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Abstract

Alternative splicing of pre-mRNAs is central to the generation of diversity from the relatively small
number of genes in metazoan genomes. Auxiliary cis elements and trans-acting factors are required for
the recognition of constitutive and alternatively spliced exons and their inclusion in pre-mRNA. Here,
we discuss the regulatory elements that direct alternative splicing and how genome-wide analyses can

aid in their identification.

Alternative splicing, the process by which multiple mRNA
isoforms are generated from a single pre-mRNA species, is
an important means of regulating gene expression. Alterna-
tive splicing determines cell fate in numerous contexts, such
as sexual differentiation in Drosophila and apoptosis in
mammals [1], and aberrant regulation of alternative splicing
has been implicated in human disease [1,2]. Additional
attention is now being given to alternative splicing in the
wake of the sequencing of the human genome. On the basis
of the initial drafts of the human genome sequence it was
estimated that there are 30,000 to 40,000 genes [3,4] - sig-
nificantly fewer than expected. Although final gene counts
may be higher, there is a disparity between the relatively
small number of human genes and the complexity of the
human proteome. This suggests that alternative splicing is
important in the generation of protein diversity. This article
describes what is known about the regulatory elements that
direct alternative splicing, how genome-wide analyses are
being applied to their identification, and suggests directions
for future genomic and large-scale studies.

Prediction of alternative splice forms
Estimates of the extent of alternative splicing in humans
made on the basis of alignments of expressed sequence tags

(ESTs; sequenced portions of cDNAs) range from 30 to 60%
of genes, and even 60% might be an underestimate [3]
because there is a lack of ESTs for many tissues and many
developmental stages, and ESTs are biased toward the
3’ end of an mRNA. The majority of alternative splicing
events affect coding regions [5]. Within the coding region,
protein domains can be added or removed, the reading
frame can be shifted to give rise to an altered protein
sequence, or the protein can be truncated by the introduc-
tion of a termination codon. Although less common, alterna-
tive splicing of 5’ and 3’ untranslated regions may insert or
remove key cis-regulatory elements that affect mRNA local-
ization, stability, and translation. The seven basic types of
alternative splicing are illustrated in Figure 1.

The significance of alternative splicing extends beyond the
ability to generate different protein isoforms to the ability to
modulate the levels of those isoforms. The proportions of
different splice forms produced by alternative splicing may
vary in different cell contexts, such as by cell type, develop-
mental stage, or disease state. Numerous examples of cell-
type-specific alternative splicing have been found (Figure 1),
but the number of alternatively spliced genes identified so
far is only a fraction of the number that has been predicted.
In the last few years, bioinformatic studies comparing ESTs
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Functionally significant examples of different types of alternative splicing. (a) Alternative inclusion of a cassette exon is very common. Neuron-specific
inclusion of the NI exon in the c-src proto-oncogene generates an insertion in the SH3 protein-protein interaction domain that alters its binding to other
proteins [34]. (b) Alternative exons may be mutually exclusive, such as exons IlIb and llic in the fibroblast growth factor receptor 2 (FGFR-2) gene. Use
of lllb produces a receptor with high affinity for keratinocyte growth factor (KGF), whereas use of lllc produces a high-affinity FGF receptor. Loss of the
llib isoform is thought to be important in prostate cancer [35]. (c) The choice of an alternative 5’ splice site in the Wilms’ Tumor suppressor gene Wt/
results in the insertion of the three amino acids lysine, threonine, and serine (KTS). The +KTS and - KTS forms play distinct roles in kidney and gonad
formation, and shift of the balance toward the -KTS form is associated with Frasier syndrome [36]. (d) In the transformer (tra) gene in Drosophila,
selection of a female-specific alternative 3’ splice site produces a single long open reading frame that gives rise to a regulatory protein that controls
female somatic sexual differentiation. In male flies, tra mMRNAs lack a long open reading frame, and no protein is made [37]. (e) Alternative terminal
exons in the gene encoding calcitonin and calcitonin-gene-related peptide (CGRP) give rise to a hormone involved in calcium homeostasis in the thyroid
gland, or a neuropeptide involved in vasodilation in the nervous system [38]. (f) Alternative promoter usage in the myosin light chain (MLC) gene leads
to different first exons, which pair with mutually exclusive downstream exons to give rise to distinct protein isoforms, namely MLC| and MLC3 [39].
This type of alternative splicing pattern results primarily from transcriptional regulation, not from the regulation of splice-site choice per se. (g) Intron
retention is one of the rarest forms of alternative splicing in humans. Retention of intron 2 in the human muscle-specific chloride channel | (CIC-1)
mRNA in myotonic dystrophy (DM) patients introduces a premature stop codon and leads to downregulation of CIC-| expression, contributing to
problems in muscle relaxation (myotonia) [2].




have greatly increased the number of known alternatively
spliced genes (reviewed in [5]), and expanding these com-
parisons to include human genome sequence data holds the
promise of finding many more. Genomic, mRNA, and EST
sequences are also being used to better characterize alterna-
tive exons and their flanking introns [6]. Furthermore,
microarray technologies are now evolving to look at splicing
variation as well as overall gene expression in different cell
contexts [7-9]. In future studies, arrays can be designed to
screen for alternative splice forms in different tissues, at dif-
ferent developmental stages, in normal versus disease states,
or in different mouse models, such as knockout mice lacking
auxiliary splicing regulators. The caveats of microarray
analyses are that they often cannot determine whether the
splicing of multiple variable regions within an individual
transcript is coordinated, and they rely on having sequence
data (for example, for exon-exon junctions) prior to probe
design. Nonetheless, taken together with bioinformatic
approaches, microarrays will help to develop splicing pro-
files that provide a global picture of how alternative splicing
is regulated.

The cis elements and trans-acting factors that
regulate alternative splicing

In addition to identifying alternatively spliced mRNAs,
genome-wide analyses will help answer many exciting ques-
tions about how alternative splicing is regulated. There is
much to be learned about the regulatory factors that mediate
cell-context-specific alternative splicing and about the cis
elements through which they act. Genomic sequence, EST,
and alternative splicing databases (Table 1) can be used to
identify alternatively spliced RNAs and the regulatory elements
that direct splicing decisions.

