition of

entirely new views of the data in independent frames. To

present these topics an understanding of Apollo’s Java class

hierarchy is needed.

Apollo has three main packages: external data adaptors;

data models; and the graphical user interfaces. In addition,

there are some auxiliary packages from external sources and

minor additional packages within Apollo: seq, analysis, util

http://genomebiology.com/2002/3/12/research/0082.7

Figure 6
Zooming provides additional information. In the top panel, which shows
an intermediate level of zoom, the start and stop codons in all three
frames appear as green and red tick marks, then the BLASTX similarities
to other species (orange bars) and finally BLASTX similarities to
Drosophila peptides (red bars). When the level of zoom is increased as
shown as the lower panel, the sequence (either nucleic acid or peptide) of
any aligned sequences is loaded and displayed to enable curators to
directly compare predicted peptides. An individual start or stop codon,
such as the start codon shown selected in this example, can be dragged
onto the annotation to explicitly specify translation start and end sites for
protein coding transcripts in the curator’s annotation (blue).

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Figure 7
Apollo provides a variety of search capabilities, including moving to an
absolute base pair position, locating an annotation or aligned sequence by
name or accession, or finding an exact sequence match (above). The
graphical interface centers the view over the selected result. The
interface also makes it possible to bookmark locations (below). This
allows curators to quickly return to areas they are actively working on.



and io. The seq package contains utilities for handling

FASTA files. The analysis package will allow various analyses

of the sequence and the annotations to be carried out by

direct command of the user. The util package provides

general utilities, such as sequence translation and simple

statistical functions. Similarly, the io package handles basic

input and output functions.

The data models fall roughly into two categories: sequence

models and feature models (Figure 11). In a sense, feature

models may be viewed as a superclass of sequences, because

every feature in fact defines a sequence, but within Apollo

they are treated as distinct and separable classes.

Sequences have obvious attributes, including the residues

themselves, a name, a unique identifier, length, database

cross-references and a description, but internally, the

abstract sequences are much more complex. It is impractica-

ble for an application to load an entire annotated chromo-

some into memory, because it is far too large. Therefore, the

8 Genome Biology Vol 3 No 12 Lewis et al.

Figure 8
An overview of the synteny between mouse and human is shown in Apollo’s synteny display. The central (larger) chromosomes are the human
chromosomes, which are flanked by their syntenic mouse chromosomes. Apollo clusters DNA-DNA matches into syntenic regions, eliminating any short
paralogous DNA-DNA hits. Selecting a segment displays a menu showing the chromosomal coordinates of the match in the genome sequence of both
organisms and offering the user two options. The first opens a gene-level synteny view, illustrated in Figure 9. The second option reads the raw DNA-
DNA matches that were used to produce the synteny and displays a sequence-level view of the similarities between the two genomes. 

