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Abstract 

Background: The current speed of sequencing already exceeds the capability of annotation,
creating a potential bottleneck. A large proportion of the genes in microbial genomes remains
uncharacterized. Here we propose a new method for functional annotation using the
conservation patterns of gene clusters. If several gene clusters show the same coevolution
pattern across different genomes it is reasonable to infer they are functionally related. The gene
cluster phylogenetic profile integrates chromosomal proximity information and phylogenetic
profile information and allows us to infer functional dependences between the gene clusters even
at great distance on the chromosome. 

Results: As a proof of concept, we applied our method to the genome of Escherichia coli K12
strain. Our method establishes functional relationships among 176 gene clusters, comprising 738
E. coli genes. The accuracy of pair phylogenetic profiles was compared with the single-gene
phylogenetic profile and was shown to be higher. As a result, we are able to suggest functional
roles for several previously unknown genes or unknown genomic regions in E. coli. We also
examined the robustness of coevolution signals across a larger set of genomes and suggest a
possible upper limit of accuracy for the phylogenetic profile methods.

Conclusions: The higher-order phylogenetic profiles, such as the gene-pair phylogenetic
profiles, can detect functional dependences that are missed by using conventional single-gene
phylogenetic profile or the chromosomal proximity method only. We show that the gene-pair
phylogenetic profile is more accurate than the single-gene phylogenetic profiles. 
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Background 
In the past 10 years we have witnessed an almost exponential

growth of genomic sequence data [1,2]. This dramatic

increase creates unique opportunities for comparative analy-

sis leading to new insights into the behavior of living microor-

ganisms. One of the burning questions of modern genomics

research is the need to assign annotations to new genes

whose biological function is yet to be understood. Computa-

tional tools based on sequence homology have proved to be

most broadly applicable for effective and accurate functional

annotations of genes in newly sequenced genomes. Among

them, BLAST and PSI-BLAST [3] are widely used to assign

functions to newly sequenced open reading frames (ORFs) in

genome sequence. However, one of the most surprising out-

comes of genome research is that roughly 20-40% of genes in

newly sequenced genomes do not have statistically significant

matches to functionally annotated sequences and are anno-

tated as ‘hypothetical proteins’ [4].
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Accordingly, several non-homology-based computational

methods have been introduced recently in an attempt to

provide putative functional assignments for those ‘hypothet-

ical proteins’. For example, among the most reliable

methods, the Rosetta stone technique [5,6] detects func-

tional associations based on protein-domain fusion events.

Other methods include the chromosomal proximity method

and the phylogenetic profile method.

The chromosomal proximity method of Overbeek et al. [7] is

a popular technique that utilizes chromosomal proximity

information to discover putative functional linkages between

genes close to each other on the chromosome. When two

genes appear as a neighboring gene pair in the genomes of

several distantly related organisms (that is, they form a con-

served gene cluster) it suggests the possibility that the genes

might be functionally related [7]. In fact, the analysis of

current data suggests that a cluster of two or more genes that

appears in four or more distantly related microorganisms

has a more than 90% probability of being involved in the

same broad functional category (Y.Z., unpublished data). 

Another seminal approach for establishing functional links

between genes based on their coevolution patterns in differ-

ent organisms was proposed and popularized by Pellegrini et

al. [8]. Similar proposals have been made by Gaasterland et

al. [9] and other groups. This method constructs a genetic

phylogenetic profile for each gene. A phylogenetic profile of

a gene indicates the presence or the absence of this gene in

each organism by an entry of 1 or 0 in a long vector. In other

words, each gene is assigned a binary vector of length N,

where N is the number of organisms used to construct the

phylogenetic profiles. The ith bit of the vector is set to 1 if a

homologous gene exists in the ith genome; otherwise it is set

to 0. Several variants of phylogenetic profiles have been

described in the literature [10,11]. The functional linkage is

established when two genes have similar phylogenetic pro-

files, that is, they show a correlated pattern of inheritance

across the genomes examined.