Auxiliary cis elements

Both constitutive and alternative splicing require the assem-
bly of the basal splicing machinery in spliceosome complexes
on consensus sequences present at all boundaries between
introns and exons (the 5" and 3’ splice sites). The spliceosome
has two functions: to recognize and select splice sites, and to
catalyze the two sequential transesterification reactions that
remove the introns and join the exons together. The effi-
ciency with which the spliceosome acts on an exon is deter-
mined by a balance of several features, including the strength
of a splice site (that is, its conformity to consensus splice-site
sequences), exon size, and the presence of auxiliary cis ele-
ments. Exons of ideal size (typically 50 to 300 nucleotides)
with strong splice-site sequences are recognized efficiently by
the splicing machinery and are constitutively included in the
transcript, whereas suboptimal exons require auxiliary ele-
ments for recognition. But it is becoming increasingly clear
that many constitutive exons also use auxiliary elements to
ensure their recognition in all cells expressing the pre-mRNA.
For example, a bioinformatic approach was used to identify
intronic G-rich elements that facilitate the recognition of
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small constitutive exons [10]. Alternatively spliced exons are
often small and have weak 5’ and/or 3’ splice sites, but for
these exons auxiliary elements serve not only to improve
splice site recognition, but also to modulate selection of splice
sites used in specific cell contexts.

In general, the auxiliary elements that regulate the usage of
alternative splice sites share several common features: they
are small, variable in sequence, individually weak, and
present in multiple copies. They are usually single-
stranded, although secondary structure has been implicated
in the function of a few elements (see, for example, [11]).
Auxiliary elements are often conserved between species and
perhaps between similarly regulated genes, but they contain
degenerate sequence motifs, making it difficult to identify
them. They can be exonic or intronic, and when they are
intronic they can lie upstream, downstream, or flanking
both sides of the regulated exon. Intronic elements can also
be proximal (within 100 nucleotides) or distal (more than
one kilobase away from the regulated exon), although they
are often located close to the exon. And finally, auxiliary
elements can enhance or repress splice-site selection.
Depending on their location and their effect on the recogni-
tion of alternative splice sites, the elements are referred to
as exonic splicing enhancers or silencers or intronic splicing
enhancers or silencers (Figure 2). Table 2 lists the intronic
splicing enhancers and silencers that have been identified
to date; exonic splicing enhancers have recently been cata-
loged elsewhere [12].

Growing evidence suggests that many alternative splice
sites are associated with both enhancers and silencers, and
that regulation of alternative splicing is often the result of
dynamic antagonism between trans-acting factors binding
to these elements (reviewed in [13]). Indeed, results from
the best-characterized vertebrate experimental systems
(see below) argue that for most alternatively spliced tran-
scripts there is no ‘default’ or unregulated state; instead,
the ratio of alternative splice forms observed for a given
pre-mRNA results from a balance between positive and
negative regulation.

Trans-acting splicing factors

Numerous exonic splicing enhancers have been shown to
bind serine/arginine-rich (SR) proteins, a family of essential
splicing factors, to promote inclusion of alternative exons
with weak splice sites in the pre-mRNA [14]. The effects of
SR proteins on alternative splicing are antagonized by the
constitutive splicing factor heterogeneous nuclear ribonucleo-
protein A1 (hnRNP A1). Overexpression of SR proteins or
hnRNP A1 has a general effect on splicing of alternatively
spliced pre-mRNAs in vitro or in transient transfection
assays, suggesting that alternative splicing of some RNAs
can be globally regulated in cell populations by changing the
relative ratios of constitutive splicing factors. In at least
some cases, hnRNP A1 cooperatively binds exonic splicing
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Useful databases for identifying alternatively spliced RNAs and regulatory elements of alternative splicing data

Name Description URL Published
reference

Alternative Splicing Alternative exon database compiled from the literature http://cgsigma.cshl.org/new_alt_exon_db2/ [40]

Database

Alternative splicing Several alternative splicing databases, including a database http://www.bioinf.mdc-berlin.de/splice/

databases of splice variants of disease genes, a complete splice-site
database, and a database of alternative splice forms for
seven organisms

AltExtron Transcript-confirmed human introns and exons; includes http://www.bit.uq.edu.au/altExtron/ or [6]
alternatively spliced data subsets http://www.ebi.ac.uk/~thanaraj/altExtron/

ASAP Human alternative splicing database; part of the Alternative http://www.bioinformatics.ucla.edu/HASDB [43]
Splicing Annotation Project

ASDB Alternatively spliced gene database; includes protein and http://cbcg.nersc.gov/asdb [41]
nucleotide sequences for human, mouse, rat, Drosophila,
Caenorhabditis elegans, chicken, cow and rabbit and viruses

AsMamDB Alternatively spliced mammalian genes; includes human, http://166.111.30.65/ASMAMDB.html [42]
mouse, and rat

Gene Resource Gene map database; includes information on alternatively http://grl.gi.k.u-tokyo.ac.jp [44]

Locator spliced transcripts

Intronerator Introns in C. elegans; includes a catalog of alternatively http://www.cse.ucsc.edu/~kent/intronerator/ [45]
spliced transcripts

ISIS All introns identified in GenBank http://isis.bit.ug.edu.au/ [46]

PALS db Putative alternative splicing predicted by EST alignments for http://palsdb.ym.edu.tw/ [47]
mouse and human

SELEX-DB In vitro selected oligomers; includes SELEX sequences for http://lwwwmgs.bionet.nsc.ru/mgs/systems/selex/ [48]
splicing factors and is supplemented by SYSTEM (experimental
design) and CROSS_TEST (cross-validation test) databases

SpliceDB Mammalian splice sites http://genomic.sanger.ac.uk/spldb/SpliceDB.html or  [49]

http://www.softberry.com/spldb/SpliceDB.html

SpliceNest A database that maps GeneNest onto human genomic http://splicenest.molgen.mpg.de/ [50]
sequence and is integrated with GeneNest (EST clusters for
human, mouse, zebrafish and Arabidopsis thaliana) and
SYSTERS (protein sequence clusters) databases

STACK Putative human transcripts reconstructed from ESTs; http://www.sanbi.ac.za/Dbases.html [51]
includes the context of different tissues or pathological states

Yeast Intron Introns in Saccharomyces cerevisiae http://www.cse.ucsc.edu/research/compbio/ [52]

Database

yeast_introns.html

silencer sequences within the same exon and blocks binding
of the SR proteins to exonic splicing enhancers [15].