Chr 1Chr 4 Chr 6

Chr 3 Chr 5

Chr 1 Chr 11

Chr 8 Chr 13

Chr 2Chr 12 Chr 5

Chr 17 Chr 11

Chr 6 Chr 2

Chr 1 Chr 10

Chr 19 Chr 18

Chr 16

Chr 3Chr 6 Chr 14

Chr 17 Chr 9

Chr 16 Chr 3

Chr 4Chr 5 Chr 6

Chr 3 Chr 8

Chr 5Chr 13 Chr 15

Chr 17 Chr 1

Chr 18 Chr 11

Chr 6Chr 13 Chr 17

Chr 1 Chr 9

Chr 4 Chr 10

Chr 7Chr 5 Chr 6

Chr 12 Chr 9

Chr 13 Chr 11

Chr 3

Chr 8Chr 8 Chr 14

Chr 16 Chr 4

Chr 3 Chr 1

Chr 13 Chr 15

Chr 9

Chr 9Chr 19 Chr 4

Chr 13 Chr 2

Chr 10Chr 13 Chr 2

Chr 18 Chr 8

Chr 6 Chr 14

Chr 10 Chr 19

Chr 7

Chr 11Chr 7 Chr 2

Chr 19 Chr 9

Chr 12Chr 6 Chr 13

Chr 16 Chr 15

Chr 10 Chr 4

Chr 5

Chr 13Chr 14 Chr 5

Chr 3 Chr 8

Chr 1

Chr 14Chr 14 Chr 12 Chr 15Chr 7 Chr 2

Chr 9

Chr 16Chr 17 Chr 16

Chr 7 Chr 8

Chr 11 Chr 2

Chr 17Chr 11 Chr 18Chr 18 Chr 17

Chr 1

Chr 19Chr 10 Chr 17

Chr 8 Chr 9

Chr 13 Chr 7

Chr 20Chr 2 Chr 21Chr 16 Chr 17

Chr 10

Chr 22Chr 6 Chr 16

Chr 10 Chr 5

Chr 11 Chr 15

Chr XChr X



actual sequence residues are only retrieved and loaded when

the magnification level of the view is high enough to limit the

required length of sequence to a tractable amount. The logic

to determine when it is appropriate to retrieve more

sequence (or replace the current sequence) is hidden within

the sequence classes, and thus Apollo’s performance and

memory footprint is kept within reasonable bounds.

The simplest feature class is reduced to a range on a

sequence consisting of just four attributes: a low end for the

range; a high end for the range; the sequence that this range

falls on; and a strand. The features further split into three

subclasses: genomic ranges; results; and annotations.

Genomic ranges include a chromosome and organism, and

are used to support comparisons of syntenic genomic

regions within Apollo. Results support alignments for

viewing pairs of ranges along two similar sequences and

contain information describing how the analysis was carried

out. Annotations reference the results as evidence, but also

contain information supplied by the individual carrying out

the editing, such as their name, their comments, the date of

each edit, and processing flags for feedback to the computa-

tional pipeline.

Installation and configuration 
Apollo runs under the Windows, Mac OS X, Linux and Solaris

operating systems and requires Java 1.2 or 1.3. In our memory

tests with a 300 kilobase (kb) sequence with several thousand

features, the memory heap size hovered around 100 Mbytes

(MB). Therefore Apollo will run on a machine with 128 MB of

available memory, but it will do better with 256 MB.

Apollo is highly configurable in terms of appearance, connec-

tivity and extensions. Users can specify the color, graphical

representation and placement of any feature (both annota-

tions and computational results). The configuration file

describes both the tiers and the types of data that are to be

displayed. The file describes each tier by a label (for example

‘Prediction’), a visible flag (either true or false), and a layout

flag (if true then all data in this tier is arranged to avoid

overlap, that is, the tier is expanded). The file also describes

for each feature type: the tier it is to appear in; a label for that

feature type; a color; the list of attributes to appear in the

tabular report; initial score thresholds; and the drawable

class to be used to display this feature. URLs for connecting

features to outside data sources are also configurable. Note

that the separation of tiers and types allows multiple feature

http://genomebiology.com/2002/3/12/research/0082.9

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Figure 9
A detailed synteny view in Apollo showing part of human chromosome 20 at the top and part of mouse chromosome 2 at the bottom is illustrated. In
the middle are links between orthologous genes as identified by the Ensembl synteny-generating software. The links are crossed because the genes in the
top panel and in the bottom panel are in different orientations on their respective chromosomes. Although this figure only shows gene links, other types
of link may also be displayed. Information about the genes from both genomes are read from Ensembl databases and information about orthologous gene
pairs can either be read from an Ensembl compara database or from a flat file. The central panel can be used to scroll back and forth along the syntenic
region or to center the display on a particular region by clicking on one of the colored matches. The top and bottom Apollo panels behave just as a
normal, single Apollo panel and can be zoomed, scrolled, collapsed and also link out to a web page (as configured by the user).



types to be displayed in the same tier. For example the results

of all gene-prediction programs can be shown in a single ‘Pre-

diction’ tier. The aim is provide as much flexibility as possible

in the presentation of the data. The information included in

this file is incorporated when Apollo data are loaded.

The user can change some of the ‘style’ attributes of a feature

type - for example, its color and tier position - interactively.

A ‘types’ panel pops up as a separate window and shows all

the tier names and colors. Right-clicking on a type lets the

user adjust the color used for displaying features of that

type; middle clicking allows the score threshold to be

adjusted (features with scores below the threshold are not

shown in the display). The user can adjust the order of tiers

by selecting and dragging tiers with the mouse and the

control key. The new tier options can then be saved to a tiers

file, allowing each user to store personal style preferences.

