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Abstract

Background: The recent draft assembly of the human genome provides a unified basis for
describing genomic structure and function. The draft is sufficiently accurate to provide useful
annotation, enabling direct observations of previously inferred biological phenomena.

Results: We report here a functionally annotated human gene index placed directly on the
genome. The index is based on the integration of public transcript, protein, and mapping
information, supplemented with computational prediction. We describe numerous global features
of the genome and examine the relationship of various genetic maps with the assembly. In addition,
initial sequence analysis reveals highly ordered chromosomal landscapes associated with
paralogous gene clusters and distinct functional compartments. Finally, these annotation data were
synthesized to produce observations of gene density and number that accord well with historical
estimates. Such a global approach had previously been described only for chromosomes 21 and 22,
which together account for 2.2% of the genome.
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Conclusions: We estimate that the genome contains 65,000-75,000 transcriptional units, with exon
sequences comprising 4%. The creation of a comprehensive gene index requires the synthesis of all
available computational and experimental evidence.

Background

The sequence of the human nuclear genome has been com-
pleted in draft form by an international public consortium
consisting of 16 sequencing centers and associated compu-
tational facilities [1]. A private commercial version of the
genome has also been sequenced and assembled using a
whole genome shotgun approach [2]. Many lower organ-
isms have been sequenced to date [3], but the 3.2 billion
base pair (bp) human genome is approximately 25 times as
large as the largest currently finished genomes - Drosophila

melanogaster at 120 megabases (Mb) [4] and Arabidopsis
thaliana at 115 Mb [5].

As of late 2000, the public human sequence was primarily
based on approximately 24,000 accessioned bacterial artifi-
cial chromosome (BAC) clones covering 97% of the euchro-
matic portion of the genome [6]. The sequence of these
clones is approximately 93% complete to at least 4-fold cov-
erage [7]. Thirty percent of the genome is in finished form,
including the entire sequence of chromosomes 21 and 22 [7].
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These clones represent the most complete sequence infor-
mation available, with overlapping clones positioned on a
framework map using restriction fingerprinting [8].
However, reduction to a single consensus sequence permits
placement of genes and other chromosomal structures in
their proper positional context. Recently, the consortium has
distributed a working draft assembly of the entire genome
that removes redundancies, orients sequence fragments and
clearly indicates gaps arising from sequencing and assembly.
The total assembled length is 3.08 billion bp — about 4%
smaller than estimates of genome size based on flow cytome-
try [9], presumably due to the exclusion of constitutive hete-
rochromatic regions and centromeres. Major gaps (50-200
kilobases (kb)) comprise 16% of the assembly, whereas minor
gaps (100 or fewer bp) and low-quality calls comprise 0.5%.

Large-scale sequencing will continue until at least 2003. The
current coverage is, however, sufficient for the Human
Genome Project to enter a new phase, in which the entire
sequence can be analyzed to identify genes, regulatory
regions and other genomic elements and structures. Linkage
and genetic association studies can be immediately followed
by investigation of candidate regions. The assembly provides
simplified descriptions of the genome, as disparate data
sources such as GenBank and numerous expressed sequence
tag (EST) and protein databases are unified. Similarly, for-
merly independent maps, based on cytogenetic banding pat-
terns, meiotic crossovers and radiation hybrids, may be
placed within the single consensus sequence.

Results and discussion

Combine and conquer

Public attention surrounding completion of the draft human
sequence has fostered the impression that we are entering a
‘post-genomic’ era, and that description of genes and their
functions is straightforward. However, the challenges in
genome annotation remain daunting [10], and the research
community can anticipate years of additional work and
manual curation to produce a true gene map of high quality.

Functional annotation of the genome is primarily hampered
by the lack of a unified transcript index. Current transcript
information still largely consists of anonymous and highly
redundant ESTs. The situation is further complicated by
extensive splicing variation and elusive gene expression. To
address these problems, the Ensembl consortium relies ini-
tially on computational prediction, followed by confirmation
with EST/protein alignments [11]. However, pure computa-
tional approaches can give differing results [12], and may
miss 20% or more of transcript-supported exons [13]. Other
gene identification approaches rely on selecting and group-
ing ESTs into putative gene indices [14,15], or consensus
sequences [16,17]. These approaches emphasize internal
consistency and result in limited EST populations that only
partially overlap. The genome sequence serves as a powerful

arbiter of the quality of EST evidence, and will enable con-
solidation of additional exons into transcriptional units.
Thus, we adopt a more inclusive approach.

Our approach is to combine the major public cDNA, EST and
protein databases, resolve redundancies, and place the
resulting exonic sequences uniquely on the genome using
the program Blast. We refer to these genomic segments
(technically high-scoring segment pairs [18]) as ‘exons’,
although the alignment evidence awaits future biological
confirmation. Splicing evidence was carefully maintained
within genomic clones, and across clones using the finger-
print map. For a given transcript, only the best match to
genomic sequence (using splicing evidence, length and high
sequence identity) was preserved, resulting in a unique loca-
tion for each exonic unit within each database. We have suc-
cessfully applied this approach to integrate UniGene
consensus sequences into the human genome draft [19].

To compile a truly unique exonic index, redundancies must
also be resolved across transcript databases. We grouped the
databases into ranked categories and ordered them within
categories. Transcripts with known boundary information
(using the untranslated region database (UTR-DB)) [20] or
full-length ¢cDNAs in the human transcript database (HTDB)
[21] were given precedence over other records. Consensus
transcripts were given precedence over individual ESTs
because they provide greatly improved specificity, splicing
evidence and transcript integrity. We assembled UniGene-
based human [19], mouse and rat consensus transcripts. Col-
lectively, the databases represent almost all public
information on known genes, transcripts and relevant homol-
ogous sequences. When aligned segments overlapped, only
the segments from the highest-ranked categories were
retained. After resolution of overlapping exons, a new exonic
index of contiguous spliced components was formed. Each
member of this new index inherited the rank of its highest-
ranked exon, in order to facilitate subsequent identification
of transcriptional units. Our approach also ensures that
known genes are represented only once in the final gene map.

Table 1 describes the identification of exonic sequence via the
public databases. Not all human transcript records could be
placed on the genome, reflecting sequence gaps and the draft
quality of the genomic clones. The percentage placement of
known genes (80-89%) suggests that unsequenced regions
will contribute substantial numbers of additional genes. The
varying placement percentages among transcript databases
reflect varying sequence quality and differing transcript
lengths. Unique exons are those that have no overlap with
those already placed by a higher-ranked database. Rodent
transcripts provided a modest number of additional exons.
Finally, additional placements were based on strong protein
homology with supportive computer exon prediction. The
percent placement was relatively low because all proteins
from different species were considered, with specificity
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Identification of exons on the genome

Category Database Total Percent Total Exons in  Exons in Exon ORF Putative genes Protein CpG
records placed unique complete partial length length (non-splicing homology islands
(%) exons ORFs ORFs (bp) (bp) singletons) (Pfam hits)

Known UTR-DB 40,258 80 19,195 5,075 1,895 6,925,762 1,990,818 10,007 (426) 5,701 (3,813) 3,866
genes HTDB 15,305 89 48,477 12,077 7,706 11,893,081 4,043,544 4816 (148) 2,938 (1,943) 1,960
Consensus ~ HINT 87,125 77 103,817 47,055 15061 23,381,024 10,144,988 20,357 (959) 9,121 (6,453) 7,557
transcripts  EG 62,064 80 13,085 5,389 1,904 4,562,954 1,873,723 4,800 (154) 2,177 (1,679) 2,462
THC 84,837 8l 38,806 15,463 6,671 12,406,081 5,078,661 8,604 (322) 2,907 (2,026) 3,983

