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Abstract

Background: It has recently been shown that the detection of gene fusion events across genomes
can be used for predicting functional associations of proteins, including physical interaction or
complex formation. To obtain such predictions we have made an exhaustive search for gene fusion
events within 24 available completely sequenced genomes. 

Results: Each genome was used as a query against the remaining 23 complete genomes to detect
gene fusion events. Using an improved, fully automatic protocol, a total of 7,224 single-domain
proteins that are components of gene fusions in other genomes were detected, many of which
were identified for the first time. The total number of predicted pairwise functional associations is
39,730 for all genomes. Component pairs were identified by virtue of their similarity to 2,365
multidomain composite proteins. We also show for the first time that gene fusion is a complex
evolutionary process with a number of contributory factors, including paralogy, genome size and
phylogenetic distance. On average, 9% of genes in a given genome appear to code for single-
domain, component proteins predicted to be functionally associated. These proteins are detected
by an additional 4% of genes that code for fused, composite proteins. 

Conclusions: These results provide an exhaustive set of functionally associated genes and also
delineate the power of fusion analysis for the prediction of protein interactions.
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Background
Recent progress in genome analysis has shown that it is pos-

sible to predict protein interactions or, more generally, func-

tional associations of proteins using genome sequences

alone [1-3]. These powerful methods rely on the observation

that pairs of genes encoding proteins of known function

(usually interacting or forming a complex) tend to be found

in other species as a fused gene encoding a single multifunc-

tional protein [4]. This type of event is known as gene fusion

and is a well-known process in molecular evolution [5].

Many of these gene fusion events appear to be selectively

advantageous by decreasing the regulational load in the cell

for a particular process [1,3,5]. Therefore, the detection of

gene fusions in one genome (defined as ‘composite’ proteins)

allows the prediction of functional associations between

homologous genes that remain separate in another genome

(defined as ‘component’ proteins).

Although gene fusion events appear to be relatively rare, the

accurate detection of a gene fusion event in one genome

allows interactions to be predicted between many proteins in

other genomes. It is this kind of one-to-many relationship

that makes this method unique for discovering possible

interactions or functional associations between proteins,

even for those of unknown function. Unlike previous

methods that rely on gene proximity to predict functional
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coupling [6], this robust method can also detect distal genes

within a genome that may be involved in the same process.

Furthermore, we have previously demonstrated [1] the high

precision of our algorithm, which with an additional con-

straint of minimum alignment overlap has now increased to

over 86% (see Materials and methods). This family of

sequence-based methods is analogous with and complemen-

tary to the experimental approaches for the detection of

protein interaction [7].

In order to predict functional associations of proteins

through the dynamics of gene fusion events, we have applied

our algorithm to 24 entire genome sequences that were

available from a variety of species (Table 1). We define the

genome where we seek component proteins as the ‘query’

genome and all genomes from which we obtain composite

proteins as ‘reference’ genomes. A ‘fusion event’ is therefore

defined as any pair of component proteins that are detected

as a fused, composite protein in a reference genome. For

simplicity, we do not attempt to attach directionality to

fusion events. In other words, some of these fusion cases (for

example, fused in bacteria but split in metazoa) may repre-

sent gene ‘fission’ events.

Our algorithm was applied individually for each of the 24

genomes, against the remaining 23 genomes which are used

as references (see also Materials and methods). Paralogy in

the query genome makes it difficult to determine precisely

the actual number of possible associations. As we have previ-

ously pointed out, paralogy in the query genome increases

uncertainty, while paralogy in the reference genome

increases the fidelity of the predictions [1]. It is for this

reason that detected component and composite proteins

from all genomes are subsequently clustered according to

sequence similarity [8]. Each cluster should therefore indi-

cate a distinct family of component or composite proteins.

The analysis of the distribution of these gene fusion classes

among genomes allows us to investigate the dynamics and

distribution of this evolutionary process and to assess the

extent of the predictive power of the approach.