External data adaptors: connecting Apollo to a
database 
Apollo is populated with data via a set of adaptors. Typically

(for data coming from an external data source) these consist

of two Java classes: a dialog box and the adaptor itself. The

dialog box allows the user to tell the system what sequence

they wish to examine. The adaptor provides a method for

translating between the structure of the external data and

the internal Apollo data models.

The existing adaptors allow data to be loaded from the

Ensembl CGI server, GAME XML files, direct connections to

either the Ensembl or Gadfly databases, DAS servers [49],

and the Ensembl variant of GFF. Once edited the data may

be stored as GAME XML files, GFF files, or GenBank table

format [50]. We recognize a need for additional adaptors to

read other variants of GFF (particularly that generated by

Artemis), and GenBank and EMBL flat-file entries.

The class Apollo.gui.DataLoader manages the fetching and

recording of annotation session data, which are held in the

CurationSet data model. This class is instantiated whenever

a new request is received for an additional feature or

sequence data from an external source. The DataLoader

class is quite straightforward; it provides two publicly avail-

able methods for loading and saving the data utilized during

an annotation session. If a specific data adaptor is not pro-

vided among the arguments in the initial request, then the

DataLoader will bring up a dialog box (org.bdgp.swing.

widget.DataAdapterChooser) to allow the user to select an

adaptor for an external data source (or sink). When the Dat-

aLoader instantiates a DataAdapterChooser it provides

it with an org.bdgp.io.DataAdapterRegistry. This Data-

AdapterRegistry is populated with the list of all available

adaptors from the configuration file and is initialized

during Apollo’s startup. These adaptors are one of the two

pieces of software that must be provided to add a new exter-

nal adaptor. 

A data adaptor extends the org.bdgp.io.AbstractDataAdapter

class and implements the following methods of the Apollo-

DataAdapterI interface:

GetUI: The DataAdapterChooser requires an interface to

interact with the user and collect any necessary informa-

tion. The DataAdapterChooser obtains this interface via this

DataAdapter method, including as an argument the type of

input/output operation (for example, IOOperation.READ

or IOOperation.WRITE). This user interface is the other

class (in addition to the DataAdapter itself) that the soft-

ware developer must provide to add an external adaptor.

GetCurationSet: This returns a CurationSet model (from

which all annotations and features can be accessed). A Cura-

tionSet is the hub for all sequence and feature models con-

templated in an annotation session.

CommitChanges: The argument passed to this is a Cura-

tionSet. The purpose is to record the curator’s annotation in

a persistent form, whether this is a file or a database.

10 Genome Biology Vol 3 No 12 Lewis et al.

Figure 10
Fine control of editing requires close examination of the gene structure.
This is accomplished in the exon editor panel, which provides a sequence-
level view of gene models. When the exon editor is launched, the region
displayed is highlighted in the main Apollo display (blue rectangle in lower
panel), and this main display rectangle can be moved along the sequence
to control the region shown in the exon editor. Using the contextual
menu in the exon editor panel, changes can be made to introns and
exons, as well as to precise splice junctions and translation starts.
Annotations appear in the viewer with alternating colors for individual
exons, and clicking on a transcript selects it and causes a graphical
representation (or glyph) of the transcript to appear at the bottom of the
window. This transcript glyph shows the translation start and stop sites,
and can be displayed with or without introns. In the case illustrated, the
intron-exon structure of the gene is shown; the numbers in the exons
indicate which frame of the translated genomic sequence is utilized in that
exon. Clicking on the different portions of the glyph allows one to quickly
navigate to specific regions of the transcript. A sequence search query is
also available, as is retrieval of genomic and translated sequence.



