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Abstract

Background: Correlations between genome composition (in terms of GC content) and usage of
particular codons and amino acids have been widely reported, but poorly explained. We show
here that a simple model of processes acting at the nucleotide level explains codon usage across a
large sample of species (311 bacteria, 28 archaea and 257 eukaryotes). The model quantitatively
predicts responses (slope and intercept of the regression line on genome GC content) of
individual codons and amino acids to genome composition.

Results: Codons respond to genome composition on the basis of their GC content relative to
their synonyms (explaining 71-87% of the variance in response among the different codons,
depending on measure). Amino-acid responses are determined by the mean GC content of their
codons (explaining 71-79% of the variance). Similar trends hold for genes within a genome.
Position-dependent selection for error minimization explains why individual bases respond
differently to directional mutation pressure.
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Conclusions: Our model suggests that GC content drives codon usage (rather than the converse). It
unifies a large body of empirical evidence concerning relationships between GC content and amino-
acid or codon usage in disparate systems. The relationship between GC content and codon and
amino-acid usage is ahistorical; it is replicated independently in the three domains of living organisms,
reinforcing the idea that genes and genomes at mutation/selection equilibrium reproduce a unique
relationship between nucleic acid and protein composition. Thus, the model may be useful in
predicting amino-acid or nucleotide sequences in poorly characterized taxa.

Background

Different organisms have idiosyncratic, and sometimes
extremely biased, preferences for one synonymous codon
over another. Although differences in codon usage among
genes and species have been widely studied, general princi-
ples have been difficult to find. Although it has been known

for some time that the frequencies of some codons and
amino acids correlate with genome GC content [1], the
causality has remained unclear: correlations could exist
because selection for a particular codon or amino-acid usage
produces a particular genome GC content, or because muta-
tion towards a particular GC content determines codon and
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amino-acid usage according to combinatorial principles.
Here we show that codon and amino-acid usage is consistent
with forces acting on nucleotides, rather than on codons or
amino acids, although both mutation and selection play
important roles.

Codon usage can be surprisingly biased in different species.
For example, the amino acid lysine has two codons, AAA and
AAG. Although some organisms, such as Lactobacillus
acidophilus, use the two codons equally, others show
extreme preferences: Streptomyces venezuelae uses AAA
only 2.2% of the time, whereas Buchneria aphidicola uses it
for 91% of lysine residues. Amino-acid usage also differs
greatly among species: for instance, the amount of arginine
varies almost ten-fold, from less than 1.5% of all amino-acid
residues in species of Borrelia to 12.7% in Mycobacterium
tuberculosis (data from [2]). Because of these extreme
biases, knowing an organism’s preferred codon usage is of
direct practical relevance in minimizing degeneracy of PCR
primers and in maximizing the effectiveness of in vivo
genetic manipulation. Trends in codon usage across species
could also influence molecular phylogenetic reconstruction,
and clarify the relative roles of neutral evolution and natural
selection in determining nucleotide sequences.

The evolutionary theory of synonymous codon usage began
with two separate lines of research, both of which suggested
that most substitutions were selectively neutral, but which
explained different phenomena. The first line sought to
explain interspecific variation in overall sequence composi-
tion, and noted correlations between GC content and amino
acid content across different species. This suggested that
genomes were at equilibrium with respect to mutation, and
explained how directional mutation could affect the composi-
tion of coding sequences [1,3,4], although it does not explain
why species with similar genome compositions have recogniz-
ably distinct sequences for individual genes. The second line
sought to explain the origin and maintenance of sequence
variation within populations, and the fixation of particular
alleles between species. This relied on the concept of silent
mutations and the relative power of selection and drift in small
populations [5,6]. Different usage patterns of synonymous
codons are invisible at the protein level: how can selection
operate when the amino-acid meaning remains unchanged
[7]1? However, without directional mutation pressure, the fixa-
tion of silent mutants would not lead to the extreme biases in
synonymous codon usage actually observed [4].

Subsequently, codon usage in a few species has been exten-
sively characterized, and linked causally to a wide variety of
both adaptive and nonadaptive factors including tRNA
abundance [8-14], gene expression level [15-23], local com-
positional biases [24-28], rates and patterns of mutation
[29-32], protein composition [33-36], protein structure [37-
39], translation optimization [40-42] (but see [43]), gene
length [44-47], and mRNA secondary structure [48-52].

In contrast, trends across species have received far less atten-
tion. The genome GC content has been shown to correlate
with cross-species differences in frequencies of codons
[53,54] and amino acids [29,33,34,55-58]. Genome composi-
tion may even influence the structure and chemistry of pro-
teins [36,57,59]. Comparing different microbial genomes,
codon usage in individual genes also correlates with esti-
mated expression level [60,61] and tRNA copy number [62].