Here we propose a new simple method for inferring func-

tional linkages based on the phylogenetic profiles of gene

clusters. This method simultaneously takes advantage of

chromosomal proximity information and phylogenetic

coevolution information. We demonstrate an enhanced

ability to annotate a number of previously uncharacterized

genes that are not yet functionally annotated and appear to

resist the application of other computational techniques.

Our new method constructs gene cluster phylogenetic pro-

files by recording the conservation pattern of a gene cluster

that contains two or more neighboring genes in a set of refer-

ence genomes. In this paper, we will focus on gene clusters of

size two, that is, gene pairs. For a given gene pair AB (A and B

are separate genes and are encoded continuously on the chro-

mosome) in the target genome, the presence of AB in a

reference genome is recorded when we detect the presence of

either an A�B� or a B�A� gene cluster, where gene A� is a

homolog of gene A and gene B� is a homolog of gene B. There

are many established methods for detecting homology or

orthology, for example, membership in the same COG (Clus-

ters of Orthologous Genes) [12]. In this paper, homologs are

detected by BLASTP with an E-value lower bound of 1e-10 to

filter out statistically insignificant matches.

The implementation of the chromosomal proximity method

does not strictly require successive ORFs in the genome. An

important discovery in comparative genomics is that local gene

rearrangements happen quite often during evolution, disrupt-

ing gene order in gene clusters [13]. To account for possible

gene insertion and rearrangement events during evolution, a

natural extension is to consider gene clusters with ORF gaps.

That is, we extend the detection of A�B� clusters to include

A�xB� and A�xyB� clusters in the reference genomes, where x

and y are inserted genes (a maximum of two) and A� and B� are

homologs of genes A and B. Similarly, to be symmetric, we

allow the gapped gene pairs in the target genome, that is, AxB

or AxyB pairs where x and y are genes between A and B in the

target genome. The implementation of the gapped version of

the gene cluster phylogenetic profile method increases the

number of putative functional linkages between genes and

thus improves the sensitivity of the method. Here we report

results from the gapped version of the method. From now on,

we will refer to a single gene phylogenetic profile as SGPP and

to a gene pair phylogenetic profile as GPPP.

Results and discussion 
Examples of functional dependences revealed by GPPP
We carried out an exhaustive grouping of the Escherichia

coli gene pairs based on sharing the same GPPP (Hamming

distance equal to zero). In E. coli, our non-gapped GPPP

method detects 57 gene-pair clusters. These gene-pair clus-

ters include 351 genes. Low-quality profiles, which refer to

profiles with a norm of less than 4, are excluded. The norm

of the profile is calculated by summing the 1s and 0s in the

profile vector (see Figure 1 legend for the definition of profile

norm). By using the gapped GPPP method, we were able to

detect 176 functionally related gene clusters containing 738

genes. A two-dimensional representation of these clusters

and their relationships is shown in Figure 1. As a result, by

using the GPPP method, we could establish functional link-

ages among about 17% of the E. coli genome.

In many cases the GPPP method is able to establish func-

tional linkages that are missed by the application of the SGPP

method or the chromosomal proximity method indepen-

dently. There are numerous examples where gene pairs share

a common GPPP and have a functional linkage, although the

individual genes may not have similar SGPPs. Our method pro-

vides a new way to establish functional linkages between

distant coevolved gene clusters on the chromosome, enhancing
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the ability to assign gene functions consistently in a broader

genomic context. One such example consists of the E. coli

gene pairs: b1129(gi|1787374)/b1130(gi|1787375) and

b4398(gi|1790860)/b4399(gi|1790861). These two gene

pairs share the same GPPP (Figure 2), whereas individual

genes do not have the same SGPP (Figure 2). Hamming dis-

tances between the individual genes are shown in Table 1.

The gene pair b1129/b1130 in E. coli encodes a two-compo-

nent regulatory system PhoP-PhoQ [14,15]. This two-compo-

nent system is also present in several other Gram-negative

bacteria and is associated with virulence, adaptation to Mg2+-

limiting environments and other cellular activities [15]. The

gene b4399 has been annotated as a ‘catabolite repression

sensor kinase for PhoB, an alternative sensor for PhoB�,

although it is far from phoB (b0399) on the chromosome.