http://genomebiology.com/2002/3/12/research/0082.11

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Figure 11
Categories of data models. The Apollo data models fall into one of two broad categories (or are a descriptive auxiliary class, for example, Comment):
(a) a location on a sequence; or (b) a sequence. The corresponding Java superclasses are Range and AbstractSequence, respectively. The inheritance
hierarchy from these two central classes is shown here, but some minor classes and relationships are omitted to simplify this description. Each class or
interface is drawn as a rectangle, and interfaces have the suffix ‘I’ included in their class name (an interface specifies the methods that the class is required
to implement). Lines ending with an open-headed arrow-point indicate the superclass and subclass relationships and a dotted line connects an interface
to a class that implements that interface. Thus, both GenomicRange and SeqFeature are subclasses of the base class Range (which implements the Range I
interface) and in turn FeatureSet, GenericAnnotation, FeaturePair, and AssemblyFeature are specializations of SeqFeature. Similarly an SRSSequence is a
subclass of AbstractLazySequence, which in turn is a subclass AbstractSequence. Each of these subclasses inherits all the methods of their parent class
and may extend the model’s behavior either by adding new methods or by overriding the inherited methods. In addition to inheritance, the connecting
lines also depict other types of relationships, with the terminus indicating the potential cardinality. Thus, a GenericAnnotationSet must have at least one,
but may possibly have more, pieces of Evidence associated with it (drawn as a single crossbar to indicate ‘at least one’ and a triangular tripod to
represent ‘many’), one Identifier, which maintains synonyms and database cross references (a single crossbar indicates ‘one and only one’), and may have
zero or more optional Comments (drawn as a triangular tripod to represent ‘many’ and a single circle to indicate ‘none’). Thus, a FeatureSet is both itself
a SeqFeature that is composed of one or more component SeqFeatures. This enables Transcripts to be composed of a set of Exons, or an alignment to
be composed of a set of high-scoring pairs. Likewise a CurationSet (across two different species) may contain component CurationSets (for the individual
species) to enable comparative analysis.

Seq Feature

Feature
Pair

Generic
Annotation

Sequence I Range I

SeqFeature I
Genomic Range

Assembly
Feature

Generic
Annotation Set

Feature SetFeature Set I

Transcript

Gene

Evidence

Comment

Identifier

Curation Set

ExonSynteny Region

Range

Chromosome
Band

Chromosome

Abstract Lazy 
Sequence

Abstract SequenceSequence Sequence I

GAME
Sequence

SRS
Sequence

ENSCGI
Sequence

Cache SeqID
Loader

Cache
Sequence
Loader

Data Adapter
Sequence

EFetch Adapter
Sequence

(a)

(b)



GetStateInformation: Following a load this method cap-

tures the current query parameters so that they may be

saved and then restored in subsequent sessions.

setStateInformation: This method restores the parame-

ters needed to access a CurationSet that was under examina-

tion in an earlier session. It is an alternate to explicitly

setting load parameters using a dialog.

There are other required methods as well, but those described

above provide the essential functionality for a DataAdapter.

The explicit DataAdapterUI that must be written provides

an implementation of the org.bdgp.swing.AbstractInt-

DataAdapUI interface. It provides the DataAdapter with

any user information that is entered into the dialog

window. The key method is doOperation, which performs

the data transformation by delegating it to its partner data

adaptor. The input and outputs to this method are entirely

dependent on the operation the data adaptor is supposed

to perform.

In summary, the mechanics of adding a new external data

source are straightforward. This allows a developer to focus

solely on writing the software to handle the semantic

mapping between their own data representation and the

Apollo data models.

Adding new Drawables 
Several graphical elements are already available for repre-

senting features (Figure 2). Developers can incorporate new

Drawable classes by simply extending the existing base

classes and implementing relevant methods. The following

describes some of the methods that can be overridden.

DrawSelected, drawUnselected, or simply draw. These

methods actually paint the graphics for the primary repre-

sentation of the sequence.

AddHighlights can be used to draw graphical indications

that a feature shares start or end positions with other fea-

tures on the sequence.

AddDecorations is used to draw any additional character-

istics, for example the sites of start and stop codons within

the feature.

A single feature type in fact requires two Drawable classes,

one for a set of those features and another for an individual

feature. This is useful for drawing gene structures because

the draw method for the set can be used to draw a single line

to illustrate the introns, whereas the draw method for the

individual exons can be used to draw the rectangles to illus-

trate the exons. Once a developer has written the Drawable

software it can be added by including the name of the class

in the configuration file.