Transcripts  GenBank CDS 110,222 8l 41,917 31,626 1,452 5,303,064 4,299,272 2,634 (227) 1,858 (1,607) 1,178
dbEST Human 2,154,995 73 273,881 147819 17,694 32,288,385 14,975,758 20,073 (7,136) 5,377 (3,745) 11,807

Rodent MINT 92,531 30 8,284 5,433 120 866,046 780,566 777 123 (56) 486
transcripts  RINT 37367 46 5,600 3,588 75 592,788 546,932 458 65 (32) 255
EMBL 43,488 28 5819 4,108 59 724,630 655,993 202 68 (72) 135

Protein SWISS-PROT 86,593 38 27,526 12,072 1,163 9,858,797 7,784,205 1,648 1,648 (1,244) 158
homology ~ TrEMBL 351,834 13 22,670 8,134 1,677 4,385,497 2,886,034 1,185 1,185 (654) 92
PIR 182,106 16 4,106 1,175 383 1,355,644 764,339 321 321 (132) 20

Total 613,183 299,014 55860 114,543,753 55,824,833 75,982 (9,372) 33,489 (23,008) 33,959

Exons were identified after vector screening using transcript, rodent, and protein databases. The definition of a record varies according to the database,

while ‘exons’ refer to high-scoring segment pairs in BlastN comparisons (E

< 105 and sequence identity > 90%) to the genome. Unique exons and all

subsequent columns refer to placements that were possible after considering the preceding databases. Placement of rodent transcripts required evidence

of splicing and sequence identity > 80%. ORFs were identified using getorf

[84] using a minimum size of 30 bp to report. Protein homology required

BlastX E < 10-'5. Pfam hits required score > 20 using hmmpfam [92]. Gene prediction programs are described in Table 2. CpG islands were identified

using cpgreport [84] using standard criteria [45].

assured by using appropriately stringent criteria and exons
confirmed by at least one gene prediction program.

When all of the databases are considered, 613,183 unique
exons were placed, including 299,014 in complete open
reading frames (ORFs) and 55,860 in partial ORFs. The total
putative exonic lengths add to 106 Mb, or about 4% of the
sequenced genome. About 50% of our described exonic
sequences are in ORFs (Table 1). It is generally thought that
the majority of exonic sequence is coding, suggesting that
additional coding sequences remain to be discovered. This
possible bias towards untranslated regions is to be expected,
as current transcript information is largely derived from the
3" or 5" termini of ¢cDNA libraries. At least 30-40% of the
known genes or transcript indices contain one or more inter-
nal transcripts, suggesting alternative splicing, internal
genes or occasional artifacts (misassembly or genomic cont-
amination). The prevalence of alternative splicing remains
unknown, but may occur frequently [22]. ‘Sandwiched’ tran-
scripts were merged with their flanking indices, unless both
the internal and the flanking sequences were from distinct
known genes (< 150 apparent internal genes). In addition,
we observed a small number of apparently overlapping
exons (about 530 on opposite strands) [23].

We assessed three ab initio gene prediction methods by
comparing their predicted exons to the ones identified by

transcripts and proteins. Genscan, Grail and Fgene were
used across the genomic clones to identify potential exons
(Table 2). Approximately 70% of the 299,014 exons in ORFs
with either transcript or protein support were identified by
at least one of the programs, but a very large number
(847,283) of unconfirmed exons were also predicted. The
large apparent false negative and positive rates imply that
pure computational gene prediction is not yet a practical
alternative to experimental evidence.

Transcriptional units

Our consolidated exonic index is of inherent biological inter-
est, but it is desirable to further identify transcriptional
boundaries to create a putative gene index. We used an
approach designed to minimize fragmentation of exons and
provide conservative gene counts (see Materials and
methods). The following criteria were used to identify gene
boundaries: known 5" or 3° UTR sequences in UTR-DB; full-
length ¢cDNAs in HTDB; exons in partial ORFs as possible
boundaries of coding regions; exons without continuous
ORFs as additional UTR sequences; CpG islands; and gene
boundaries predicted by Genscan. Multiple in-frame exons
in a continuous ORF were always considered part of a single
gene, an approach that tends to consolidate exons rather
than create spurious additional genes. Additional consolida-
tion resulted from extension of boundaries for multiple
exons not residing in ORFs until the occurrence of genomic
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Table 2

Genome-wide assessment of ab initio gene prediction methods

Genscan  Grail  Fgenes Transcript- Protein-  Unconfirmed

confirmed supported exons
exons exons

i 25,619 2,890 45,025
° 52,644 14,685 434,409
° 7,791 796 257,676
° ° 17,841 3,761 28,556
° ° 13915 1,711 11,628
e ° 3,990 450 49,420
. . . 53,566 9,871 20,569
Total exons 175,366 34,164 847,283

Three gene prediction programs, Genscan [93], Fgenes [94] and Grail |.3
[95] were used to screen individual genomic contigs. Exons consistently
predicted by more than one program are merged into a unique exon
index, which is then compared to transcript- and protein-based exons in
complete ORFs. Transcript-confirmed exons, overlapping of predicted
exons with transcript-based exons; protein-supported exons, predicted
exons have at least strong protein homology (E < 10-'%); unconfirmed
exons, predicted exons have no overlap with transcripts nor protein
homology.

landmarks described above. The success of this approach
depends largely on the extension and consolidation of over-
lapping transcripts, and the integrity of ORFs and other
genomic landmarks provided by the draft sequences.

Table 1 lists the number of genes added by each database to
the cumulative sum. The total number of known genes in
UTR-DB, HTDB and HINT is 16,673. This compares with
11,191 entries with at least partial functional annotation in
UniGene (May 2000 build) and 11,863 entries in the HUGO
Human Gene Nomenclature database [24]. Approximately
48% of the transcriptional units were based on consensus
transcripts and 28% based on individual ESTs. A total of
9,372 transcriptional units were based on singleton tran-
scripts without splicing evidence. Single-exon (intronless)
genes occur with appreciable frequency in the human
genome [25]. At least one third of the singletons in our gene
index contain intact ORFs, and are predominantly histones,
G-protein receptors, olfactory receptors, and cytokines or
their homologs/paralogs. The remaining two-thirds of the
singletons do not have intact ORFs, and possibly represent
pseudogenes, genomic contamination or other artifacts. It is
thought that most intronless genes originated from retro-
transpositions of SINEs and LINEs [26]. Thus, the total
number of single-exon genes might be under-represented in
this study, because of the repeat masking process necessary
prior to our analysis. This also applies to the tRNA, rRNA
and other snRNAs in the human genome, which have been
similarly masked. A total of 1,437 units were supported only
by rodent transcript consensus, predominantly derived from
cDNA libraries of early embryogenesis or tissues of the

central nervous system. An additional 3,154 units were iden-
tified on the basis of protein homology, with exons supported
by at least one gene prediction program. Our approach yields
an overall estimate of 75,082 transcriptional units, with
66,610 supported by multiple transcripts or individual tran-
scripts with splicing evidence. Therefore, the consolidation
and integration of mainly the transcript information into the
genomic consensus assures that our putative gene index is
largely based on experimental evidence, rather than ab initio
gene prediction.