In fact, PhoB forms another two-component system with the

product of its neighboring gene, PhoR (b0400), which is

responsible for phosphate regulation [15]. The gene b4398

has been assigned a general function as a catabolic regula-

tion response regulator. As these two gene pairs

b4398/b4399 and b1129/b1130 share the same coevolution

pattern, revealed by the gene-pair phylogenetic profiles, we

suggest that the gene pair b4398/b4399 probably encodes

another two-component system in E. coli. This two-compo-

nent system may be functionally closer to the PhoP-PhoQ

system than to the PhoB-PhoR system. Interestingly, as no

individual gene has a similar SGPP (see Table 1), relying on

SGPP would miss this highly coupled functional linkage.

Functional dependence between genes as a selective pressure

sometimes favors gene clusters over random gene arrange-

ment along the chromosome [16]. The chromosomal proxim-

ity method aims to detect local functional dependences

(‘intracluster’ dependences) established by conserved prox-

imity among distantly related genomes. However, functional

Figure 1 
Visualization of gene clusters sharing the same profiles (GPPP) in a two-dimensional space. Each circular node represents a gene cluster grouped by the
same pair phylogenetic profile. The radius of the circle is proportional to the size of the cluster. The number shown at the center of each circle is the
norm of the profile vector for this cluster. For a profile vector (x1,x2,x3,…xN), the norm of this profile is calculated by 

N

�
i=1

xi. All clusters are color-coded by
COG’s broad-function classification [25]. Links between clusters are present when the Hamming distance between two profiles is less than 5. We can
see that for profiles with norms exceeding 10, similar profiles (Hamming distance less than 5), shown as clusters of connected nodes, tend to fall into the
same functional category. When the profile norm is less than 10, broad functional categories for similar profiles begin to diverge. Several broad functions,
for example, P (inorganic ion transport and metabolism), J (translation, ribosomal structure and biogenesis), and E (amino-acid transport and metabolism)
can be well recognized by the phylogenetic method, while some are either absent or tend to mix with other broad functions. This shows the relative
effectiveness of analyzing inheritance patterns of gene clusters for different broad functional categories. This figure is generated using the software
package Pajek.s
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dependencis between distant gene clusters (‘intercluster’ func-

tional dependences) on the chromosome usually cannot be

resolved by the chromosomal proximity method. Instead,

GPPP can reveal even distant functional dependences between

gene clusters that participate in closely coupled processes or

pathways. An example is the E. coli murG cluster (b0089,

b0090, b0092) and the lpxD cluster (b0177, b0179) which

share the same GPPP; their current annotations are shown in

Table 2. They are both present in Chlamydophila pneumo-

niae, Chlamydia trachomatis, Xylella fastidiosa,

Haemophilus influenzae, Neisseria meningitidis and

Pseudomonas aeruginosa and are absent in all the other

genomes included. MurG, the last enzyme in the intracellular

phase of peptidoglycan synthesis, is essential for the produc-

tion of the layers of peptidoglycan that protect cells from rup-

turing under high internal osmotic pressure [17]. LpxD is a key

enzyme in lipid A biosynthesis [18]. Lipid A is a glucosamine-

based phospholipid that makes up the monolayer of the outer

membrane outside the peptidoglycan layers. None of the

genes in these clusters is homologous to any of the others by

BLASTP. The conventional non-homology-based chromoso-

mal proximity method can imply functional dependences

inside each cluster separately. For example, as b0089, b0090,

b0092 are conserved among the six organisms above, we can

infer functional linkage and interpret the collective function as

cell-membrane maintenance from their current annotations

(Table 2). However, with additional information from GPPP,

we can establish a distant intercluster functional dependence

in addition to the intracluster dependences found by the chro-

mosomal proximity method. As both clusters are associated

with the outer membrane of the cell and are essential for sur-

vival of the bacteria [19,20], this dependence may suggest an

inherent functional linkage between them. Noticing there is a

hypothetical protein (b0177) in the lpxD gene cluster, we

then carried out sequence analysis on this gene and its

encoded protein, expecting that it might be associated with

4 Genome Biology Vol 3 No 11 Zheng et al.

Figure 2
Comparison of gene cluster profile and single-gene profile. Filled cells
(black) represent the presence of a gene or a gene pair in the genome and
empty cells represent its absence.