Results
The detection of gene fusion events yielded 132,812 compo-

nent and 66,406 composite proteins in an all-against-all

genome comparison, but these values represent multiple

occurrences of the same proteins across species. Of these,

there are 7,224 component and 2,365 composite unique pro-

teins across the 24 species (a 18- and 28-fold reduction

respectively). The multiple detection of these cases within or

across genomes signifies that the majority of components

and composites are observed more than once and therefore

represent genuine cases (as opposed to sequencing artifacts,

which are usually isolated cases).

The high precision of the method allows the prediction of

39,730 unique pairwise functional associations of the compo-

nents with reference to the composite protein set. Eighty-six

percent of the 66,406 predicted associations obtained from

the total number of composite proteins yield a Z-score value

of less than 3 (Figure 1), previously shown to result in virtu-

ally no false-positive cases [1]. This increased precision is due

to the introduction of an additional constraint that does not

permit any overlap between the component proteins (see

Materials and methods). All the above results are available on

the worldwide web (see Materials and methods). Some of

these associations are known, but we estimate that more than

half of them are newly detected cases, testable by using tech-

niques from functional genomics [7].

Currently, the only species for which predictions can be

extensively validated is the yeast Saccharomyces cerevisiae,

given the ongoing work on transcript profiling [9] and two-

hybrid technology [10]. For yeast, there are 440 distinct com-

ponent cases (predicted by all other genomes as reference,

Table 1

Genomes used in the present analysis

Organism name (strain) Number of ORFs ID

Aeropyrum pernix (K1) 2,694 aerpe

Aquifex aeolicus (VF5) 1,522 aquae

Archaeoglobus fulgidus (DSM4304) 2,409 arcfu

Bacillus subtilis (168) 4,100 bacsu

Borrelia burgdorferi (B31) + plasmids 1,639 borbu

Caenorhabditis elegans 19,099 caeel

Chlamydia pneumoniae (CWL029) 1,052 chlpn

Chlamydia trachomatis (serovar D) 894 chltr

Drosophila melanogaster 13,710 drome

Escherichia coli (K12- MG1655) 4,290 escco

Haemophilus influenzae (KW20) 1,707 haein

Helicobacter pylori (26695) 1,577 help2

Helicobacter pylori (J99) 1,495 helpj

Methanococcus jannaschii (DSM 2661) 1,773 metja

Methanobacterium thermoautotrophicum (delta) 1,871 metth

Mycoplasma genitalium (G-37) 479 mycge

Mycoplasma pneumoniae (M129) 677 mycpn

Mycobacterium tuberculosis (H37Rv) 3,924 myctu

Pyrococcus horikoshii (shinkaj OT3) 2,061 pyrho

Rickettsia prowazekii (Madrid E) 837 ricpr

Saccharomyces cerevisiae (S288C) 6,305 sacce

Synechocystis sp. (PCC 6803) 3,168 synsp

Thermotoga maritima (MSB8) 1,849 thema

Treponema pallidum (Nichols) 1,030 trepa

The species/strain names, the number of ORFs and the species name
abbreviation used in all figures are given. References for each genome can
be found elsewhere [19].
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excluding some highly paralogous Drosophila melanogaster

homologs) involved in 706 predicted interactions, most of

which are detected by their homology to composite proteins

from Caenorhabditis elegans and D. melanogaster. Two

examples of predicted protein pairs that are known to inter-

act are CPA1 (YOR303w) with CPA2 (YJR109c) [11] and

MET3 (YJR010w) with MET14 (YKL001c) [12], both derived

from C. elegans homologs.