It is important to note that pseudogenes are common in the
human genome, and are thought to largely originate from gene
duplication or retrotransposition [27]. The extent to which
pseudogenes remain transcriptionally active is still largely
unknown, however. It is also difficult to identify pseudogenes
computationally. Although nonfunctional pseudogenes can
have characteristic structural features, some functional genes
can also exhibit such features [27].

We observed that 45% of the gene units were associated with
CpG islands (defined as 10 kb upstream or within the gene).
For the 6,500 known genes with known 5" boundaries, the
value was 40%. The average genomic size of each of our
transcriptional units from the first to last identified exon
(including only transcript or protein-based exons) is approx-
imately 12 kb. The overall average gene length is likely to be
significantly longer, but full-length ¢cDNA information is not
yet available for most genes.

Comparison of gene counts

Our count of 66,000-75,000 transcriptional units on the
genome is consistent with gene count estimates [28,29] that
had held sway until recent widely varying estimates [17,30,31].

Ewing and Green [17] examined 680 assumed genes on chro-
mosome 22 and found matches to 2% of a selected set of
assembled EST contigs. The sampling approach assumes that
the 680 genes represent 2% of all genes, resulting in an overall
count of 34,000. An examination of evolutionarily conserved
regions in known genes on chromosome 22 in humans com-
pared to the fish Tetraodon nigroviridis [30] results in an
estimate of around 30,000 genes, assuming a uniform rate of
conserved regions per true gene. These approaches resulted in
similar estimates when applied to larger sets of mRNAs or
known genes, and are similar to the current 33,000 genes
reported by Ensembl as having Genscan computational
support and EST confirmation. All of these estimates are care-
fully constructed and remarkably concordant, and we propose
possible explanations for the difference from our results. The
differences do not result entirely from the reliance on tran-
scriptional evidence, as has been proposed [32].

Our estimate of 854 genes on chromosome 22 is 25% greater
than that of Ewing and Green [17], but represents only 1.4%
(rather than 2%) of our gene total. It was noted [17] that high



gene expression on chromosome 22 could result in low gene
count estimates by biasing the reference sample. In addition,
known genes may be more highly expressed than unknown
genes, which presumably aided their initial identification
and characterization. Our evaluation of EST evidence sup-
ports the existence of both forms of bias. We have found that
5% of Ewing and Green’s original set of EST contigs (selected
with less stringent criteria than those used to estimate gene
counts) map to chromosome 22. An examination of UniGene
transcripts (May 2000) reveals that the known genes
contain a median of 41 entries, whereas anonymous tran-
scripts contain a median of just two entries. This is not
entirely explained by the greater length of the known gene-
like transcripts (having been correctly assembled as a single
unit). In dividing the number of ESTs in the consensus by its
length, we obtain a median of 0.017 entries per base pair for
known genes and 0.005 entries per base pair for anonymous
transcripts. On chromosome 22, the median number of ESTs
per anonymous transcript is three, which is significantly
higher than that among other transcripts on the genome
(geometric mean 3.76 versus 3.11 for other chromosomes,
P < 0.0001, Wilcoxon rank-sum test). The estimate based on
conserved regions [30] is calibrated using known genes. This
approach also introduces bias, as such genes appear more
likely to belong to the evolutionary core proteome. Known
genes comprise 22% of all of our transcriptional units, but
comprise 71% of our units which are conserved with rodents,
Drosophila and Caenorhabditis elegans. A recent high gene
estimate based on transcript evidence [31], again using chro-
mosome 22, appears to result from less stringent alignment
criteria, resulting in many putative genes.

As genomic annotation proceeds, the number of protein-
coding genes will become clearer. Our approach seems to rule
out artifactual or genomic contamination as the predominant
explanation for transcriptional units with unknown function
or protein homology. Ensembl has recently listed a count of
170,160 ‘confirmed’ exons, whereas we report 299,014 in
complete ORFs and many more in untranslated regions, sug-
gesting that our approach identifies considerable additional
transcription. We point out that only 58% of known genes
exhibit protein homology (Table 1) and, for example, a large
proportion of transcriptional units have not been functionally
classified in Drosophila [4]. We therefore propose that most
of the unclassified transcriptional units are in fact coding -
the lack of protein homology may reflect difficulty in studying
these proteins, or rapid gene evolution, and some portion is
likely to function at the RNA level [33].

Gene map

The placement of transcriptional units is not without error,
as most genomic clones are unfinished and the restriction
fingerprint map can be subject to misassembly. To resolve
placement errors, we used a relational database to integrate
information from several independent maps, including
Genemap’99, assembled genomic contigs, and fingerprint,
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radiation hybrid and cytogenetic maps (see Materials and
methods). Placement required a minimum of three concor-
dant criteria. Together, a total of 75,982 transcriptional units
were placed on the genome, providing an initial glimpse of a
complete gene map. The map and associated functional
annotation are available as additional data files online.

Functional annotation

SWISS-PROT, TrEMBL, PIR (Protein Information
Resource) and Pfam (Protein Families database) were used
to annotate our unified gene index, because functional key-
words in these databases are standardized [34] (Table 3).
We used the classification schema developed by the Interna-
tional Gene Ontology Consortium to assign each keyword to
an appropriate ontological description ([35] and see addi-
tional data files for keyword assignments). When more than
one unrelated protein was identified within one gene unit,
clear functional roles and biological processes were given
priority over other keyword designations. Similarly, protein-
based annotation was performed for HINT consensus tran-
scripts. The transcriptional units resulted in a greater
number of annotations (around 23,000) than HINT tran-
scripts (around 11,000) because of the increased length of
exonic sequences from other transcript databases and the
included genomic sequence. It is also important to note at
least 12,000 of the gene units had more than one conserved
protein domain as evidenced by Pfam hits. Additional func-
tional repertoire and biological complexity might be derived
from shuffling, and other recombinant events of individual
exons during genome evolution.

The annotation also allows us to assess the protein composition
of human versus other species. A BlastX result of E < 1072° was
required in cross-species DNA-protein alignments to be con-
sidered homologous. A total of 20,892 human transcriptional
units (30% of all units) are homologous with at least one other
species; 5,792 (10%) were conserved across mammals (mouse
or rat), Drosophila, and C. elegans. A total of 1,759 (3%) were
conserved across all of these species and yeast. These values
are very consistent with a recent comparative genomic
survey [36].