One important point is that these regressions are ahistorical:
by predicting a relationship between gene and protein com-
position, these studies imply that the history of a gene or
species is unimportant compared to its current state. This
has important implications for species or genes that have
uncertain phylogenetic relationships or differ greatly in com-
position from their close relatives. Although closely related
organisms tend to have similar genome compositions, there
are considerable exceptions (such as Mycoplasma pneumo-
niae versus M. genitalium). If distantly related species with
similar GC contents have the same amino-acid or codon
usages, we can conclude that phylogenetic constraints are
relatively unimportant, and perhaps that genomes are at or
near equilibrium with respect to mutation and selection
(otherwise, different unrelated species would not attain the
same amino-acid composition predicted from the nucleotide
composition). Such ahistorical relationships are particularly
useful in cases where the goal is prediction of the current
state of a sequence (for example, for making PCR primers),
rather than reconstruction of its history.

Although regression lines have been fitted to relationships
between GC content and codon and amino-acid usage
empirically, permitting qualitative inferences, quantitative
theoretical predictions relating these responses to each other
have thus far had limited success. This can be remedied by
taking into account the differential effect of selection on the
different positions within codons. Here we present a simple
model, based solely on purifying selection and mutation at
the nucleotide level, that quantitatively predicts both codon
and amino-acid usage trends across archaea, bacteria and
eukaryotes on the basis of the genome GC content.

The model also provides insights into the causality between
genome composition and protein composition. Every nucleic
acid sequence necessarily has an associated GC content, but
there need be no similarities in codon usage between differ-
ent species with the same GC content (for instance, any spec-
ified GC content could be obtained by mixing AAA and GGG
codons in different ratios). If GC content were an artifact of
selection for a particular codon or amino-acid usage, there
would be many different ways of arranging the codon fre-
quencies to get the same GC content. If, on the other hand,
the codon and amino-acid usage is an artifact of mutation
(or selection) towards a particular GC content, the responses
of the three codon positions to directional nucleotide substi-
tution predict a single codon or amino-acid usage for each



GC content. Thus, if distantly related species fit the response
curves predicted by the model, we can conclude either that
forces at the nucleotide level drive codon and amino-acid
usage, and there is nothing special about certain codons or
amino acids, or that there is a unique spectrum of preferred
codon and amino-acid usages that applies to all species,
extends over a huge range of compositions, and happens to
match the predictions of the model by chance.

Results and discussion

Empirical relationships between GC content and
codon/amino-acid frequency

Graphs regressing codon and/or amino-acid frequency onto
GC content for subsets of the 64 codons and 20 amino acids
(GC response graphs) have been plotted previously, although
typically for particular orthologs across up to 30 species
[57,58] or for individual genes within a species [29,33,34].
The exception is an analysis of the influence of GC content
on average amino-acid composition in 59 bacterial species
[56]. Here we plot only the graph for two arginine codons,
CGA and CGG (Figure 1a), and for two amino acids, arginine
and threonine (Figure 1b), to illustrate that some codons and
amino acids, such as CGC and arginine, show a clear rela-
tionship with genome GC content; others, such as CGA and
threonine, show no relationship whatsoever. All amino acids
differ in frequency by two- to ten-fold in different species,
however, suggesting that most sites within proteins can tol-
erate amino-acid substitutions.

The following regression analyses assume a specific flow of
causality: that GC content drives codon (and amino-acid)
usage. We favor this direction because there are many ways
to get a GC content from different codon usages, but only
one way to predict a set of codon usages from GC content.
Our interpretation follows Muto and Osawa’s seminal
demonstration of the high correlation between the GC
content of noncoding, exon, intron, tRNA and rRNA
sequences, which indicates that a common force influences
the composition of all parts of the genome [53].

Three different properties of the regression line could be
considered as measures of a codon’s (or amino acid’s)
response to GC content: the slope (which describes the rate
of response, or sensitivity, to GC content variation), the
intercept (marking the lower boundary of GC content, at
which the codon/amino acid is predicted to disappear), and
the correlation coefficient (describing the degree of variation
in codon/amino-acid usage that can be understood in terms
of genome GC content). These three measures are in fact
highly correlated with one another (Table 1). We use total
GC content rather than third position GC content (GC3) for
the regressions, as total GC is easily measured directly in the
laboratory for otherwise uncharacterized organisms; to esti-
mate GC3, at least some gene sequences are required. In
principle, it is preferable to use GC3 where available, as total
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Only some codons and amino acids respond to GC content.
(a) Plot of codon frequency within coding sequences versus
total GC content, for the arginine codons CGA (white
squares) and CGC (black circles) in bacteria and archaea.
Linear regression lines are shown in black for CGC and gray
for CGA. (b) A similar plot for the amino acids threonine
(white squares) and arginine (black circles) in bacteria and
archaea. The plots show that whereas CGC and arginine
clearly correlate with GC content, CGA and threonine do
not. The three relevant parameters for the response, slope,
intercept and correlation coefficient, are all highly correlated
with each other (see Table ).

genome (or coding sequence) GC already contains the data
used to measure the GC content at the other positions. Con-
sequently, regressing GC1 or GC2 against total GC might
introduce systematic biases, whereas regressing against GC3
better represents deviation from neutrality [4]. However,
total GC and GC3 are so highly correlated (in part because
GC3 changes much faster than GC1 and GC2) that for practi-
cal purposes it makes no difference.