Adding new views 
This is undoubtedly the most ambitious way of extending

Apollo. A developer must understand how events are passed

between windows because it is these events that indicate

some change has occurred in the state of the shared underly-

ing data models. While there are many other steps that are

involved in adding a new view, this section will focus on

crucial elements of event handling inside Apollo.

Windows that are interested in receiving a particular type of

event must implement the appropriate listener interface for

that event. When the listening window is instantiated it is

provided with the central Controller object and must add

itself to the global list of listeners held in the Controller

object by calling the Controller’s addListener method with

itself as the only argument. When the Controller receives

notification of a particular event it notifies every listener on

this list.

Events themselves are provided to the central event Con-

troller. The Controller implements an individual handler

method for every type of event within Apollo. These Con-

troller handler methods notify all registered Listeners that

an Event of that type has occurred. Some examples of the

current list of events for broadcasting changes involving

feature and sequence selection, movement to a different

sequence position, changes to feature content or appearance,

window operations, and the availability of new data are

briefly described below.

Feature selection: This is the most basic of events and

indicates that one or more of the sequence features has been

selected, usually by a mouse click, but also from the text

search dialog, menus and scrolling lists.

Base focus: This event is used to center a display of the

genomic sequence on a particular base. This may be used to

position a display on a feature, or because a user has typed in

a particular position, or because a given sequence string

occurs at that position.

Region change: This event indicates that a completely new

region of the genome is replacing the current sequence.

Annotation change: The AnnotationEditor is the sole

generator of these events. To track changes to these impor-

tant features and ensure consistency this task is highly cen-

tralized. Thus, for example, when editing from the synteny

view, the modification requests will be relayed to the Anno-

tationEditor. While the user interacts with the synteny

display, the non-graphical AnnotationEditor class directly

manages the edits. The AnnotationEditor carries out the

additions, deletions and changes to start and end positions

for exons, transcripts, genes and any other annotation fea-

tures. The Controller then passes these events on to the lis-

teners so that the annotations can be redrawn accordingly.

12 Genome Biology Vol 3 No 12 Lewis et al.



Result change: This event is used only under unusual cir-

cumstances. Features are occasionally placed on the incor-

rect strand because of problems the alignment software has

in identifying the correct strand (EST sequences that do not

contain any splice junctions are the common source of this

problem). In these cases we allow the curator to move the

computed feature from one strand to the other so that it may

be used during annotation.

Appearance change: This event is used to issue a request

for a change in the appearance of a feature, for example, if

the chosen color is altered. 

Discussion 
Apollo was first put into practical use as an editor in Novem-

ber 2001 for the re-annotation of the complete Drosophila

genome. Ten full-time curators located at two sites (FlyBase-

BDGP and FlyBase-Harvard) used Apollo over the course of

seven months to revise and correct the annotations for the

complete genome [51]. During the course of this exercise

many improvements and capabilities were made to the soft-

ware, culminating in a well-exercised code-base for Apollo.

The Ensembl group provides Apollo to the community for

browsing human and mouse annotations. 

Other groups, both commercial and academic, are also using

Apollo. The bioinformatics group at Biogen has been using

Apollo to examine alignments, executed with BLAT, between

their internal data and the public human genomic sequence

(X. Zhijun, personal communication). Their group wrote a

custom data adaptor to load their data that uses either chro-

mosome and range, or a sequence, or a sequence name to

query their internal data source and then display the speci-

fied region in Apollo. The data adaptor retrieves the data

from an internal web service. The Fugu genomics group at

the UK HGMP-RC in Cambridge has been using Apollo to

display scaffolds, that is, draft sequences of the Fugu

genome (T. Vavouri, personal communication). Annotation

has been generated in GFF format and loaded into Apollo.

The Fugu group is currently working on modifying Apollo to

enable the interactive manipulation and validation of the

ordered scaffolds.

The best annotation makes use of every available piece of

information. This has already been seen in the Drosophila

project’s use of results from external pipelines and of the

internal sequence reads (individual sequences from the

cDNA that are unassembled) available from the full-length

cDNA sequencing project [52]. As new data become available,

Apollo must be able to display them effectively. Today, this

means we need to add displays to Apollo that exploit compar-

ative data. By aligning the genomic regions of related species

and looking for conserved sequence regions we will gain

insight into both fine gene structure (by identifying micro-

exons) and into regulatory and other conserved regions.