Global tissue expression profiles

During the assembly of UniGene [19], we retained the library
source for each EST, via links provided by UniGene to the
IMAGE consortium [37]. Most of the 2,500 libraries com-
prising UniGene ESTs were derived from single tissues or
embryonic stages, and we further standardized the library
source annotation into 102 categories. Keywords and
derived categories are available as additional data files
online. The most highly represented categories were various
types of tumors (15.0% of all ESTs), fetal tissue (10.7%),
embryo (6.2%), infant (5.1%), and testis (4.3%). We rea-
soned that some genes might exhibit highly tissue-specific
expression, such that most of the ESTs comprising a tran-
script would be derived from the tissue. The identified genes
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Ontological classification of 22,339 human gene products

Biological function

Number of transcripts

Biological process

Number of transcripts

Transcription factor
Translation factor
RNA binding
Ribosomal protein
Cell cycle regulator

Structural protein

Cytoskeleton structural protein

Extracellular matrix
Actin binding

Motor protein
Chaperone

Enzyme

Protein kinase

Protein kinase inhibitor

Protein phosphatase

Protein phosphatase inhibitor

Protease

Protease inhibitor
Enzyme activator
Enzyme inhibitor

Alkyl transfer

Amide transfer
Carbonyl transfer
Hydroxyl transfer
Phosphoryl transfer
Oxireduction
Transmembrane protein
Receptor

G protein-linked receptor
Defense/immunity protein
Ligand binding or carrier
lon channel

Oncogene

Tumor suppressor
Growth factor
Hormone

Cell communication

Cell adhesion

Functionally classified

958 (306)
62 (27)
142 (41)
232 (130)
42 (16)
145 (48)
329 (181)
361 (87)
66 (25)
245 (77)
87 (27)
2,664 (1,404)
895 (484)
19 (12)
43 (7)

17 3)
441 (255)
92 (37)
18 (3)

14 (4)

17 3)

15 (3)
191 (38)
13 (6)
823 (281)
148 (76)
184 (48)
921 (478)
164 (106)
353 (164)
691 (331)
245 (141)
128 (42)
8 (6)

95 (40)
42 (14)
247 (84)
433 (252)

12,334 (5,204)

Carbohydrate metabolism

Nucleotide and nucleic acid metabolism
DNA replication

Transcription

RNA processing

Amino acid and derivative metabolism
Protein biosynthesis

Protein modification

Protein targeting

Protein degradation

Proteolysis and peptidolysis

Lipid metabolism

Monocarbon compound metabolism

Coenzyme and prosthetic group metabolism

Steroid compound metabolism
Prostaglandin metabolism
Transport

Electron transport

lon transport

Small molecular transport
Neurotransmitter transport

lon homeostasis

Organelle organization and biogenesis
Nuclear organization and biogenesis
Cytoplasm organization and biogenesis
Meiosis

Mitosis

Cell cycle

DNA packaging

DNA repair

DNA recombination

Methylation

Signal transduction

Growth regulation

Differentiation

Apoptosis

Angiogenesis

Defense/immunity

Detoxification

Stress response

Developmental process
Neurogenesis and regeneration
Physiological process

Sensory perception

Process classified

281 (84)
173 (51)
240 (126)
1,059 (651)
204 (59)
87 (29)
264 (162)
235 (88)
26 (5)
136 (45)
96 (36)
424 (187)
9(3)

92 (29)
40 (10)
12 3)
549 (288)
491 (273)
302 (90)
19 (9)
9(3)

201 (57)
408 (254)
1,380 (647)
42 (20)
15 (2)

25 (6)
271 (100)
15 (6)
132 (41)
31 (3)
185 (53)
1,231 (383)
15 (4)

24 (6)
160 (49)
1 (4)
112 (49)
33 (15)
90 (41)
278 (99)
147 (43)
159 (43)
292 (65)

10,005 (4,225)

Each transcriptional unit and HINT transcript (in parentheses) was assigned to a unique biological function or process.



are potential candidates for diseases of the involved tissues.
Similar approaches have been used to identify candidate
genes for pathologies of the prostate [38] and retina [39].
We explore here the global nature of tissue/source speci-
ficity. The result was 7,459 HINT transcripts with highly sig-
nificant tissue-specificity (11%). Many of these are known
genes, and an examination of the most specific transcripts
revealed clear relationships to the associated tissue. For
example, a search for retina-specific genes revealed that the
ten most significantly associated with retina include five
known genes, all related to retina function. Four are impli-
cated in retina pathology: GNAT1 and ARR (night blind-
ness), RHO (retinitis pigmentosa), and GUCA1A (cone
dystrophy). Similar results were observed in numerous other
tissues, although not as obviously related to pathology. The
results appear especially striking for tissues with substantial
EST representation, including brain, lung, liver, kidney, and
testis, suggesting that putative tissue involvement can be
inferred for many anonymous ESTs. Where possible, the
tissue expression profile has been incorporated into the
annotation of our gene index. Approximately half (50.5%) of
the tissue-specific clusters were from embryonic tissue
libraries (while such tissue contributed 6.2% of all UniGene
ESTs). This striking result is consistent with the highly regu-
lated and specific nature of embryonic development [40].
The embryo category is followed by brain (9.7% brain-
specific versus 3.8% of ESTs) in number of tissue-specific
clusters, kidney (5.5% versus 3.5%), and testis (6.1% versus
4.3%). We also examined the locations of the tissue-specific
transcripts on the genome, and found no evidence of
regional clustering (see description of regional functional
clustering in Materials and methods).

A global view of the human genome

In keeping with the long-standing clinical importance of
cytogenetics, it is important to align Giemsa-staining G
(dark) cytobands versus R (pale) bands (ISCN 1995) to the
assembly [41]. Cytoband boundaries on genomic sequence
have been depicted with apparent precision [13,42] but in
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fact are largely unknown. With only a few-fold genomic cov-
erage, the gap sizes in unfinished sequence are difficult to
estimate precisely. Thus, it is preferable to align the cyto-
band positions to the fixed assembly rather than the reverse.
Such an ‘assembly-corrected’ alignment was performed
using genes/ESTs that have been mapped cytogenetically
and also placed on the assembly. This alignment is approxi-
mate, as the resolution of conventional staining techniques
and fluorescence in situ hybridization (FISH) is limited to
1-3 Mb [43].

Density of genomic features

The resulting corrected ideograms and six major genomic
features are plotted across the genome in Figure 1. Unique
exons (as determined above), CpG islands, genomic GC
content, Alu and LINE1 elements, and minisatellites are
plotted as densities (proportion of bases belonging to
feature) in 1 Mb intervals. The assembly-corrected ideogram
clearly differs from the standard ideogram - for example, in
our representation 1p is longer than 1q. This may reflect
more complete sequencing on 1p, or perhaps differing DNA-
packing densities on the two chromosome arms. Many of the
chromosomes show a suggestive relationship between cyto-
bands and exon density, consistent with the expectation that
R bands are relatively gene rich. A more striking result is the
expected positive correlation among exons, CpG islands, GC
content and minisatellites, which track each other closely on
most chromosomes. Exon density is relatively high on chro-
mosomes known to be gene rich (for example, 17 and 19)
[44], and low on chromosomes 4, 13, X, and Y.

A total of 48,000 CpG islands were found on the assembly
using standard criteria [45] (see Figure 1 legend), with a
median length of 336 bp. As sequencing gaps are filled, this
number may increase. Considering the varying definitions of
CpG islands (especially the minimum length of CpG-rich
region), this number is in close agreement with the estimate
of 45,000 obtained by Antequera and Bird [28] using methy-
lation-sensitive restriction enzymes. The CpG island density

Figure | (see figure on following two pages)