Other auxiliary elements mediate their effects by binding
to auxilary splicing factors. For example, muscle-specific
splicing elements in the intronic regions flanking the alter-
native exon 5 of the cardiac troponin T protein regulate
inclusion of exon 5 in transcripts in embryonic striated
muscle. Positive muscle-specific splicing elements down-
stream of exon 5 bind members of the CUG-binding protein
(CUG-BP) and embryonically lethal abnormal vision-type
RNA binding protein 3 (ETR-3)-like factor (CELF) family;

binding of CELF splicing factors promotes exon inclusion
[16]. Negative elements antagonize this muscle-specific activ-
ity by binding the ubiquitously expressed pyrimidine tract-
binding protein (PTB) upstream and downstream of exon 5
[17]. The neuron-specific N1 exon of the c-src proto-oncogene
is similarly regulated. PTB binds to intronic sequences flank-
ing the N1 exon to inhibit its inclusion in the c-src mRNA in
non-neuronal cells [18]. In neurons, a downstream intronic
enhancer region binds several factors to derepress the N1
exon, including KH-type splicing-regulatory protein (KSRP),
far upstream element binding protein (FBP), and the hetero-
geneous nuclear ribonucleoproteins hnRNP H and hnRNP F
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Typical features of alternative exons. Alternative exons are on average less than half the size of constitutive exons and have weak 5’ and/or 3’ splice sites.
Auxiliary elements aid or prevent the recognition of these exons by binding trans-acting factors in different cellular contexts, and how often an exon is included
in the mRNA depends on a balance between positive and negative regulation. Enhancer (+) and silencer (-) elements can be found within the alternative exon
(yellow box in the center) or the flanking introns (lines). Splicing decisions are controlled by multiple elements, and for a given exon these can be different
elements, multiple copies of the same element located at different sites, or a combination of the two (as indicated by the non-yellow colored boxes). Different
alternative exons are regulated by different sets of auxiliary elements, but alternative exons that are regulated by the same trans-acting factors have some
common elements. Intronic elements can be distal, but are more often located in the introns adjacent to the alternative exon (near the exon-intron boundary),
and in some cases can overlap with, or be contained within, the consensus splice site sequences that are recognized by the basal splicecosomal machinery.

[18]. The neuron-specific splicing of several other targets is
similarly repressed by PTB, and is antagonized in at least
some of these cases by binding of the neuron-specific activa-
tor neurooncological ventral antigen 1 (Nova-1) to enhancer
elements [18].

Most cis elements known to regulate alternative splicing
were identified using deletion or site-directed mutational
analysis of minigenes that were tested in transient transfec-
tion assays. This approach is limited by the difficulty in
making minigene constructs that preserve the ability to reg-
ulate the exon in a cell-culture system (reviewed in [19]).
Another caveat of this approach has been that multiple small
elements often display functional redundancy, making it
hard to identify them by a loss-of-function approach. In con-
trast, this repetitiveness should be helpful for identification
of auxiliary cis elements in large-scale genomic analyses.
Sequencing of the human genome has provided large data
sets that are invaluable for finding new elements involved in
cell-context-specific alternative splicing.

Using genomics to identify alternative splicing
elements

There are two basic approaches to using genomic informa-
tion to investigate alternative splicing elements: first, com-
parative or computational approaches to identify putative

elements followed by validation of the ability of the elements
to regulate splicing, and second, experimental approaches to
identify sequence motifs followed by searching the genome
for natural regulatory sites containing these elements. Both
of these approaches have recently been attempted with some
early successes.

Computational identification of exonic elements

Large genomic data sets have been used to identify elements
by computational analyses. In one study, Fedorov and col-
leagues [20] found differences in the distribution of pentameric
and hexameric nucleotide sequences in the exons of intron-
containing and intron-lacking genes, some of which may
represent exonic regulatory elements. The differences in
nucleotide distributions that they reported were not created
by a few strong signals, but rather by the accumulation of
multiple weak signals, consistent with our current under-
standing of exon recognition. The putative exonic elements
described by Fedorov et al. [20] did not generally match
known exonic splicing enhancers and silencers, but experi-
mentation to test whether these elements do indeed affect
splicing was left to future studies.

Fairbrother and colleagues [12] used a computational
approach to predict exonic splicing enhancers sequences by
statistical analysis, followed by experimental verification of
enhancer activity. They looked for hexameric sequences
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Known auxiliary intronic elements that regulate alternative splicing