We have attempted to test the validity of our predictions by

comparing the set of components to a list of potentially

interacting gene products, using results from a large-scale

two-hybrid experiment [10]. However, there is only one case

shared between the 1,004 proteins involved in 957 putative

interactions detected by the two-hybrid system and the com-

plete set of 706 pairs in this analysis: YIL033C (SRA1) and

YKL166C (TPK3) matching the C. elegans protein C09G4.2

and D. melanogaster protein CT10911. This very low count

of common pairs may be expected by the sampling biases of

the two rather independent methodologies, given that each

approach can only detect a very small subset of the total

number of actual interacting pairs in yeast. Interestingly,

based on a simple conditional probability calculation, an

estimate for the total number of detectable interactions in

the yeast cell may be of the order of 675,000.

Another validation procedure for the S. cerevisiae predic-

tions was obtained by comparing all 706 component pairs

against their expression profiles from publicly available gene

expression data. We have found that at least 20% of our pre-

dictions exhibit very strong correlations across gene expres-

sion experiments. For each of the pairs, a profile from 87

experiments involving cell cycle [13], sporulation [14] and

diauxic shift [9] was used to determine whether expression

data corroborated our predictions for the association of the

component proteins (see Materials and methods). The

detected pairs of components from fusion analysis clearly

exhibit similar patterns of expression for the above men-

tioned experiments (Figure 2, inset). Despite the noise levels

for the gene expression data as a result of the limited

number of experimental conditions available, with some

random pairs exhibiting significant correlations, there are

twice as many predicted associations than random, above

the threshold of average correlation value of 0.5. With a

higher threshold of 0.55, precision is increased, with four

times as many predicted associations over the random back-

ground. Above this value, 92 predicted functional associa-

tions (20% of 536 available pairs, see Materials and

methods) exhibit high correlation across all experiments

(Figure 2). Below that threshold, it is very difficult to esti-

mate the precision rate of our predictions, because of the

high amount of noise and the rather limited number of pub-

licly available gene expression data sets. This comparison

between fusion detection and transcript profiling contrasts

with previous approaches [2], where expression data was

used as a filtering step for the detection of functional associ-

ations, and not as a validation criterion.

We have analyzed the S. cerevisiae predictions and detect-

ed many interesting cases, which appear to be hitherto

Figure 1
Z-scores for component proteins. The graph illustrates the
Z-score (blue bars) distribution and its cumulative sum (step
function, with red rectangles) between components, for all
detected fusion events (66,406 in total). The Z-score is a
statistical measure of similarity for each pair of components.
Components that have a Z-score similarity of less than 10,
and both exhibit similarity to the same composite protein are
detected as fusion events. In general, fusion events where the
Z-score between components is less than 3 (marked by a
vertical line) result in fewer false-positive fusion detections.
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Figure 2
Correlation of gene expression between component pairs.
The graph illustrates the distributions of average correlation
values of gene expression between component pairs (blue
bars) and randomly selected pairs (gray bars), above a
threshold value of 0.5. Inset: Distributions of average
correlation values for both predicted and random
associations (vertical line indicates the cut-off value of 0.5).
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undetected functional associations between yeast proteins.

Two of these are discussed in some detail here. First, MXR1

(peptide methionine sulfoxide reductase, involved in anti-

oxidative processes) [15] and YCL033C (function unknown)

are predicted to be functionally associated by virtue of gene

fusion in three other species - Helicobacter pylori (both

strains), Haemophilus influenzae and Treponema pallidum.

This observation is supported by experimental results [16].

MXR1 is 39% identical to the amino terminus of the H.

pylori composite proteins and YCL033C is 38% identical to

the carboxyl terminus of these proteins. It appears that

YCL033C is a selenoprotein, also homologous to the human

SelX protein, which may be involved in scavenging reactive

oxygen species [16]. These two proteins may be associated to

protect the yeast cell from oxidative damage. 

Second, another interesting observation involves yeast pro-

teins MSS4 (phosphatidylinositol 4-phosphate kinase),

which is involved in a signaling pathway responsible for the

cell-cycle-dependent organization of actin cytoskeleton [17],

and CCT3 (cytoplasmic chaperonin subunit gamma) which is

involved in microtubule and actin assembly [18]. A central

domain of CCT3 is 25% identical to a large domain of

C. elegans protein VF11C1L.1 and the carboxy-terminal

domain of MSS4 is 29% identical to its carboxyl terminus.