b4399 b4398 b1130 b1129 b4398+
b4399

b1129+
b1130

Aeropyrum pernix

Archaeoglobus fulgidus

Aquifex aeolicus

Borrelia burgdorferi

Bacillus halodurans

Bacillus subtilis

Buchnera sp. APS

Campylobacter jejuni

Chlamydophila pneumoniae CWL029 

Chlamydia trachomatis

Xylella fastidiosa

Halobacterium sp. NRC-1

Haemophilus influenca Rd 

Helicobacter pylori 26695 

Mycoplasma genitalium

Methanococcus jannaschii

Mycoplasma pneumoniae

Methanobacterium thermoautotrophicum

Mycobacterium tuberculosis

Neisseria meningitidis

Pyrococcus abyssi

Pseudomonas aeruginosa

Pyrococcus horikoshii

Rickettsia prowazekii

Synechocystis PCC6803 

Thermoplasma acidophilum

Thermotoga maritima

Treponema pallidum

Ureaplasma urealyticum

Rhizobium sp. NGR234

Table 1

Hamming distances between the single gene profiles in two
gene clusters that share the same pair profile

b1129 b1130 b4398 b4399

b1129 0 7 4 3

b1130 7 0 3 10

b4398 4 3 0 7

Table 2

Description of the murG and lpxD gene clusters 

Gene Synonym Current annotation
name (Genbank id)

murG cluster

ftsW b0089 (1786277) Cell division; membrane protein 
involved in shape determination

murG b0090 (1786278) UDP-N-acetylglucosamine:N-
acetylmuramyl- (pentapeptide) 
pyrophosphoryl-undecaprenol 
N-acetylglucosamine transferase

lpxD cluster

ddlB b0092 (1786280) D-alanine-D-alanine ligase B, affects 
cell division

yaeT b0177 (1786374) ORF, hypothetical protein

lpxD b0179 (1786376) UDP-3-O-(3-hydroxymyristoyl)-
glucosamine N-acyltransferase; 
third step of endotoxin (lipidA) 
synthesis



the outer membrane of the cell. A simple BLASTP search

tells us it has significant homology (E-value 0.0) to the

outer-membrane antigen present in many other bacteria.

Given that the lipid A layer provides anchoring sites for bac-

terial surface antigens such as lipopolysaccharide (LPS), this

discovery again supports the reliability of our prediction.

Previously uncharacterized genes in E. coli
By applying the GPPP method, a number of previously

uncharacterized genes in E. coli with hypothetical or unknown

annotation can now be functionally linked to characterized

gene pairs. Some of these genes have not been assigned a

function because of the lack of sufficient data at the time of

annotation. We then carried out additional sequence analyses

of these genes using BLAST, Pfam [21] and COG to confirm

our prediction. A number of previously unknown genes that

can be annotated by our method and can be confirmed by

additional analysis are listed in Table 3. It can be seen in

Table 3 that many of the predictions made by GPPP agree

with more detailed sequence analysis.

Accuracy of the GPPP method 
We have compared the accuracy of GPPP with that of the

SGPP method using COG’s broad-function classification

system [12]. Genes in each cluster grouped by the same

profile are labeled using COG’s 18 broad functional categories

excluding category R (general function) and category S (func-

tion unknown). A good method for establishing functional
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Table 3

List of previously unknown genes that can be annotated using GPPP

E. coli gene name Previous annotation Predicted function by GPPP Additional evidences from BLAST/Pfam/COG
(Genbank id) 

b1681 (1787971) Hypothetical protein Transport system, membrane COG0719: predicted membrane components of ABC-transporter SufB
protein

b1683 (1787973) Hypothetical protein Transport system, membrane 
protein

b2608 (1788960) Hypothetical protein RNA processing Pfam domain: RimM. RimM is essential for processing of 16S rRNA.