Exon or intron Type of Specificity Type of Sequencef Location of Associated Reference
that is regulated splice of splicing® element element (nucleotide  trans factor(s)
site (name) number relative to
choice alternative exon)
4.1R exon 16 Cassette Developmental Enhancer AUUUAUUuuuAAAUAU  Upstream Unknown [53]
(human) stage-specific uuuUUGGUUUGCCAAU  (-106 to -59)
UUUCAGUuuuUCCCG
4.1R exon 16 Cassette Developmental Enhancer UGUAUgaAcUUGAagcU  Downstream Unknown [53]
(human) stage-specific UAUUUCAgUUGgUUGC  (+4 to 146)
CUGgAacCUUCUGCAU
UcuUugCUGAUCCCCU
UUUCUUCAUUCUgUgc
ugCAUUUGGUUUugCa
UGCAAUUgCauGAAGG
GACUUUAGgUUUAAAA
UGCuUuUGCcAUGUU
o-actinin NM/SM Mutually Smooth muscle-  Silencer Not defined Upstream of PTB* [54]
exons (rat) exclusive specific SM exon
exons
o-actinin NM/SM Mutually Smooth muscle- Enhancer CCUUGUCUGUGUGUC  Upstream of ETR-3%, Brul* [55]
exons (rat) exclusive specific (BP-URE) UAACUGUGUGCAC NM exon
exons
Agrin Y exon Cassette Neuron-specific Enhancer uuaccCAACUcaacucaCC  Downstream Unknown [56]
(exon 28, mouse) (+15 to 33)
Agrin Y exon Cassette Neuron-specific Enhancer aucuuuuguAGCCAUUCC  Downstream Unknown [56]
(exon 28, mouse) uagagAGCccuuuccc (+34 to 68)
AMP deaminase |  Cassette Developmental Enhancer GCCCAGGCUGGAGUG Downstream Unknown [57]
exon 2 (human) Stage-specific (ExRE) CAGUA (about +1.7 kb)
AMP deaminase |  Cassette Developmental Enhancer CCAUCGAAUGCAUUU  Downstream Unknown [57]
exon 2 (human) stage-specific (ExRE) ACUU (about +3 kb)
Amyloid precursor Cassette Neuron-specific Enhancer AUGUUU Upstream Unknown [58]
protein exon 8 (-47 to -42)
(human)
Amyloid precursor Cassette Neuron-specific Silencer uuu Upstream Unknown [58]
protein exon 8 (-38 to -36)
(human)
Calcitonin/CGRP  Cassette Cell type-specific ~ Enhancer CCAAGGGAAAgcaugGG  Upstream Unknown [59]
exon 4 (human) (contains (repl) UUAACCUA (-254 to -230)
alternative
poly(A) site)
Calcitonin/CGRP  Cassette Cell type-specific ~ Enhancer CAGCCCUGGugcaugGC  Upstream Unknown [59]
exon 4 (human) (contains (rep2) ACUGCCUC (-34 to -10)
alternative
poly(A) site)
Calcitonin/ CGRP  Cassette Cell type-specific ~ Enhancer CUCCGCUCCUCUUC Downstream PTB#¥, ASF/SF2%, [60-62]
exon 4 (human) (contains cagguaagac (+204 to 238) Ul snRNP,
alternative SRp20*
poly-A site)
Cardiac troponin T Cassette Embryonic, Silencer CCUCUGCGCUUC Upstream PTBY, U2AF65  [17,63]
exon 5 (chicken) muscle-specific (MSEI) UUCCCUUCCCUCC  (-36to-I)

UCCCUGGCUCA
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Exon or intron Type of Specificity Type of Sequencef Location of Associated Reference
that is regulated splice of splicing® element element (nucleotide  trans factor(s)
site (name) number relative to
choice alternative exon)
Cardiac troponin T Cassette Embryonic, Enhancer, ACUGCACCuUUUCU Downstream PTB#, ETR-3% [17,64]
exon 5 (chicken) muscle-specific Silencer UUGUUCCAUCUCUC (+7 to +46)
(MSE2) CACCUCUGCUGUG
Cardiac troponin T Cassette Embryonic, Enhancer UCGCGGGUCGGUGU Downstream ETR-3% PurHf [17,64,65]
exon 5 (chicken) muscle-specific (MSE3) GUCCUGUGCCUUUC (+53 to 87)
CCUGCUU
Cardiac troponin T Cassette Embryonic Silencer CGCUUUCCUUUCAU Downstream PTB* [17,64]
exon 5 (chicken) muscle-specific (MSE4) UCUUUCACUUCUCU (+8l to 117)
GCUGCUUUU
Caspase-2 exon 9 Cassette Brain and skeletal ~ Silencer GCUuauuaacUGCAAUG Downstream U2 snRNP [66,67]
(mouse) muscle-specific; (In50 up) UAcuuuuuauuguuuuucau (+141 to 188)
associated with uccaGUUAAGG
apoptosis
Caspase-2 exon 9 Cassette Brain and skeletal  Silencer AUUUCUGCUUGACUC  Downstream PTB# [66,67]
(mouse) muscle-specific; (In50dn) UUCCAAAUCUUCCUU  (+189 to 244)
associated with CUCUUACCCUUGCA
apoptosis UUUUCUCUCUGU
Chloride channel Intron Aberrant Enhancer UCUUGGGUAUAGCAC  Upstream of CUG-BP# [2]
CIC-1I intron 2 retention inclusion CCAAAGUAAAGUAGU exon 3
(human) in myotonic GACUCGUUAGCUGCU  (-156 to -1)
dystrophy uuucucucucucucu
CucCucCucucucucuc
UCUCUGUCUCUACAU
AUAUAUAUUUUUGUU
UGUUUGUUUGUUUGU
UGUUUGUUUGUUUGU
UUUUUCCCUCAUCUC
UUCCUAG
Clathrin light chain ~ Cassette Neuron-specific Silencer CUCUUUCUCUUUAAC  Upstream PTB%, CUG-BP [68]
B exon EN (rat) CCUGUGCCUGCCUGU (-85 to -1)
CUUGCUGUCUGUCUU
CCCCCACCUAACUCC
UUCUCCUAACGGUUU
UCCUCAAG
c-src NI exon Cassette Neuron-specific ~ Silencer GGGCCCUGUCUUCGC  Upstream PTB/nPTB [69]
(mouse) ACCUCAGCCUCUCCU  (-60 to -3)
ucucucugGcuucucu
CUCGCUGGCCCUU
c-src NI exon Cassette Neuron-specific Enhancer, UGAGGCUGGGGGCUGC  Downstream PTB#nPTB, [69-71]
(mouse) silencer UCUCUGCAUGUGCU  (+37to 70) KSRP?, FBPY,
(DCS) uccu hnRNP Hf,
hnRNP F¥
Cystic fibrosis Cassette Aberrantly Silencer Not published Downstream SR proteins [72]
transmembrane skipped in (ISS) (+117 to 264)
regulator exon 9 cystic fibrosis
(human)
Dopa Cassette Tissue-specific Silencer Not published Upstream Unknown [73]
decarboxylase (+84 to 528)
exon B (Drosophila)
DMPK exon 16 Alternative ~ Developmental Enhancer (CUG), Upstream Unknown [74]
(human) terminal stage-specific; (about 35 nucleotides)
exon skipped in DM
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Exon or intron Type of Specificity Type of Sequencet Location of Associated Reference
that is regulated splice of splicing® element element (nucleotide  trans factor(s)
site (name) number relative to
choice alternative exon)