Thus, these two proteins are predicted to cooperate in cell-

cycle-dependent cytoskeleton organization and assembly.

The distribution of components and composites differs dra-

matically between species. There are 7,224 component cases,

with an average of 350 cases per genome, exhibiting signifi-

cant variation (Figure 3a, blue bars). The query genome

sequences detected 2,365 composite cases, with an average of

115 cases per genome (Figure 3b, blue bars). Interestingly, we

have observed some relatively small genomes containing

composite proteins, which may yield predictions for compo-

nents of higher organisms. For instance, there are 71 proteins

(forming 30 families) in the C. elegans genome that match a

fused protein gene in Mycobacterium tuberculosis. Two such

examples are the component pair T06C10.1/C49H3.7

matching composite Rv0957 and the component pair

W04C9.1/Y65B4B_12.b matching both composites Rv1272c

and Rv1273c. Another clear prediction is the S. cerevisiae

component pair YER052c/YJR139c (encoding HOM3/HOM6

respectively) matching composite MetL (3847.PRO) from

Escherichia coli and other species.

This has been a key observation that dictated the all-against-

all genome comparison in this analysis. In other words,

when species A is used as a query against species B, the

resulting set of component and composite proteins is differ-

ent from that with the reverse comparison, when species B

is used as a query against species A. The three principal

factors in gene fusion during evolution appear to be paral-

ogy, genome size and phylogenetic distance. For instance,

larger genomes have more composite, possibly paralogous,

proteins. At the same time, closely related species evidently

show similar patterns of gene fusion. The results below

address each of these factors in turn and examine their rela-

tive contribution to the gene fusion process and their effects

on the prediction of functional association of proteins.

For every genome, both sets of component and composite

proteins were subsequently clustered [8], to detect the

degree of paralogy for these proteins (Figure 3, green bars;

see also sequence clustering in Materials and methods).

There are 2,534 component families, with an average of 105

families per genome (Figure 3a, green bars) and 1,323 com-

posite families, with an average of 55 families per genome

(Figure 3b, green bars). Comparing these numbers with the

number of unique cases, it is evident that there is a paralogy

4 Genome Biology Vol 2 No 9 Enright and Ouzounis

Figure 3
Numbers of component and composite proteins. Absolute
number of (a) component and (b) composite proteins as
individual cases (blue bars) and protein families (green bars),
by species. Species name abbreviations as in Table 1. Data
for C. elegans and D. melanogaster are clipped (1,973 and
1,981 components, 567 and 559 composites, respectively).
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level of two- to threefold per genome for the composite and

component proteins, respectively. As mentioned above, this

effect contributes to the confidence of the predictions,

depending on whether paralogy is observed in the query or

the reference genome.

Another characteristic of this process is the redundancy of

both sets of component and composite cases: the number of

instances of these may be high but they are widely present

across species, falling into well-defined protein families.

When all components and composites are clustered as a

single set (as opposed to within species, above), sequence

clustering results in 1,287 single component families and 621

single composite families (as represented in the current

analysis for the 24 species). Comparing these numbers with

the number of families per species, it is apparent that there

is a further twofold reduction for both sets. This result indi-

cates that gene fusion is widespread in evolution but forms a

finite set. Different species may contain a common core of

composite families, but also provide new families that are

used to predict functional association. For instance,

D. melanogaster provides far more composite families

(more than 200) compared to C. elegans (fewer than 100)

(Figure 3b, green bars). Genomes with unique composite

families, such as D. melanogaster, contribute strongly to the

majority of predicted interactions. It may also be that only

certain classes of proteins are involved in gene fusion and

that there is an upper limit for the predictive power of this

approach obtainable from (currently available) 621 families.