Motivated both by our experience over the past several

months and by new data that are becoming available we are

actively working on the following new features. A splice

junction view and editor will provide a tabular view of donor

and acceptor splice pairs together with predicted splice junc-

tions from standard weight matrices [53]. It will allow cura-

tors to fine-tune splice sites to generate the most biologically

likely peptide. Data adaptors for GenBank and EMBL flat

files should be particularly useful for a broader audience of

biologists. In addition, we will allow existing entries from

these public sequence archives to be overlaid onto the

genomic sequence that is being annotated. 

Finally, we have developed external analysis adaptors which

will be useful in two ways. First they will enable the curator

to dynamically reanalyze a specific sub-section of the

sequence. This is important because, despite best efforts, the

results of a gene prediction or an alignment over a large

genomic region are often not as accurate as those produced

when the sequence analysis is more targeted. Second, on-

demand analysis will allow the curator to dynamically evalu-

ate the peptides generated by protein-coding genes. This

peptide evaluation is essential to the process of annotation if

one wishes to produce a high-quality peptide set. The anno-

tated peptides must be examined to verify their biological

fidelity. This includes both consideration of the motifs that

are present on the peptide and a comparison with known

peptides. Downstream processing currently carries out this

validation of the annotations in bulk, but this delays feed-

back and problems with the peptides are only cycled back to

the curators for correction after some time has passed.

Making corrections will be much more effective once the

results of the evaluation are immediately available to the

curator while they are working with that gene.

There are many other features that could be added to Apollo

and we look forward to working with the open source com-

munity in bioinformatics to develop Apollo further. The

Generic Model Organism Database project (GMOD) [54],

whose aim is to provide tools for managing organism data-

bases, has adopted Apollo as its annotation workbench. Soft-

ware developers who are interested in contributing to this

project and customizing Apollo for their own genome annota-

tion projects can find more details at [55] and can obtain the

source code from the Concurrent Versions System (CVS) [56]

repository maintained on the GMOD Sourceforge site at [57].

Biologists who are interested in using Apollo for genomic

annotation will find the detailed user’s guide at [58] and the

most recent release of Apollo for local installation at [59]. 

Acknowledgements 
This work was supported by NIH grant HG00750 to G.M.R., by NIH
Grant HG00739 to FlyBase (to W.M. Gelbart), by the Howard Hughes
Medical Institute, and by Programme Grant G822559 from the Wellcome
Trust. We want to heartily thank the newer curators - Brian Bettencourt,
Kathryn Campbell, Pavel Hradecky, Yanmei Huang and Andrew Schroeder

http://genomebiology.com/2002/3/12/research/0082.13

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research



- who did not have a chance to participate in the design, but without
whom we could not have come this far. They took Apollo and provided
essential feedback as alpha testers while simultaneously doing the real
work of creating the annotations. James Cuff and Erwin Frise provided
great systems support at the Sanger Institute and Berkeley, respectively,
and we could not have done this without them. We also thank David
Emmert and Michael Ashburner for their valuable comments on a draft of
this paper. We also thank everyone who made contributions and sugges-
tions to the Apollo mailing list; your patience is outstanding and we will do
our best to keep improving.

References
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local

alignment search tool. J Mol Biol 1990, 215:403-410.
2. Florea L, Hartzell G, Zhang Z, Rubin G, Miller W: A computer

program for aligning a cDNA sequence with a genomic
DNA sequence. Genome Res 1998, 8:967-974.

3. Kent JW: BLAT: the BLAST-like alignment tool. Genome Res
2002, 12:656-664.

4. Churchill GA: Stochastic models for heterogeneous DNA
sequences. Bull Math Biol 1989, 51:79-94.

5. Baldi P, Chauvin Y, Hunkapiller T, McClure MA: Hidden Markov
models of biological primary sequence information. Proc Natl
Acad Sci USA 1994, 91:1059-1063.

6. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press; 1998.