Fibroblast growth Cassette Skipped in Silencer AAugcugcUACAGCUGC  Upstream PTB* [75,76]
factor receptor | o glial cell tumors  (ISS-1) UUCCUAACUUUGCC  (-242 to -28I)
exon (human) ucuuucuuc
Fibroblast growth Cassette Skipped in Silencer AUCUGCCCCCACUCU  Downstream Unknown [77]
factor receptor | o glial cell (1SS-2) GCUUCAGAAACugcuge  (+98 to 159)
exon (human) tumors CCACUAACAUUGCUC

CCugccugcCGCGUG
Fibroblast growth Mutually Cell-type Enhancer CUUUCAUUUUUGUCU  Downstream of TIA-1# [78,79]
factor receptor 2 exclusive specific (IASI) Uuuuuu K-SAM
BEK/K-SAM (llib/llic)  exons (+10 to 29)
exons (human)
Fibroblast growth Mutually Cell-type Enhancer CCAUGGAAAAAUGCC  Downstream of Unknown [80]
factor receptor 2 exclusive specific (IAS2) CACAAC K-SAM
BEK/K-SAM (llIb/llic)  exons (+168 to 188)
exons (human)
Fibroblast growth Mutually Cell-type Enhancer UGUGGGUUGAUUUUU  Downstream of Unknown [80]
factor receptor 2 exclusive specific (IAS3) UCCAUGCGUUUGAUU  K-SAM
BEK/K-SAM (llib/llic)  exons GCGUGCAUGUGUAGG  (+963 to 1021)
exons (human) AGGUGAAGCCGGUGU
Fibroblast growth Mutually Cell-type Enhancer CAAACAAAUUCAAAG  Downstream of Unknown [81]
factor receptor 2 exclusive specific (Ilb), silencer AGAACGGACUCUGUgg llIb (+915 to 978)
IlIb/lllc exons (rat) exons (lllc) gecugauuuuuccauguGUUC

(ISAR) AAUCGC

Fibroblast growth Mutually Cell-type Silencer CUCAUUGUGAUCUC Upstream of PTBf [82]
factor receptor 2 exclusive specific (ISST) CUCCCUCCCACAG lllb (-143 to -112)
IlIb/1llc exons (rat) exons CUCUUUAGGUGUA
Fibroblast growth Mutually Cell-type Silencer UGGUGGGACCAUAG Upstream of lllb Unknown [82]
factor receptor 2 exclusive specific (1SS2) GCAGCAC
IlIb/lllc exons (rat) exons
Fibronectin exon Cassette Cell-type Enhancer UCUUAAAGGUUCUCU  Downstream Unknown [83,84]
EllIB (rat) specific (ICR) GCCCugcaugGGAAGAA  (+519 to 640)

ACAUUGCUGAGAACC

ACUGugcaugAACCCCC

UCACUUGUGAUACGA

GUUCACUGAAUGACA

UUACGGCAAUGCAGU

AGUGUGUAGAUAC
GABA, receptor Cassette Neuron-specific ~ Silencer UGUUUCUCUUUCUCU  Upstream PTB* [85]
subunit y2 24 (rs1) CCcuuu (-89 to -70)
nucleotide exon
(rat)
GABA, receptor Cassette Neuron-specific ~ Silencer CCUUUUCCUUCUUCU  Upstream PTB* [85]
subunit y2 24 (rs2) UAUU (-69 to -51)
nucleotide exon
(rat)
GABA, receptor Cassette Neuron-specific ~ Silencer GCAAUUCUCUUUUCU  Upstream PTB* [85]
subunit y2 24 (rs3) GUCU (-31 to-13)
nucleotide exon
(rat)
GABA, receptor Cassette Neuron-specific ~ Enhancer ACAAAUCCA Upstream Unknown [85,86]
subunit y2 24 (-12 to -4)

nucleotide exon
(rat)
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Table 2 (continued)