b2766 (1789125) Hypothetical protein Flavorprotein,electron COG0644:dehydrogenase/flavoprotein
transport

b0407 (1786608) Hypothetical protein Protein secretion Pfam domain: DUF219, (uncharacterized secreted protein)

b1395 (1787661) Putative enzyme Part of fad operon BLAST: 3-hydroxyacyl-CoA dehydrogenase 

b2341 (1788682) Putative enzyme Part of fad operon BLAST: 3-hydroxyacyl-CoA dehydrogenase; enoyl-CoA isomerase/hydrotase 

b0284 (1786478) Hypothetical protein Neighboring with BLAST: Putative oxidoreductase
xanthine dehydrogenase 
gene (b0286)

b2866 (1789230) Hypothetical protein Neighboring with BLAST: Probable aldehyde oxidase and xanthine dehydrogenase family protein
xanthine dehydrogenase 
(b2868)

b1674 (1787963) Hypothetical protein Oxidoreductase BLAST: Aldehyde ferredoxin oxidoreductase 

b2371 (1788714) Hypothetical protein Enzyme in carnitine Pfam domain: CAIB-BAIF, domain involved in carnite metabolism
metabolism

b2374 (1788717) Hypothetical protein Enzyme in carnitine Pfam domain: CAIB-BAIF, domain involved in carnite metabolism
metabolism

b2125 (2367130) Hypothetical protein Response regulator in Pfam domains: response-reg, REC probable cheY receiver domain
2-component system

b0936 (1787167) Hypothetical protein Transport system Pfam domain: PBPb, transport system related

b2075 (1788390) Hypothetical protein Integral transmembrane Pfam: ACR_tran, SecD_SecF, Patched, transmembrane domain related
protein

b2076 (1788391) Hypothetical protein Integral transmembrane Pfam: ACR_tran
protein

b1086 (1787327) Hypothetical protein RNA processing BLAST: RNA pseudouridylate synthase 



linkages will tend to cluster genes within the same broad

functional category. To this end, we devised two separate pro-

cedures to compare the effectiveness of GPPP and SGPP, with

the results summarized below. Because it is hard to calculate

the number of false negatives, which are functionally

dependent genes or gene clusters that do not show a

common coevolution pattern, we did not compare the sensi-

tivities of these methods.

The first accuracy measure is based on the proportion of

‘pure’ clusters among all the clusters. We defined satisfying

pure clusters heuristically, considering the intrinsic vague-

ness of the concept ‘broad category’ and the fact that it is dif-

ficult to classify proteins’ functional roles precisely using a

one-dimensional classification schema [22]. If more than

80% of the members in a cluster stay within a certain COG

broad functional category, which means that they might be

involved in the same biological process, we consider this

cluster as a pure cluster. The proportion of such pure clus-

ters among the total clusters serves as a coarse measure of

the specificity of the phylogenetic profile method. 

We plotted this measure versus the norm of the profile for

both GPPP and SGPP (Figure 3a). To account for the possi-

ble systematic bias of this measure toward sizes of the clus-

ters, we also plotted the average cluster size versus the

norm of the profile (Figure 3b). Figure 3b shows that

except at the very ends of the norm axis (norm = 1, 2, 30)

the average cluster sizes from both GPPP and SGPP are

close to each other.

In the other experiment to compare accuracy, we simply

examined all pairs of proteins that end up in the same

cluster and calculated the frequency with which two such

proteins are from the same functional category. This

measure is essentially the same as the Jaccard coefficient (C)

referred to in [10]. Given a gene cluster, let N be the number

of all pairs of genes chosen from this cluster and S be the

number of all pairs of genes that are chosen from this cluster

and are from the same COG category. Then the Jaccard coef-

ficient is calculated by C = S/N. C varies from zero to one

and is less dependent on cluster size, unlike the previous

measure. C is plotted versus the norm of the profile in

Figure 4. In both experiments (Figures 3a,4), we see that

GPPP achieves a higher accuracy (an increase of 10% on

average) than the conventional SGPP method, especially in

the norm range 5 to 20.