Overview map of features on the entire human genome, based on the working draft assembly (15 June 2000 release) and
finished sequences for chromosomes 21 and 22. Ideograms are oriented with the p-arm at the top, and are assembly-
corrected to form an approximate cytogenetic alignment with the features of the draft assembly depicted to the right of each
ideogram. Sequencing gaps at the centromeres and contiguous heterochromatic regions are represented by horizontal lines.
Chromosome 19 is an exception, for which evidence suggests that both heterochromatic regions are at least partially
sequenced. Genomic features are presented as densities (that is, proportion of base pairs occupied by each feature) in
nonoverlapping | Mb intervals. The densities are corrected for sequencing gaps, indicated in the draft assembly as 50-200 kb
segments of Ns (unsequenced nucleotides), but (with the exception of GC content) are not corrected for sporadic Ns of
lower-quality base calls, because these would not interfere with assignment of the feature to the assembly. Exon density (red)
is based on high-scoring pairs from Table |, not necessarily in ORFs. CpG island density (blue) is based on standard
definitions [45] of a run of at least 200 bases with GC content > 50% and observed over expected CpG > 0.6, and
implemented using the program cpg [90]. GC content (green) is the number of G or C bases divided by the number of non-N
bases in the | Mb interval. LINEI (blue) and Alu (black) repeat elements were determined using RepeatMasker [91] and
minisatellites of repeat size 20-50 bp by the etandem program of the EMBOSS suite [84]. Density ranges were selected to

illuminate features across the genome while preserving a common scale to facilitate comparison. A number of values exceed
the range for the feature and are truncated, with a small dot of the corresponding color placed under the ordinate. The data
points for the figure are available in the additional data file online.
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is also in agreement with a report of FISH karyotypes using
CpG island probes [46] with contrasting fluorescent signal in
late-replicating regions. Extended regions of high CpG
island density, such as the terminus of 1p and 1q21-q22,
are apparent in the FISH assay. Short spikes of CpG
islands (for example, in 3p26 and 3p25 of Figure 1) do not
obviously appear in the assay, perhaps because they are
below the resolution of FISH or are part of transcriptionally
active regions.

In contrast to exon and CpG island density, GC content
shows limited variation - in the range 35-55% for most 1 Mb
intervals. The overall GC content is 41.1%. This compares
with estimates in the range of 40-41% based on density gra-
dient centrifugation [47] and flow cytometry [48].

Consistent with previous reports [49] Alu repeats show an
apparent positive correlation with exon, CpG and GC densi-
ties, while LINE1 densities do not show such correlation.
Approximately 1.1 million Alu repeats were identified, as
expected [50]. However, a total of 758,000 LINE1 repeats
were identified - 40% higher than estimates based on a sam-
pling of sequenced regions [50]. Minisatellites of the hyper-
variable family (20-50 bp repeat size) are dispersed
throughout the genome but, as expected [51], show sharp
spikes in subtelomeric regions of most chromosomes.

Comparison of cytogenetic bands

We next examined the overall correspondence between cyto-
bands and exonic density and other genomic features.
Table 4 gives the average densities of features in the R bands
versus G bands based on the assembly-corrected alignment.
Genomic intervals residing in R bands were significantly
richer in exons, CpG islands, GC content, Alu repeats and
minisatellites than those in G bands. The reverse is true for
LINE1 elements. These observations accord with predictions
based on a variety of indirect methods [52], or a selected set
of genes [53], but only now can be investigated directly using
the sequence of the entire genome. The increased exonic
density in R bands was fairly modest (approximately 30%),
and may reflect attenuation due to alignment error. In addi-
tion, the analysis did not account for variation in staining
intensity in G bands [41]. The results across the chromo-
somes were fairly consistent, however, and the R/G exonic
density ratio exceeded 2.0 on two chromosomes (13 and 21)
and was below 1.0 on only one chromosome (Y). The
increased density of CpG islands in R bands was more strik-
ing (59%), whereas GC content was only a few percent
higher (42.2 versus 39.8% in G bands), again consistent with
previous observations [54]. The results for the cytobands are
also reflected in pairwise correlations of the genomic fea-
tures across 1 Mb intervals. These correlations do not
depend on the cytoband alignment, and most features were
positively correlated. LINE1 elements again differed from
other features, showing a negative correlation with exons,
CpG islands, GC content and Alu repeats.

Table 4

(a) Density of features per megabase in Giemsa-staining
cytogenetic bands

R G R/G ratio

Exons 0.0415 0.0319 1.30

CpG islands 0.0119 0.0075 1.59

GC content 42.23% 39.76% 1.06

LINEI repeats 0.1435 0.1602 0.90

Alu repeats 0.1204 0.0937 1.28
Minisatellites 0.0090 0.0078 I.15

(b) Correlation of features in | Mb intervals

Exon CpG GC LINEI Alu Minisatellite

Exon 1.00 0.65 0.64 -0.26 0.73 0.19
CpG 1.00 0.73 -0.42 0.58 0.16
GC 1.00 -0.54 0.6l 0.13
LINEI 1.00 -0.20 0.28
Alu 1.00 0.23
Minisatellite 1.00

(@) Pale-staining (R) and dark-staining (G) bands are compared, with
alignment of cytogenetic bands to sequence as described in the text. All
of the features except LINEI elements are denser in the R bands. The
true differences are likely to be larger, as errors in cytoband alignment
will tend to understate the differences in the band types. The differences
in the bands are highly significant at p < 0.001 for all features except for
minisatellites (p = 0.006). (b) Rank correlations of features, in | Mb
intervals (p = 0.03, corrected for multiple comparisons).

Gene density

We analyzed the exonic sequence for each chromosome as
given in Table 1. Figure 2a shows the density of exonic
sequence per chromosome. Chromosomes 19 and 17 are the
richest (that is, densest) in exonic sequence [44], by factors
of 2.04 and 1.62, respectively, compared to the average for
the genome. Chromosomes 4, 13, 21, X and Y are exon-poor.
A similar pattern emerges in the density of transcriptional
units across the chromosomes, as shown in Figure 2b [19].
Reports based on integrated radiation hybrid (RH) maps of
ESTs [55,56] indicated that chromosomes 1 and 22 were
more gene-rich, but otherwise broadly agree with our
results.

An intriguing clinical observation follows from these data
and the tissue-specific observations. It had been noted [52]
that the aneuploidies that are compatible with survival until
birth (trisomies 13, 18 and 21, as well as X and Y aneuploidy)
appeared to occur in relatively gene-poor chromosomes. Our
data confirm these observations. However, the most obvious
models for the deleterious effects of aneuploidy should
instead depend on the total number of genes. In examining
our HINT transcripts we have found that in fact the total
number of embryo-specific transcripts is lowest on these five
chromosomes (Figure 3). We suggest that trisomy of other
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Figure 2

Coding sequence density for human chromosomes. (a) The proportion of assembled sequence that is exonic provides direct
confirmation of previously hypothesized patterns of gene density. (b) Transcriptional units per megabase. Additional plots and

data are in the additional data files online.

chromosomes may exceed a limit of survivable dosage com-
pensation during development.