Exon or intron Type of Specificity Type of Sequencef Location of Associated Reference
that is regulated splice of splicing® element element (nucleotide  trans factor(s)
site (name) number relative to
choice alternative exon)
gag gene (Rous Spliced Infection Silencer CCGGAGUGCUCGAGA Downstream of hnRNP H¥, [87-89]
sarcoma virus) versus stage-specific (NRS) AACCAGCAACGGAGCGG 5’ splice site SF2/ASF¥
unspliced CGAAUCGACAAAGGGG (about 300
AGGAAGUGGGAGAA nucleotides)
ACAACUGUGCAGCG
AGAUGCGAAGAUGG
CGCCGGAGGAAACG
GCCACACCUAAAAC
CGUUGGCACAUCCU
GCUAUCAUUGCGGA
ACAGCUAUUGGCUG
UAAUUGCGccacagecu
cggeucccuccuccuccuuau
guggggagugguuuguauccu
ucccu
Glycine receptor 02  Cassette Neuron-specific Enhancer UCAUCAUCAUUUCAU Upstream Nova- I [31,90]
exon 3A (human) (about 80 nucleotides)
hnRNP Al exon 7B Cassette Auto-regulated Enhancer UAAGGAGUCUGUAAG  Upstream hnRNP A l# [21]
(mouse) (CEI) UAAUGGUUUCUGGAA  (-194 to -86)
AACCUGUACCUUUAG
AGUAGGCUAGUAGAA
ACUAAACUUAGUGCA
UGACAAAGUUCGAUC
AGUCCCAUAAAUGUG
CAUG
hnRNP Al exon 7B Cassette Auto-regulated Enhancer AGCUAGAUUAGACUU  Downstream hnRNP Al$ [21,91]
(mouse) (CE4) CUAGAGUUU (+35 to 58)
hnRNP Al exon 7B Cassette Auto-regulated Silencer CCUGCUCUGCUGUGC  Downstream Unknown [
(mouse) (CE610) UACCUCCUCCUGGCU  (+128 to 204)
UUAAGCUGGGGCCGC
CUCCCCAAAAUAAGU
AGGUGAAUGAGUGGU
UA
hnRNP Al exon 7B Cassette Auto-regulated Silencer CUGGAUUAUUAACUG  Downstream Unknown [92]
(mouse) (CE9) AAUGCCUCACUCAGA  (+372to 418)
GAAUGAA
Major late region | Alternative Infection Silencer GCGUGGAGGAAUAUG  Upstream of llla SR proteins [93]
(L1) 52,55K/1lla 3’ splice stage-specific ACGAGGACGAUGAGU  splice site
(adenovirus) sites ACGAGCCAGAGGACG  (-76 to -28)
GCGA
Major late region | Alternative Infection Enhancer AGUACUAAGCggugaugu  Upstream of llla Unknown [94]
(L1) 52,55K/llla 3’ splice stage-specific uucugaucag splice site
(adenovirus) sites (-28 to -1)
MVM NS2-specific Cassette, Infection Enhancer GUUUAAGggAUgGUUg Downstream of Unknown [95]
exon and small alternative  stage-specific (IES) GUUgGUGgggU NS2 exon, small
intron (parvovirus) 5" and 3’ intron D2 5’
splice sites splice site
Myosin heavy Mutually Muscle Silencer AUGUACCAUGUACC Downstream of Unknown [96]
chain exon | le exclusive type-specific (CIEI) exon |le
(Drosophila) exons | la-e
Myosin heavy Mutually Muscle Enhancer AGUGCUGUGU Downstream of Unknown [96]
chain exon I le exclusive type-specific (CIE2) exon |le

(Drosophila)

exons | la-e
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Exon or intron Type of Specificity Type of Sequencef Location of Associated Reference
that is regulated splice of splicing® element element (nucleotide trans factor(s)
site (name) number relative to
choice alternative exon)
Myosin heavy Mutually Muscle Enhancer AUCCAUCCCUCUAUC Upstream of Unknown [96]
chain exon | le exclusive type-specific (CIE3) UAUCCCAGUUCAACC exon 12
(Drosophila) exons | la-e UGUCCAAAAGUGUUU (about -200 nucleotides)
UUGAAGAACCGCUUA
AGCAUAAGCAAAAAAA
NCAM MSDb Cassette Muscle-specific, Silencer GACCUCACUGACCCA Downstream Unknown [97]
exon (mouse) developmental (DSRE) GCUGGGCCUUUGUCA (+626 to 771)
stage-specific CAUUGGGGGAGCCUG
GUUCUUUUCCUCUCA
UUCUCUUAACUGUCU
AUACUUUAGUUCUUU
GAAUCUGGAGGAGUG
GAACAGGUCCACUCU
UUGGAAACUUGAACC
UGGCUUUCUAGU
NMDA exon 5 Cassette Neuron-specific  Silencer GCUUUAGCGCCGUCA Upstream PTB*, CUG-BP [68]
(rat) UUUUCAACCGUUUAU (-78 to -1)
AAUCUUCUUCUGUGU
CUGCAUAUUUUCUCU
GUGCACAUUAUUCAU
CAG
Non-muscle myosin Il Cassette Neuron-specific ~ Enhancer GAUUugcaugucguacugcau Downstream Unknown [98]
heavy chain B exon (IDDE) guGUCCACUGUGCACA (+1.5 kb)
N30 (human) CAAUC
Nova-| exon H Cassette Neuron-specific ~ Enhancer GCCAAUCAGGUACAG Downstream Nova- ¥ [31]
(mouse) UAUCAUCCUCUCAUC (+8 to 62)
CUACACCAUACUUUC
ACAGCGGUUG
sex lethal exon 3 Cassette Male-specific Silencer Uuuuuuuu Upstream SxI¥ [99]
(Drosophila) (-6 to -13)
Slo K* channel Cassette CaZ*-dependent  Silencer CCUUGCCAUUAACCG Upstream Unknown [100]
STREX exon in neurons (CaRRE) CGcUcUUCcUcUCCUC (-53 to -1)
(mouse) CCAUCCACCACAUGG
UUAUAG
tat intron 2 Intron Variable Silencer UAGUGAAUAGAGUUA Upstream of SA7 hnRNP Al# [1o1]
(HIV-1) retention (ISS) GGCAGGGA splice site
(-44 to -22)
tau exon 10 Cassette Aberrantly Silencer UCACACGU Downstream Unknown [102]
(human) spliced in (ISS) (+11 to 18)
disease
tau exon 10 Cassette Aberrantly Enhancer CCCAUGCG Downstream Unknown [103]
(human) spliced in (ISM) (+19 to 26)
disease
Thyroid hormone Alternative  Tissue and Enhancer GGCGGCCAGAggsUGU Downstream SF2/ASF#, [104,105]
receptor exon 9 5" splice developmental (SE02) GCggagcugguggggaggagC (+130 to 210) hnRNP H#
(rat) site stage-specific UUggagagaagggaCAAAG
CUgggggCUgagggagaaCC
CCCA
transformer exon 2 Alternative  Sex-specific Enhancer Not published Downstream of Unknown [106]
(Drosophila) 3’ splice non-sex-specific
site 3’ splice site

(about 40 nucleotides)
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Table 2 (continued)