7. Dong S, Searls DB: Gene structure prediction by linguistic
methods. Genomics 1994, 23:540-551.

8. Eddy SR, Durbin R: RNA sequence analysis using covariance
models. Nucleic Acids Res 1994, 22:2079-2088.

9. Reese MG, Hartzell G, Harris NL, Ohler U, Abril JF, Lewis SE:
Genome annotation assessment in Drosophila melanogaster.
Genome Res 2000, 10:483-501.

10. Das M, Burge CB, Park E, Colinas J, Pelletier J: Assessment of the
total number of human transcription units. Genomics 2001,
77:71-78.

11. Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M: A question
of size: the eukaryotic proteome and the problems in defin-
ing it. Nucleic Acids Res 2002, 30:1083-1090.

12. Pertea M, Salzberg SL: Computational gene finding in plants.
Plant Mol Biol 2002, 48:39-48.

13. Mungall CJ, Misra S, Berman BP, Carlson J, Frise E, Harris N, Marshall
B, Shu S, Kaminker JS, Prochnik SE, et al.: An integrated computa-
tional pipeline and database to support whole genome
sequence annotation. Genome Biol 2002, 3:research0081.1-
0081.11

14. Haas BJ, Volfovsky N, Town CD, Troukhan M, Alexandrov N, Feld-
mann KA, Flavell RB, White O, Salzberg SL: Full-length messen-
ger RNA sequences greatly improve genome annotation.
Genome Biol 2002, 3:research0029.1-0029.12

15. Korf I, Flicek P, Duan D, Brent MR: Integrating genomic homol-
ogy into gene structure prediction. Bioinformatics 2001, Suppl
1:S140-S148.

16. Lowe T, Eddy SR: tRNAscan-SE: a program for improved
detection of transfer rna genes in genomic sequence. Nucleic
Acids Res 1997, 25:955-964.

17. Hertz GZ, Stormo GD: Escherichia coli promoter sequences:
analysis and prediction. Methods Enzymol 1996, 273:30-42.

18. Pedersen AG, Baldi P, Chauvin Y, Brunak S: The biology of
eukaryotic promoter prediction - a review. Comput Chem
1999, 23:191-207.

19. Ohler U, Niemann H, Liao GC, Rubin GM: Joint modeling of DNA
sequence and physical properties to improve eukaryotic pro-
moter recognition. Bioinformatics 2001, Suppl 17:199-206.

20. Ohler U, Liao G, Niemann H, Rubin GM: Computational analysis
of core promoters in the Drosophila genome. Genome Biol
2002, 3:research0087.1-0087.12

21. Karlin S, Bergman A, Gentles AJ: Genomics. Annotation of the
Drosophila genome. Nature 2001, 411:259-260.

22. Gopal S, Schroeder M, Pieper U, Sczyrba A, Aytekin-Kurban G, Beki-
ranov S, Fajardo JE, Eswar N, Sanchez R, Sali A, Gaasterland T:
Homology-based annotation yields 1,042 new candidate
genes in the Drosophila melanogaster genome. Nat Genet 2001,
27:337-340.

23. Mounsey A, Bauer P, Hope IA: Evidence suggesting that a fifth

of annotated Caenorhabditis elegans genes may be pseudo-
genes. Genome Res 2002, 12:770-775.

24. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides
PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al.: The genome
sequence of Drosophila melanogaster. Science 2000, 287:2185-2195.

25. Bentley DR: Decoding the human genome sequence. Hum Mol
Genet 2000, 9:2353-2358.

26. Hubbard, T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox
T, Cuff J, Curwen V, Down T, et al.: Ensembl genome database
project. Nucleic Acids Res 2002, 30:38-41.

27. FlyBase Consortium: The FlyBase database of the Drosophila
genome projects and community literature. Nucleic Acids Res
2002, 30:106-108.