Comparisons to genetic and radiation hybrid maps

A total of 3,628 Genethon markers from the Marshfield map
were localized via e-PCR [57] on the assembly, along with
28,350 Genebridge 4 markers/ESTs and 4,688 Stanford G3
markers appearing in Genemap’99. Figure 4 shows the posi-
tions of markers on the Chromosome 1 assembly. The curves
are nearly monotonically increasing, showing that the assem-
bly is broadly correct, although localized orientation errors
and outliers remain (see additional data files online for plots
for all chromosomes). These plots are immediately useful as
they enable the placement of new markers on genetic maps
without the need for mapping experiments. Some of the vari-
ation is likely to reflect estimation error in the published
maps, and the curves are not completely monotonic for fin-
ished chromosomes 21 and 22. However, other regions are
likely to reflect errors in assembly, as the genetic and RH
maps agree with each other but disagree with the assembly
(for example, the 130-148 Mb region is reversed on chromo-
some 5; a 15 Mb region of Xqter belongs at Xpter; numerous
other isolated reversals and extensive reversals appear on
chromosome 16). The genetic map shows a higher recombina-
tion rate per unit physical distance (that is, higher slope) at the
telomeres, and a low male recombination rate (and thus sex-
averaged rate) near the centromere (approximately 130 Mb).
Similar patterns hold for the entire genome. These observa-
tions agree with previous studies which had been limited to

comparisons of genetic and RH maps [58], male/female
meiotic ratios [59], or relatively few markers on well-
sequenced chromosomes [59]. The plots offer an interesting
perspective on positional cloning efforts. For example, exami-
nation of the plots reveals that the hemochromatosis gene
HFE, at 28 Mb on 6p, lies at the edge of a recombination ‘cold
spot’ from 28-40 Mb. This fact complicated efforts to map the
gene via linkage disequilibrium [60]. In contrast, the NIDDM1
gene at 2qter (a region with higher recombination rate) was
initially mapped to a 7 centimorgan (cM) region, which fortu-
nately was discovered to be only 1.7 Mb of sequence [61].

The radiation hybrid plots tend to be more linear, which is
consistent with the model that radiation induces chromoso-
mal breakpoints essentially uniformly [62]. However, jumps
in the Genebridge 4 (GB4) map occur at the centromere on
most chromosomes. This may result from incomplete cen-
tromeric sequencing and assembly, so that a large cen-
tromeric gap might not appear as such. Alternatively, the
jumps may reflect statistical difficulties in estimating break-
point rates across the centromere. We note that no jump
occurs in the G3 map, apparently because the higher radia-
tion intensity produces insufficient marker pairs in the
rescued hybrids that span the centromere. Thus, the jump
cannot be accurately estimated and was simply suppressed
in the published map [63]. The GB4 jump is strikingly large
on several chromosomes, and we propose that the jumps
might reflect increased radiation sensitivity at the cen-
tromere. This hypothesis is worth additional investigation.
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Total number of embryo-specific genes (based on HINT
clusters) for each chromosome. Chromosomes 13, 18, 21
and Y clearly have lower numbers than other chromosomes.

Clusters and compartments

The availability of the full assembly enables a comparison of
the entire genome to itself for evidence of homology arising
from duplications or insertions. We emphasize that the
genome is still in draft form, and a complete description of
these features will be a large and ongoing scientific and com-
putational task. We used BlastN [64] to identify intrachro-
mosomal homology and to provide an initial look at the
genomic landscape. Local duplication is a feature common
to all chromosomes, as evidenced by the near-diagonal runs
in dot-matrix plots in which the line of complete identity has
been removed (Figure 5, and see additional data files online
for full-page plots for each chromosome). These runs vary
across the chromosomes, and tend to be of high sequence
identity, indicative of recent origin. More distant duplica-
tions also occur, and include large repetitive regions of high
identity on chromosomes 10 and 17. The Y chromosome
shows strong internal sequence similarity, some of which
arises from strikingly long duplications (from several of the
order of 100 kb to a duplication of almost 1 Mb near the
g-terminus of the euchromatic region). Near-duplicate
sequences appear throughout the genome, producing a ‘plaid’
appearance on many chromosomes. These sequences tend to
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The correspondence between physical location and maps
constructed using different mapping methods. (a)
Correspondence between the genetic map and physical
location. (b) Correspondence between radiation hybrid
maps versus physical location. The GB4 (black) radiation
hybrid map shows a jump at the centromere, reflecting a
sequencing gap and possible increased radiation sensitivity in
the region. The jump for the Stanford G3 map (blue) is not
easily estimated and is suppressed in the published map.
Chromosome | is shown here for illustration, and the
corresponding figures and data points for the entire genome
are available in the additional data files online.

have lower sequence similarity (blue in Figure 5), consistent
with an ancient origin and accumulated mutations.

As an example of functional duplication, we note that more
than 60% of the entire zinc-finger (ZNF) families are mapped
to chromosome 19, restricted to six large tandemly duplicated
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Repeat-masked chromosome sequences were divided into | Mb segments and analgzed against the entire chromosomal

sequence. Matches of at least 70% identity (both forward and reverse) and E < 102

are plotted. The diagonal line of

complete identity has been removed to clarify features near the diagonal. Plots for each chromosome are available in the

additional data files online.

gene clusters spanning the chromosome. More than one type
of ZNF is found within each cluster, presumably as a result of
sequence divergence. A majority of these ZNFs densely popu-
late the 22-27 Mb region (see Figure 5). The remaining ZNFs
are mapped to 15q21 (bZIP), 7q11 (KRAB), 11q13 (C;HC)),
11q23 (C3HC 4), 6p21 (C,H,), 1op11 (KRAB), 10qi1 (C,H,),
16p11 (C,H,) 9q22 (C,H,), and 3p21 (C,H,).

The largest functional group is related to phosphoryl trans-
fer and protein kinases. Interestingly, many of the biological
functions involving phosphoryl transfer form large gene

clusters as well. For example, the mitogen-activated protein
kinase family, phosphatidylinositol-4 phosphate 5-kinase
family, protein kinase C family and at least 55 other diverse
protein kinases are distributed in five gene clusters on chro-
mosome 1, only about one third of which have been previ-
ously described. Similar gene clusters are also found on
chromosomes 2, 3, 6, 19, 22 and X. In addition, DNA repair
genes form gene clusters on different chromosomes, with
postmeiotic segregation proteins (PMS) on chromosome 7,
glycosidases on chromosome 12, MutS homologs on chro-
mosome 6, MutT homologs on chromosome X, MutL
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homologs on chromosome 2, Rad1/Rec1/Rad7 homologs on
chromosome 10, excision repair on chromosome 11, and
repair for single-strand nicks on chromosome 19. Additional
regions of high and striking sequence similarity and the list
of matching sequences with protein homology are provided
in the additional data files online.

Paralogous genes resulting from recent gene duplication
might preserve the same functionality and regulatory appa-
ratus as their progenitors. We used chromosome 19 as the
model to test this hypothesis by comparing the cDNA library
profiles of spatially adjacent paralogous genes. At least one
of the ZNF clusters (22-27 Mb region, Figure 5) appears to
be more recent than the remaining clusters on the same
chromosome (> 80% sequence identity). Intriguingly, two
distinct tissue library profiles were scored for a total of 38
mapped ZNF paralogs, with the telomeric portion of the
cluster predominantly expressed in germ cells (589/622
ESTs). The remaining members of the cluster were primarily
expressed in embryos 9-19 weeks of age (145/167 ESTs). The
same phenomenon did not hold for the ZNF clusters, where
sequence similarity is lower. We were motivated to find
additional paralogous genes, with their regulation similarly
preserved. We mapped gene indices on duplicated genomic
sequences. Alcohol dehydrogenases (1, 2, 3, 4, 5 and 7) are
tandemly duplicated on 4q21, with their transcripts consis-
tently being over-represented in embryonic and fetal cDNA
libraries. Similar observations were obtained for other gene
clusters, including amylases on 1p21, annexins on 4q21,
homeobox proteins on 7p15 and 17q21, metallothioneins
on 16q13, crystalline proteins on 2q33, glutathione-S-
transferases (m1, m2, m3, m4 and m5) on 1p13, histone fam-
ilies (H2A/H2B/H3/H4) on 6p21, killer cell lectin-like
receptors on 12p13, proline-rich proteins on 12p13, proto-
cadherins on 5p15, s100 calcium-binding proteins on 1q21,
keratins on 17q12, ADP-ribosylation factors (3, 4 and 5) on
10q22, and the major histocompatibility complex on 6p21.
Together, these observations strongly support the notion
that much of the regional clustering of functionally related
proteins originates from gene duplication.