Exon or intron Type of Specificity Type of Sequencef Location of Associated Reference
that is regulated splice of splicing® element element (nucleotide trans factor(s)
site (name) number relative to
choice alternative exon)
transformer exon 2 Alternative ~ Sex-specific Silencer of Uuuuuuuu Upstream of non- SxIf, [107,108]
(Drosophila) 3’ splice non-sex- sex-specific 3’ U2 snRNP#
site specific 3’ splice site
splice site (-4 to -11)
O-tropomyosin Mutually Smooth Silencer aucacgcugecugcugcaCCC Upstream of Unknown [109-111]
exons 2/3 (rat) exclusive muscle-specific (URE) CACCCCCUUCCCCCU exon3
exons UCCUUCCCCCCACCC (-75to-1)
CCGUACUCCACUGCC
AACUCCC
o-tropomyosin Mutually Smooth Silencer CUGGAUGCCGCCUCU Downstream PTB* [109-111]
exons 2/3 (rat) exclusive muscle-specific (DRE) GCUGCUGCGCACAUU of exon 3
exons UCAUUUAUAUUCUGU  (+142 to 231)
ccuuuccccuuuuu
CUCCUCUUCUUUAC
CucCcuccccuuuGaU
UG
B-tropomyosin Mutually Skeletal Enhancer CCCCUCUCUCUAUCG Downstream of ASF/SF2, SC35, [112-115]
exons 6A/6B exclusive muscle-specific (S4) CUGUCUCUUGAGCCA exon 6A PTB, hnRNP K
(chicken) exons CGC (+37 to 69)
-tropomyosin Mutually Skeletal Enhancer GCUGGGGCUGGGCAG Downstream of TLSH [116,117]
exons 6A/6B exclusive muscle-specific (IVS B7) AGCGCGCAGGGUUGA exon 6B
(chicken) exons GGGGAGCAGGGUCCU (+19 to 76)
UCACUGGGGUGAA
3-tropomyosin Mutually Striated Silencer AACCCCACCCCCUCA Upstream of PTB*, Samé8, FBP [118,119]
exons 6/7 (rat) exclusive muscle-specific (IRE) CCCCGUCGUCGCGCC exon7
exons ACCCCACUGUCUCAC (-88to -I)
CUCACUGUGCCCUCA
CGCUCCAUCCUGCCA
CACGCCCCUGCAG

*Elements listed may not have been shown to regulate the specificity of alternative splicing. T Sequences that have been shown to be important for
element function but that have not yet been demonstrated to bind to specific trans-acting factors are shown in lower-case letters. ¥ Indicates that the
factor has been shown to bind directly to the element (for example, by ultraviolet-induced crosslinking) and has had binding confirmed (for example, by
mutational analysis). Specific binding sequences for trans-acting factors are indicated in bold, italics or underlined when known.

that are enriched in exons relative to introns and that are
near weak splice sites relative to strong ones. They identi-
fied ten classes of putative exonic splicing enhancers, five of
which matched known motifs for such elements and five of
which were novel. Representatives of all ten motifs had
enhancer activity when tested in minigene constructs in
vivo. Fairbrother et al. [12] also showed that nine out of the
ten elements tested had greater enhancer activity than cor-
responding mutant sequences that were statistically pre-
dicted to lack enhancer activity due to single base-pair
substitutions. The predictive ability of their method was
further demonstrated by comparing their predicted motifs
to hexamers within the human hypoxanthine phosphoribo-
syl transferase (HPRT) gene. Numerous natural exonic
mutations are known to cause exon skipping in the HPRT
gene, mutation of which is associated with Lesch-Nyhan
syndrome, a neurogenetic disorder caused by a defect in the

purine biosynthesis pathway. Of 30 mutations, more than
half disrupt predicted exonic splicing enhancer motifs. The
results by Fairbrother et al. [12] suggest that it is possible to
predict accurately the splicing phenotype of point muta-
tions in human diseases by computational analysis and
demonstrate the striking possibilities for predicting splicing
elements from genomic sequence. Interestingly, each of the
ten predicted exonic splicing enhancer motifs occurred as
often or slightly less often in alternative exons than in con-
stitutive exons, so it is likely that the motifs identified in
this study play a role in exon recognition in both alternative
and constitutive splicing.

Computational identification of intronic elements

On a small scale, a comparative genomic approach was used
to identify intronic elements regulating splicing of a single
alternative exon in the transcript for the splicing factor
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hnRNP A1i. Human and mouse hnRNP A1 genomic
sequences were aligned and conserved intronic stretches
were tested to determine whether they play a role in splicing
of the hnRNP A1 pre-mRNA [21]. Brudno and colleagues
[22] used a computational approach to find candidate
intronic regulatory elements involved in cell-type-specific
alternative splicing. In this study, a kilobase of intronic
sequence from each side of 25 brain-specific internal alter-
native exons was contrasted to a larger set of intronic
sequences flanking constitutive exons. Brudno et al. [22]
found a significant enrichment of the hexanucleotide
UGCAUG and related pentamers in the region of the down-
stream intron proximal to the regulated exon. They also
found this sequence at a high frequency downstream of a
smaller set of known muscle-specific exons, suggesting that
this element may play a broader role in cell-type-specific
alternative splicing. Strikingly, UGCAUG was previously
identified in intronic splicing enhancers defined by functional
assays ([23] and references within), and, furthermore, the
splicing factors KSRP and FBP bind to this sequence in the
intronic downstream control element of c-src transcripts
[18]. Brudno et al. [22] also report that computational analy-
sis of PTB consensus binding sites revealed a statistical over-
representation of these sites near brain-specific exons,
supporting models in which dynamic antagonism between
cell-type-specific activators and the more ubiquitous repres-
sor PTB modulate splicing of alternative exons by binding to
positive and negative auxiliary elements, respectively [17,18].
In future studies, this approach could be used to look at other
subsets of cell-type-specific alternatively spliced genes, or
expanded to encompass more distal intronic regions.