From the information theory perspective, we know that the

predictive quality of a profile is reflected by its mutual

information:

P(i,j)
MI(I,J) =  �P(i,j)  log �———————�

i=0,1; j=0,1
P(i) P(j)

where P(i) is the probability of seeing i (i = 0,1) in the profile

vector and P(i,j) is the probability of seeing (i,j) jointly in two

aligned profiles I and J. In theory, the predictive value is max-

imized when half the entries in a profile are 1s and the others

are 0s (high mutual information (MI) regions). The bell-like

accuracy curve for the profile methods (Figures 3a,4) can be

explained by considering the information content of profiles,

which is low when the norm of a profile is close to 0 (a vector

with all entries 0) or N (a vector with all entries 1) (low-MI

regions). Intuitively, the fact that certain gene clusters appear

in every organism or appear in only one organism does not

necessarily indicate functional relationship. We can see that

6 Genome Biology Vol 3 No 11 Zheng et al.

Figure 3
Comparison of the accuracy of GPPP and SGPP. (a) Comparison of the
accuracy of GPPP and SGPP using the proportion of ‘pure’ clusters. The
x-axis represents the norm of the profiles and the y-axis the percentage
of ‘pure’ clusters among all clusters. (b) Average cluster size of GPPP and
SGPP. In this and the following figures, the data points from GPPP are
marked by circles and those from SGPP are marked by stars.
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when the profiles are near these low-MI regions, the size of

the clusters tends to increase dramatically, suggesting the cor-

ruption of coevolution signals (Figures 3b, 5b). It is important

to realize which regions our functional linkages are estab-

lished from when we use these phylogenetic profile methods.

As more and more fully sequenced genomes of microorgan-

isms have become available, it is natural to ask whether the

accumulation of new genomes will help us improve the accu-

racy of the phylogenetic profile methods. With more than 77

sequenced genomes now available, we were able to expand

the phylogenetic profile analysis to a larger set of organisms.

Using total 68 microorganisms, in Figure 5a we plot the

accuracy versus the norm and in Figure 5b we plot the

average size distribution for both GPPP and SGPP. We can

see that the accuracy of the GPPP method is improved about

5% on average when more genomes are included and the

cluster sizes tend to become smaller. However, we did not

see dramatic improvements when using the larger set of

genomes, which made us think there may be an upper limit

to the accuracy of the phylogenetic profile method. When

more genomes are included, both the coevolution signal and

the noise signal are ‘amplified’, so we would not expect the

accuracy of the phylogenetic method to improve dramati-

cally when a larger, randomly selected genome set is

sampled unless a clever sampling strategy is used. All accu-

racy curves (Figures 3a,4,5a) show that the GPPP method

outperforms the SGPP method. The improved accuracy

makes GPPP a possible complementary annotation tool to

aid conventional homology-based sequence comparison.

To measure the robustness of the GPPP method for a larger

sample of genomes, we also examined whether the functional

linkages previously established by 30-dimensional profiles can

still be recovered by 67-dimensional profiles. We find that the

previously reported functional linkages can be completely

reconfirmed (data not shown), which suggests that the true

coevolution patterns of certain gene clusters are robust when a

wider range of genomes are sampled and appear to resist the

noise due to evolutionary diversity that could be introduced

when more genomes are used. Additionally, the GPPP method

using 68 genomes generates additional putative functional

associations (see [23] for a complete list). As some microor-

ganisms are closely related to each other (for example, differ-

ent strains of the same organism), it is important to realize

that the number of ‘informative’ genomes is less than the

number of genomes included. The discriminative power of

phylogenetic profiles will be improved when a proper strategy

for sampling organisms in different taxa is developed.
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Figure 4
Comparison of the accuracy of GPPP and SGPP using C (Jaccard
coefficient).
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Figure 5
Comparison of accuracy and average cluster size using a larger set of
organisms. (a) Comparison of accuracy of GPPP and SGPP using 68
organisms. (b) Average cluster size of GPPP and SGPP using 68 organisms.
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In summary, gene cluster phylogenetic profiles combine and