Evidently, the number of component and composite proteins

detected in each species is also dependent on genome size

(Figure 4). When the above numbers for unique cases and

families of components (Figure 4a) and composites

(Figure 4b) are normalized by the number of open reading

frames (ORFs) for the species examined, the patterns of dis-

tribution are significantly altered. For instance, Aquifex

aeolicus and Thermotoga maritima appear to have a large

number of components involved in gene fusion (more than

12% of their genes are involved in this process) (Figure 4a),

whereas the absolute numbers are low (Figure 3a). This is

also the case for composites, where, for example, S. cere-

visiae yields as many cases as D. melanogaster in relative

terms (4% of the genome) (Figure 4b), while the absolute

counts are dramatically different (Figure 3b).

Finally, when the factors of paralogy and genome size are

removed by sequence clustering and normalization, respec-

tively, the effect of phylogenetic distance between species

can be detected. A distance measure based on shared com-

posite families has been devised (see Materials and

methods) and was used to identify relationships between the

24 species examined. The fact that the tree based on this dis-

tance measure (Figure 5) does not significantly contradict

other trees based on sequence alignments is a strong indica-

tion that our hypotheses about the factors involved in gene

fusion are valid. This result also indicates that certain types

of fusion events appear to be confined to specific phyloge-

netic groups, such as the Archaea, various bacterial clades

and the Eukarya (Figure 5).

Discussion
The exhaustive detection of gene fusion events in entire

genome sequences allows the prediction of functionally asso-

ciated components based merely on genome structure. The

all-against-all species comparison is a necessary step

because we have repeatedly observed fused, composite pro-

teins in taxonomically lower organisms. The landscape of
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Figure 4
Numbers of component and composite proteins relative to
genome size. Relative numbers of (a) component and (b)
composites per species, as individual cases (blue bars) and
protein families (green bars), normalized by total genome
size (number of ORFs). Species name abbreviations as in
Table 1. Average values per genome are 9% for components
and 4% for composites.
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gene fusions appears to be a complex one, affected by paral-

ogy, genome size and phylogenetic distance.

Although gene fusion is widely present across various phylo-

genetic groups, it is a process that may involve only certain

types of proteins. Yet, this approach for the prediction of

functional associations of proteins results in robust predic-

tions for physical interactions, pathway involvement,

complex formation and other types of functional associa-

tions of protein molecules.

With the present analysis, we delineate the available universe

of fusion events and detect a set of 621 composite protein fam-

ilies from which predictions may be obtained. This approach

results in 39,730 pairs of functionally associated proteins

across 24 species, with high precision and coverage. This novel

set of predictions is made available to the scientific commu-

nity for the first time, and we believe that many of these cases

can be subsequently verified by experimental methods.

Materials and methods
Genome sequences
Complete genome sequences for the 24 species were

obtained from their original sources [19]. The species names,

number of ORFs and the identifiers used throughout this

study are listed in Table 1.

Genome comparison
All 24 genomes were filtered using the CAST compositional

bias filtering algorithm [20], then compared against them-

selves and each of the other 23 genomes using the BLASTp

[21] sequence similarity searching algorithm with a cut-off

E-value of 1 x 10–10. The DifFuse algorithm [1] was then

applied automatically to each genome in turn as a query

against the other 23 (reference) genomes. Using other

protein databases as reference yields fewer composite cases

(for example, the well-known case of the TopA/TopB pair

appears multiple times in this analysis), showcasing the

extreme bias of annotated databases, such as SwissProt

(data not shown). Performing the same computation using

the non-redundant sequence database (nrdb) is prohibitively

expensive in terms of computation time for an analysis of

this size. The detected gene fusion results for each of the 552

comparisons were further automatically filtered for signifi-

cant overlap of the BLAST alignments of the component pro-

teins. In this case, component proteins that overlap by more

than 10% of their total length when aligned together with the

composite protein. This step avoids the detection of ‘promis-

cuous domains’ [3] and gene prediction errors, which result

in false-positive fusion detection cases. The detected compo-

nent and composite proteins are far fewer in number than

for the two previous reports of E. coli [3] and S. cerevisiae

[2], due to the much stricter criteria employed in the present

analysis and the multi-step protocol we have developed. This

analysis was fully automatic and carried out in parallel over

a period of four weeks on 11 SUN UltraSPARC CPUs running

Solaris 7.