Functional identification of auxiliary elements

The most common experimental approach used to identify
RNA motifs associated with regulatory factors is systematic
evolution of ligands by exponential enrichment (SELEX), in
which preferred functional sites or binding sites are selected
and amplified from an initial pool of random RNA
sequences. Several studies have identified potential exonic
splicing enhancers by functional selection of exonic
sequences that enhance splicing in cell-free splicing assays
[24-27] or in cultured cells [28]. Of these, studies from the
Krainer laboratory [26,27] are most striking. In this work,
Liu and colleagues used a splicing substrate in which the
known exonic splicing enhancer was replaced with a pool of
random sequences. To select for sequences that mediate
splicing via individual SR proteins, they used a splicing com-
plementation assay in which recombinant SR proteins were
added to splicing-deficient cytoplasmic extracts. Liu et al.
[26,27] identified four sets of exonic splicing enhancer
motifs that are specifically activated by SR proteins, namely
ASF/SF2, SRp40, SRp55, and SC35. These motifs matched
almost a dozen natural exonic splicing enhancers for which
binding specificity of individual SR proteins has been deter-
mined. The score matrices generated for the four SR pro-
teins were then used as tools to predict exonic splicing

enhancers. Disruption of such a predicted enhancer explains
aberrant splicing resulting from a single nonsense point
mutation in the BRCA1 gene in breast and ovarian cancer
patients [29]. The mutation perturbs an exonic splicing
enhancer regulated by ASF/SF2, causing exon skipping,
which in turn disrupts the carboxy-terminal end of the
BRCA1 protein. This mutation had previously been thought
to contribute to disease by introducing a premature termina-
tion codon, but this analysis [29] demonstrated that the sub-
stitution gives rise to a splicing mutation instead.

Similar analysis of a single base-pair substitution within
exon 7 of the survival of motor neuron 2 (SMN2) gene
showed that exon skipping and subsequent truncation of the
SMN2 protein is due to disruption of an exonic splicing
enhancer [30]. Truncation of the SMN2 protein prevents
compensation for loss of a nearly identical SMN1 gene in
patients with spinal muscular atrophy. These studies dra-
matically demonstrate the importance of exonic splicing
enhancers for exon recognition, as well as the significant role
disabled elements play in human disease. Thus far, the
sequence motifs identified by SELEX for the four SR pro-
teins studied by Liu et al. [26,27] have been compared to
established exonic splicing enhancers and point mutations
known to affect splicing. In the future, analyses can be
extended to include additional SR proteins and the elements
identified by SELEX can be compared to databases of
genomic sequences, alternatively spliced exons, or other
point mutations associated with human diseases.

One study used sequences found by SELEX to identify alter-
native splicing elements from genomic sequence. Buck-
anovich and Darnell [31] used SELEX to identify binding
sites for the neuron-specific splicing factor Nova-1. The
selected sequence of three intact UCAU repeats was shown
experimentally to be both necessary and sufficient for high-
affinity Nova-1 binding. Although the sequence was selected
on the basis of optimal binding and not function, Buck-
anovich and Darnell [31] were able to identify natural targets
of Nova-1-mediated cell-specific splicing, by searching
GenBank, a neuron-specific alternatively spliced exon data-
base, and the Nova-1 genomic sequence with the consensus
RNA selection sequence. Only two targets (exon 3A of the
glycine receptor 0.2 and exon H of Nova-1) were identified,
but at the time of this study, few genomic sequences were
available and alternative splicing databases contained few
entries. It is interesting to note, however, that Brudno and
colleagues [22] found no increase in the frequency of UCAY
sequences (where Y is a pyrimidine) in brain-specific alter-
native introns, suggesting that Nova-1 activity mediated
through this element may be important only for a minority
of brain-specific exons. Today the approach used by Buck-
anovich and Darnell [31] could presumably be used to find
many natural targets of other cell-context-specific regulators
by searching the large genomic and alternative splicing data
sets for elements identified by SELEX.



Beyond the genome

Many powerful new tools are emerging that use genomic
information and large-scale analyses: investigators can now
compare and contrast vast genomic, mRNA, and EST data
sets, use computational analyses to predict regulatory
targets and elements, and develop array-based expression
profiles. A challenge for the new millennium will be to inte-
grate these tools with traditional biochemical and molecular
biology approaches to understand how complex processes
such as alternative splicing are regulated in specific cellular
contexts, such as different cell types or cells at different
developmental stages, in response to changing environmen-
tal cues, and in human disease. A consolidation of experi-
mental and computational approaches will be required to
catalog alternatively spliced genes, to characterize auxiliary
cis elements and the trans factors that mediate the use of
alternative splice sites, to identify genes with common alter-
native splicing programs, and to develop profiles of how
alternative splicing is regulated in different cellular contexts.

Pioneering studies of this sort have begun in other areas of
RNA processing. Darnell and colleagues [32] recently per-
formed SELEX to identify binding motifs for the fragile X
mental retardation protein (FMRP), an RNA-binding
protein associated with fragile X syndrome that is thought to
be involved in regulating mRNA translation, and used the
consensus of these motifs to screen 245,000 sets of mam-
malian genomic sequences to identify natural targets of
FMRP. RNAs from six genes bound FMRP and were identi-
fied as putative targets regulated by FMRP. In a parallel
study, Brown et al. [33] identified a subset of FMRP-associ-
ated RNAs by combining microarray analysis of FMRP com-
plexes in the murine brain and polyribosome profiling of
cells derived from patients with fragile X syndrome, who
harbor a 5’ untranslated trinucleotide repeat expansion that
leads to transcriptional silencing of the gene encoding
FMRP. A total of 14 of the RNAs in this subset were in turn
searched for the SELEX-derived FMRP-binding sites, and 7
of 11 putative elements in these RNAs bound with high affin-
ity to FMRP, demonstrating how useful it is to combine
these approaches to identify in vivo targets [32]. Similar
integrated studies would be valuable for elucidating the ele-
ments through which regulatory splicing factors act and the
in vivo targets containing these elements. Extending these
analyses to model genetic organisms, such as Mus musculus
or Drosophila melanogaster, whose genomes have been
sequenced, will be especially valuable for defining regulatory
networks that coordinate cell-type-specific alternative splic-
ing, allowing us to see the ‘big picture’ of the transcriptome
during development and in models of disease.
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