improve on the chromosomal proximity method and the

single-gene phylogenetic profile method. A gene cluster phy-

logenetic profile with a large norm simply states the fact that

this gene cluster is highly conserved across different organ-

isms, which is equivalent to the chromosomal proximity

method. By clustering gene clusters with the same phyloge-

netic profiles, we are able to detect functional linkages

between distant genomic regions on the chromosome based

on their pattern of coevolution. A phylogenetic profile of a

single gene could be corrupted by many genomic events

during evolution, such as gene duplication or the possible loss

of gene functions after speciation [24], which introduces

noise into the coevolution patterns. As the requirement for

the presence of a gene cluster is stricter than for the presence

of a single gene, the pair profiles help to obtain an improve-

ment in the accuracy of functional linkage detection.

Genes in microorganisms are known to form operons, two-

component systems, paralogous gene clusters, and other func-

tionally related genomic clusters. As described in here, the

implementation of GPPPs gives us a tool for establishing func-

tional linkages between these genomic elements even when

they are not physically close on the chromosome. In some

cases, these functional associations can help us understand the

dependencies between gene clusters in biological processes,

such as the murG and lpxD clusters described in this paper.

In addition to GPPPs, we could naturally develop software for

detecting higher-order profiles of bigger gene clusters;

however, we would expect to see a smaller coverage with a pos-

sibly higher accuracy. In fact, we observed that some gene pairs

with the same phylogenetic profile reside in a close proximity

on the chromosome, which suggests a longer conserved gene

cluster (for example, ribosomal gene clusters). Ultimately, all

these techniques are based on the identification of gene clus-

ters that show similar inheritance patterns across genomes.

Homology-based annotation tools aim to detect sequence simi-

larity between new genes and known genes by following a one-

by-one gene annotation methodology. The GPPP, however,

detects functional relationship between clusters of genes on the

basis of their coevolution patterns across genomes, and is able

to assign gene functions in groups by considering a wider

genomic context. With the accumulation of fully sequenced

genomes, the information content in gene cluster phylogenetic

profiles is expected to increase, as does the accuracy of the

proposed methodology. The GPPPs, and possibly higher-order

gene cluster phylogenetic profiles, together with other non-

homology methods, are likely to substantially increase our

ability to assign function to a large number of putative genes.

Materials and methods 
We initially chose 31 fully sequenced microbial genomes,

including 8 archaeal genomes and 23 bacterial genomes.

While this work was in progress the number of fully

sequenced microbial genomes grew to more than 70. We

then expanded our study to a total of 68 organisms to esti-

mate the robustness of the phylogenetic profile method and

present the results on accuracy evaluation. All protein

sequences were retrieved from the National Center for

Biotechnology Information (NCBI) genome repository. We

chose E. coli K12 as the target genome for functional linkage

detection and the other genomes as reference genomes for

constructing the gene cluster phylogenetic profiles. We per-

formed pairwise one-against-all BLAST searches to identify

all homologous E. coli genes in other organisms. 

By determining the presence or absence of all possible

neighboring E. coli gene-pair clusters in 30 other genomes,

we were able to get a set of 30x1 binary profile vectors that

are similar in spirit to the ones obtained by the SGPP

method. The profile of a gene cluster is simply a binary

vector that has a 1 in coordinate K if the gene cluster occurs

in the Kth genome; otherwise it has 0 in that coordinate. To

measure the similarity between two phylogenetic profiles,

we use the Hamming distance, simply expressed by the

number of vector entries that need to be changed to obtain

one profile from the other profile. Other natural techniques

can include mutual information (MI) or correlation coeffi-

cients (CC) that measure the statistical dependence of two

discrete distributions of coevolution patterns. 

The list of possible functionally linked gene clusters reported

by both the gapped and non-gapped versions of GPPP can be

accessed at [23].
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