Clustering of ontological groups

We also examined the locations of all transcriptional units
that had been classified according to a gene ontology-
derived schema (Table 3, and see Materials and methods) for
evidence of regional clustering of functionally related pro-
teins. We applied a test that corrected for regional gene
density, and found substantial evidence for regional cluster-
ing among the transcripts belonging to the same category
(see additional data files online for location plots for the top
60 ontological categories). Such clustering is pervasive -
much of it is likely to have arisen from duplication in which
functional units have been preserved.

As an additional demonstration of the duplication phenome-
non, we considered the occurrence of Pfam motifs within

ORFs, with only the best Pfam match retained per ORF
(around 1,930 of the 2,011 Pfam categories were repre-
sented). Matching successive runs of four or more (that
occur at least three times on the genome) appear in the addi-
tional data files online. Many of the runs occur on the near-
diagonal. Most involve four identical Pfam categories in
succession, or a double run of two categories, again pointing
to local duplication.

We also examined the runs of six or more gene units in which
the ontological classifications occur in the same order (or the
reverse) in multiple locations on the genome. A dot-matrix
plot across the genome appears in the additional data files
online. The plot shows clear evidence of local duplication,
while the distant matches (even across chromosomes) are
under investigation in the context of the complete sequence.
We have noticed interesting associations among membrane
proteins, ion channels, electron transporters, ATP-binding
cassettes, and genes involving metabolism on chromosomes
2, 5 and 7. Proximity may be important for regulating func-
tionally coupled genes, and intriguing observations of this
phenomenon are well established in prokaryotic organisms
[65] and recently reported in yeast [66]. We are investigating
the possibility that at least some of the positional-functional
coupling may be due to regulated mechanisms other than
gene duplication.

Conclusions

The human genome is a capacious resource that will support
years of intensive investigation. The quality of the draft
sequence has now reached the point that genetic maps can
truly be integrated into the genome. Analysis at the sequence
level shows pervasive local and distant duplication, much of
which preserves function. We have found evidence for a large
number of transcriptional units (65,000-75,000) and per-
formed initial annotation and classification. The effective study
of transcription and protein function requires the compilation
of all available evidence of transcription and protein homology.

Since the initial submission of this manuscript, two reports
have appeared [67,68] in which the human genome is ana-
lyzed and described. The raw genomic sequence used for the
present study was generated by the Human Genome Consor-
tium (HGC), and is principally the same as that used in their
report [67]. In our effort, we have benefited from early-
release and open data policies adopted by the consortium.
The three reports offer insights into varying aspects of the
genome. In our report we have emphasized the compilation
of all available transcriptional evidence, and have made
observations of functional-positional clustering of genes and
global tissue specificity that will provide the basis for in-
depth investigation.

The other reports have arrived at estimates of approximately
30,000 genes in the genome, and the ensuing attention



leaves the unfortunate impression that genomic analysis con-
sists primarily of gene counting. While our estimate of
65,000-75,000 transcriptional units clearly differs from these
estimates, it is useful to consider that there is much indepen-
dent agreement in the reports. We have placed around
15,000 known genes in the genome, and described 33,000
that have substantial homology to the major protein data-
bases. These figures are very comparable to the known and
‘confirmed’ genes, respectively, placed on the sequence by
Celera Genomics and HGC. The Celera and HGC reports rely
on a combination of computational gene prediction and tran-
scriptional evidence to identify genes, in a manner that may
be highly conservative. Our approach to identifying genes and
exons is more heavily transcript-based, with the presumption
that pure computational gene prediction may still have sub-
stantial false-negative rates. In applying this approach, we
find experimental evidence for many novel exons with clear
splicing evidence, on the order of twice as many as described
in the other reports. This fact largely explains our greater
number of transcriptional units, as our mean number of
exons per transcriptional unit (613,183/759,822 = 8.07) is
very comparable to the Celera and HGC reports.

We hold that the reliance on ab initio approaches presents
difficulties, as known genes may be more highly expressed
and may present a biased sample for calibration. Another dif-
ference in the approaches is that we have used pre-assembled
consensus transcripts whenever possible in alignment to the
genome. The use of such consensus sequences is likely to
improve alignment, increase splicing evidence, and has been
shown to improve the detection of protein homology [19].
We propose that the remaining 32,000-42,000 units we
have identified will represent a useful resource for additional
investigation as genomic annotation proceeds. A comparison
of all three approaches will surely yield new insights.

Materials and methods

Exon identification

The 26 June 2000 version of the repeat-masked draft
sequences was downloaded from the Ensembl Genome
Server [69] and blasted against ¢cDNA and protein
sequences by using the Blast program compiled from the
NCBI toolkit (6.1) on a 32-node SGI Linux/Intel Cluster,
with four 550 MHz Pentium III Xeon processors and 2 GB
of RAM on each node. The following databases were used:
Human UTR-DB (EBI) (version 13) [70]; Human Transcript
Database (Baylor University) (version 1) [71]; GenBank CDS
(NCBI) (only PRI mRNA sequences were used, version 119)
[72]; HINT (Ohio State University) [73]; EST Assembly
Project (University of Washington) [74]; TIGR Human
Gene Index (version 4.5) [75]; dbEST (NCBI) (version 119)
[76]; MINT and RINT (Ohio State University) [73]; EMBL
Rodent (EMBL) (version 63) [77]; SWISS-PROT (EMBL)
(version 39) [78]; TTEMBL (EMBL) (version 14) [78]; PIR
(MIPS-JIPID) (version 65) [79]; and Pfam (Sanger Centre)

http://genomebiology.com/2001/2/7/research/0025.15

(version 5.4) [80]. Gene prediction programs used are
described in Table 2. The Mouse and Rat Indices of Non-
redundant Transcripts (MINT and RINT) were derived
from Mouse and Rat UniGene [81] using the same approach
that we have applied to human UniGene [19]. Briefly,
chimeric sequences were removed, UniGene transcripts
were assembled into sequence contigs, and links to progeni-
tor records retained.

The genome-wide hit expectation value was set at E < 10725
(BlastN) or E < 10715 (BlastX) to filter out nonspecific high-
scoring segment pairs (HSPs). Default parameters of Blast
were used. The Blast report was parsed into field-specific
tables using the program MSPcrunch Version 2.3 [82]. The
resulting table was processed using a set of Perl scripts by
first retaining only the HSPs that were spliced from the same
transcripts on the same genomic contig. The same process
was then applied to the HSPs on the genomic sequences.
Spliced HSPs from the same transcripts were retained, fol-
lowed by the singleton HSPs that were both longer and higher
in sequence identity over their overlapping counterparts,
resulting in a unique placement for each cDNA segment on
the genomic sequence.