28. A C. elegans database [http://www.acedb.org/Documentation] 
29. A C. elegans database [http://www.acedb.org/Software/Downloads/

supported.shtml]
30. AceDB [http://www.acedb.org/]
31. Lewis SE, Harmon C: The Encyclopaedia of Drosophila. Berkeley, CA:

Berkeley Drosophila Genome Project; 1995. 
32. Perl Mongers - The Perl advocacy people [http://www.perl.org]
33. The Source for Java™ Technology [http://java.sun.com]
34. Helt G: bioTkperl: Data visualization and gene discovery in Drosophila

melanogaster. PhD thesis. University of California at Berkeley, 1997. 
35. Helt GA, Lewis S, Loraine AE, Rubin GM: BioViews: Java-based

tools for genomic data visualization. Genome Res 1998, 8:291-305.
36. Chervitz SA, Fuellen G, Dagdigian C, Brenner SE, Birney E, Korf I:

BioPerl: standard Perl modules for bioinformatics. Objects in
Bioinformatics Conference, 1998 [http://www.bitsjournal.com/bioperl.html]

37. Harris NL: Genotator: a workbench for sequence annotation.
Genome Res 1997, 7:754-762.

38. Genquire [http://bioinformatics.org/Genquire]
39. Stein LD, Mungall CJ, Shu S-Q, Caudy M, Mangone M, Day A, Nick-

erson E, Stajich J, Harris TW, Arva A, Lewis S: The generic
genome browser: a building block for a model organism
system database. Genome Res 2002, 12:1599-1610.

40. Rutherford K, Parkhill J, Crook-Horsnell JT, Rice P, Rajandream M-A,
Barrell B: Artemis: sequence visualisation and annotation.
Bioinformatics 2000, 16:944-945.

41. Ashburner M, Misra S, Roote J, Lewis SE, Blaze JR, Davis T, Doyle C,
Galle R, George R, Harris N, et al.: An exploration of the
sequence of a 2.9-Mb region of the genome of Drosophila
melanogaster: the Adh region. Genetics 1999, 153:179-219. 

42. Searls DB: bioTk: componentry for genome informatics
graphical user interfaces. Gene 1995, 3:GC1-GC16.

43. Edward R. Tufte: Computer Literacy Bookshops Interview,
1994-1997 [http://www.ercb.com/feature/feature.0008.2.html]

44. Burge C, Karlin S: Prediction of complete gene structures in
human genomic DNA. J Mol Biol 1997, 268:78-94.

45. Reese MG, Kulp D, Tammana H, Haussler D: Genie - gene finding
in Drosophila melanogaster. Genome Res 2000, 10:529-538.

46. Bairoch A, Apweiler R: The SWISS-PROT protein sequence
database and its supplement TrEMBL in 2000. Nucleic Acids
Res 2000, 28:45-48.

47. Stoesser G, Sterk P, Tuli MA, Stoehr PJ, Cameron GN: The EMBL
nucleotide sequence database. Nucleic Acids Res 1997, 25:7-14.

48. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BF:
GenBank. Nucleic Acids Res 1998, 26:1-7.

49. About Biodas [http://biodas.org]
50. Submission of complete genomes or other large sequence

records [http://www.ncbi.nlm.nih.gov/Sequin/table.html]
51. Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS,

Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, et al.:
Annotation of the Drosophila euchromatic genome: a sys-
tematic review. Genome Biol 2002, 3:research0083.1-00.83.22

52. Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R,
Guarin H, Kronmiller B, Pacleb J, Park S, et al.: A Drosophila full-
length cDNA resource. Genome Biol 2002, 3:research0080.1-0080.8

53. Fairbrother WG, Yeh RF, Sharp PA, Burge CB: Predictive identifi-
cation of exonic splicing enhancers in human genes. Science
2002, 297:1007-1013.

54. Generic Model Organism Database construction set
[http://gmod.sourceforge.net]

55. Apollo genome browser [http://www.ensembl.org/apollo]
56. Concurrent versions system [http://www.cvshome.org]
57. gmod/apollo

[http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/gmod/apollo]
58. Apollo user guide

[http://www.fruitfly.org/annot/apollo/userguide.html]
59. Apollo developer guide [http://www.fruitfly.org/annot/apollo]

14 Genome Biology Vol 3 No 12 Lewis et al.


	Abstract
	Rationale
	Origins of Apollo
	Overview of Apollo from the curatorial perspective
	Viewing the data
	Editing the data

	Overview of Apollo from the developer’s perspective
	Installation and configuration
	External data adaptors: connecting Apollo to a database
	Adding new Drawables
	Discussion
	Acknowledgements
	References