Expression profile analysis
Gene expression ratios for all experiments were transformed

into log-odds values so that induction and repression mea-

surements are directly comparable (positive and negative

values, respectively). The log-odd values were then normal-

ized across all timepoints for each experiment, using Z-score

values for each timepoint. The Z-score values for all time

points of each experiment thus allow cross-comparison of

gene expression across separate experiments [9].

Our predicted functional associations for S. cerevisiae with

available expression data represent 536 component pairs in

total. For each pair of proteins, a Pearson correlation coeffi-

cient was calculated between two corresponding experi-

ments and averaged over all experiments. To estimate noise

in these data, a control set of 536 randomly selected S. cere-

visiae proteins was taken and treated as above (Figure 2).

The distribution of averaged Pearson correlation coefficients

for the predicted functional associations was compared

against the distribution of coefficients for the control set

using a t-test for mean values (where the null hypothesis is

that the two means are equal). The test results in a t-value of

3.6 (critical t-value is 1.64), which is highly significant

(P-value is 0.000173), indicating that there is a higher

6 Genome Biology Vol 2 No 9 Enright and Ouzounis

Figure 5
Neighbor-joining dendrogram representing the phylogenetic
proximity of each of the 24 species in terms of detected
gene fusion events. The distance measure is derived from
the count of composite families (see Materials and methods).
Scale bar is set to indicate a distance of 10 (ranging from 0
to 100). Species name abbreviations as in Table 1. Only
bootstrap values less than 100 are shown.
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average correlation of expression profiles for the predicted

functional associations against the background.

Sequence clustering
All proteins involved in gene fusion events as either compo-

nent or composite proteins were identified automatically

from the results of the fusion analysis. From these data we

can obtain raw counts of the number of gene fusion events

detected and the number of proteins involved in these events

as either composite or component proteins. These figures

are skewed however, due to the presence of homology in

both the query and reference sets. Proteins involved in gene

fusion events as either component or composite genes are

then assembled into two lists. These lists are then used to

generate two sequence databases, the first one containing all

component sequences from the 24 genomes and the second

containing all composite sequences.

These sequence databases of component and composite pro-

teins are then compared against themselves using the

BLASTp (version 2.0) sequence similarity searching algo-

rithm [21] (cut-off E-value 1 x 10–10), then clustered accord-

ing to their similarity using the RAGE algorithm [8]. The

RAGE algorithm lists all composite and component proteins

in clusters according to similarity and domain structure.

Homologous proteins with similar domain structure were

clustered together. Each cluster in this case indicates a dis-

tinct class of fusion event and cluster members indicate

which proteins involved in this type of event from different

genomes. These clusters are used to calculate the number of

unique fusions detected within and across genomes. This is

done by examining how many distinct types of fusion are

present in any given genome.

Dendrogram calculation 
All composite proteins were clustered into 621 families and a

distance measure δ was derived according to the sharing of clus-

ters between the 24 species examined. This pairwise distance

measure is calculated as δ = (1 - SA,B/TA,B) x 100, where SA,B is

the number of shared composite clusters and TA,B is the average

of the composite cluster counts from the two species. This

measure is reminiscent of a recent genome-wide “ortholog”

analysis [22]. This measure was used to calculate a nearest-

neighbor dendrogram for the 24 species. Bootstrap values were

generated using a ‘delete-half’ jack-knife procedure.

Data availability
All results of the present analysis are available from the

Computational Genomics Group website [23]. 
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