Prediction of transcriptional units

A set of Perl scripts was used to implement the algorithm
described below. Genomic clones were ordered and oriented
using the fingerprint map and draft assembly. Within unfin-
ished clones, sequence contigs were further ordered and ori-
ented according to Ensembl’s assembly [83]. This mapping
produced the positional context necessary for consolidating
fragmented exon units. Where necessary, small sequencing
gaps (100 bp or fewer) were ignored and genomic clones
were considered contiguous except where a large gap was
indicated in the draft assembly (> 50 kb). ORFs were deter-
mined using the program getorf [84]. The exon index is an
integrated table generated by a Sybase relational database,
consisting of chromosome number, fingerprinted contig
(FPC) ID, FPC contig order, BAC contig ID, BAC contig
order, BAC contig orientation, starting position of exon on
BAC contig, end position of exon on BAC contig, exon orien-
tation, transcript orientation (available from GenBank,
IMAGE, UniGene, HINT and dbEST), evidence (transcript,
protein, gene prediction, ORF, Pfam), database name
(Table 1), feature (poly(A) signal, CpG island, Genscan
boundary), starting position on exon (or feature), end posi-
tion on exon (or feature), score (BlastN, BlastX). The index
was first ordered and oriented for the individual BAC contigs
according to Ensembl or UCSC [85] maps. The resulting
contigs were then ordered and oriented according to the FPC
order and orientation information in the UCSC genome
assembly, resulting in a numeric sorting order for all the
individual contigs. In addition, large gap information
(> 50 kb) available from the UCSC assembly was incorpo-
rated into the same index, where no overlapping information
was available between presumably adjacent BACs.
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The consolidation algorithm follows a hierarchy in which unit
boundaries are respected for the highest-ranking feature. The
features in descending ranking were: UTRs based on known
UTR indices; exons containing no ORFs or incomplete ORFs;
boundaries of known full-length ¢DNAs (HTDB-based
indices); EST orientation information (5" or 3’ origin from the
original IMAGE, UniGene/HINT, and dbEST databases); and
Genscan-predicted poly(A) signals. When clear boundary indi-
cators were not available, information from the transcript
indices HINT (assembled from UniGene) [19] and EG [17] were
used directly as secondary evidence for potential gene bound-
aries. The rationale is that each UniGene cluster has at least
one known gene, or two sets of ESTs representing both the
5" and 3" termini of a gene, or at least one EST containing a
poly(A) signal [81]. Similar stringent criteria were used in
Ewing and Green’s EST assemblies [17]. Multiple exons not
residing in intact ORFs were consolidated until the occurrence
of exons in a partial or complete ORF. Multiple in-frame exons
in a continuous ORF were always considered part of a single
gene. To prevent any overconsolidation as a result of lack of
transitional exons (in partial or complete ORFs) for adjacent
genes, CpG islands, large gaps (> 50 kb) between exons and
Genscan prediction were used as gene boundaries when
higher-ranking boundary information was unavailable. In
such instances, HINT and EG index identity was respected.
Although a variety of criteria were used for determining
transcriptional unit boundaries, the vast majority of the con-
solidation was achieved on the basis of terminal information
from gene indices and transition and continuation of open
reading frames.

Gene mapping

A relational database was used to integrate multiple largely
independent maps for the genomic clones, where tran-
scripts had been placed. This integration thus results in a
transcript map based on the order and position of genomic
clones. Individual sequencing contigs within each unfin-
ished clone were oriented using the Ensembl contig map
[83]. The fingerprint (see [8], version 15 June 2000), Gold-
enPath assembly (Versions 15 June and 5 September 2000),
and radiation hybrid maps [86] were used to place genomic
clones into their chromosomal context. As a substantial
number of the clones in the working draft had not been
physically typed with RH or genetic markers, the program
e-PCR [48] and primers collected in the RHdb [87] and
Genethon [88] were used under stringent criteria (mis-
match = 0, margin = 50, and word size =7). Genetic
mapping information was obtained from the Marshfield
map [89]. In addition, Genemap’9g for cDNA was inte-
grated into the genomic clones harboring HINT consensus
transcripts. For the HINT consensus with more than one
mapped EST, an averaged RH position was used. Cytoge-
netic bands were inherited from the original UniGene data-
base. Furthermore, we incorporated a weighted composite
quality score for the following four maps: Genemap’99 (the
number of consistently mapped ESTs and their associated

genomic clones), e-PCR (the number of consistently
mapped sequence-tagged sites (STSs) in a genomic clone),
FPC (the supporting evidence in the original database),
Blast (evidence of splicing). On the basis of such an inte-
grated database schema, mapping information from
sequence, clone, contigs, radiation hybrid and cytogenetic
positions for a given transcript could be obtained through a
SQL (Structured Query Language) join statement.

Tissue-specific transcripts

We noted the total number of ESTs contributed by each
tissue to compute an expected proportion. For each HINT
consensus transcript, we identified the tissue/source con-
tributing the most ESTs to the consensus. The expected
binomial distribution for the fixed number of ESTs in the
consensus was used to compute a p-value, which was then
Bonferroni-corrected for the 81 tissues x 67,000 HINT con-
sensus transcripts.

Cytoband alignment

G bands are known to be relatively AT-rich, but the precise
relationship between sequence and cytoband position is too
poorly understood to be used for alignment. Genes/ESTs
with cytoband position appearing in UniGene were placed on
the full genome assembly. Cytoband cutpoints were used to
create a scatterplot with the center of the cytoband forming
the x-coordinate, and assembly position as the y-coordinate.
Outliers were identified as points lying more than 2.5 stan-
dard errors outside of prediction intervals from a third-
degree polynomial regression fit. A Loess regression fit was
used on the remaining points to estimate cytoband bound-
aries, with p and q arms fitted separately. Centromeres and
heterochromatic regions were assumed not sequenced, on the
basis of a review of current clone frameworks. Primary
sources for assignments of genes to heterochromatic regions
were examined and in most cases deemed inconclusive. An
exception is chromosome 19, which has a considerable
number of genes assigned to 19q12 and finished sequence in
the region. Scatterplots and regression fits for the entire
genome are in the additional data files online.

Genomic feature correlations

All 1 Mb intervals were combined to produce Table 4, but
statistical tests were performed by computing ratios and cor-
relations within each chromosome separately, in order to
account for correlation of features within each chromosome.
These statistics were then compared across the chromo-
somes to an appropriate null value using single sample
t-tests. Some of the features were skewed, and pairwise com-
parisons were performed using Spearman rank correlations.
A Bonferroni multiple-comparison procedure was applied to
the 15 unique correlations.

Regional functional clustering
Apparently significant clustering can arise from the fact that
genes exhibit regional clustering. To correct for this, we con-



sidered the physical order of all mapped transcripts and cal-
culated the distances (in ranked location) between tran-
scripts belonging to the same ontological category. Under
the null hypothesis, the transcripts in a category should be
distributed uniformly among all mapped transcripts with
ontological classification, and the successive distances are
approximately truncated exponential. On this basis we com-
pared the observed tenth percentile of successive distances
to that under the null hypothesis to compute a p-value. All
tests were highly significant, with p < 0.0001 for 59 of the 60
largest categories, and quantile-quantile plots with observed
versus expected distributions showed striking evidence of
clustering. These tests were confirmed with permutation
tests with empirical generations under the null hypothesis.
As a conservative correction for the possibility that sepa-
rate transcriptional units might belong to the same gene,
we considered successive distances for every other tran-
script. These tests were also significant, with p < 0.01 for
the 60 categories.

Additional data files

Additional data files are available online as follows: transcrip-
tional units; computational prediction; FPC, e-PCR, RH and
assembly maps; functional annotation; tissue expression pro-
files; a global view of the human genome; density of genomic
features; comparisons to genetic and RH maps; clusters and
compartments; and clustering of ontological groups.
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