The factors determining the response of each codon and each
amino acid to genome GC content turn out to be surprisingly
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Table |

Pairwise correlations between measures of response to genome GC content

Amino acids (n = 21)

Codons (n = 64)

Archaea/bacteria Eukaryotes Archaea/bacteria Eukaryotes
Slope Intercept Slope Intercept Slope Intercept Slope Intercept
Slope — 0.95 — 0.96 — 0.90 — 0.91
Correlation coefficient 0.92 0.96 0.96 0.98 0.90 0.97 0.94 0.94

All pairs of measures are highly correlated. Critical values: for amino acids (n = 21 including stop codons), r of 0.9 corresponds to P = 3 x 108, For
codons (n = 64), r of 0.9 corresponds to P = 5 x 1024, The x intercept is transformed as x’ = 1/(50% - x) to minimize the effects of extreme values with

large errors: this occurs for codons and amino acids with very flat slopes.

simple. An amino acid’s response (Figure 2a) is determined
by the mean GC content of its codons (that is, the amino acids
with particularly AT- or GC-rich codons are most sensitive to
genome GC content), which explains 71-79% of the variance
in response, depending on the measure used (slope is the
poorest fit; correlation coefficient is the best). A codon’s
response (Figure 2b) is determined by the difference between
its GC content and the mean GC content of its synonyms,
explaining 71-87% of the variance. (In other words, genome
GC content influences the presence or absence of codons with
extreme GC content more than synonyms with intermediate
GC content. This follows from the fact that the third codon
position changes faster than the other two positions, and does
not depend directly on the amino acid that each codon
encodes.) This relationship applies to both eukaryotes and
prokaryotes. Most of the diversity in GC content within
eukaryotes, and hence most of the significance of the regres-
sions, comes from unicellular and multinucleate organisms,
including fungi and protists, rather than from the multicellu-
lar plants and metazoa. This is to be expected, because the
relatively early-diverging protist lineages also account for
most of the molecular diversity within the eukaryotes [63].

Although the figures reported above include termination
codons, excluding these codons does not greatly affect the
result (for instance, R2 increases from 0.72-0.75 for slope in
the codon graph for eukaryotes when the three termination
codons are excluded). Similarly, excluding tryptophan and
methionine, which have only one codon each and thus nec-
essarily fall at the origin, makes no difference, as the best-fit
line (for codons) passes through the origin anyway. Exclud-
ing stop codons, tryptophan and methionine increases R2 by
only 0.019 on average for the various measures of response.
Excluding stop codons makes slightly more difference on the
amino-acid graph (increasing R2 by 0.031 on average, more
influential than any single amino-acid point). When stop
codons, tryptophan and methionine are all excluded, R2
increases by only 0.046 on average.

Interestingly, the same sorts of relationships seem to hold
within, as well as among genomes. Figure 2c examines the

response of codons to GC content across individual genes
within sample genomes representing all three domains of
life: eukaryotes (Drosophila), bacteria (Synechocystis), and
archaea (Archaeoglobus). The codon frequency in individual
genes seems to be predictable on the basis of the overall GC
content of the coding sequences: the relative GC content of
individual codons explains about half the variance in
response in their absolute frequencies within each coding
sequence (that is, the presence or absence of a particular
codon depends on the extent to which alternative synonyms
of more ‘suitable’ GC content exist). This is despite the fact
that codon usage in individual genes is known to be influ-
enced by a long list of other factors, including the amino-
acid sequence necessary for the gene’s function (although
the fraction of crucial residues may typically be small). The
effect cannot be fully explained by synonymous substitu-
tions, because codons with the same third-position base but
different codon doublets respond differently.

Before proceeding, we note that these plots themselves
emphasize the causality within the system. Our analysis
shows that all amino acids and all codons behave in a pre-
dictable manner within each genome, indicating that the GC
content within coding sequences determines the codon (and
hence amino-acid) composition rather than being a passive
reflection of a preferred codon or amino-acid usage. Hence,
this uniform robustness supports the idea that there is little
special about particular codons or amino acids. In all three
domains of life, it appears that every codon and every
amino acid follows a single trend determined by the overall
compositional properties of genomes. Even within
genomes, the overall composition of individual genes seems
to explain up to half the variance in the responses of the
individual codons and amino acids. This raises the ques-
tion: what drives GC content?

A mutational model

The simple empirical relationship between the composition
of codons and amino acids and their responses to changing
genome composition suggests that these responses might be
quantitatively predictable on theoretical grounds. We take as



our starting points Sueoka’s hypothesis that genome compo-
sition is largely determined by mutation bias, specifically the
ratio of AT—>GC to GC—AT mutations [3,29,32], and Muto
and Osawa’s demonstration that different types of sequence,
and the three codon positions within exon sequences, vary in
their response to genome GC content with the third position
changing the fastest, which suggests that the different
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observed substitution rates might be explained by the differ-
ential effects of mutation [53].

We assume for simplicity that the genome is divided into two
types of site - constant and variable; that all variable sites
respond identically to mutational pressure; and that all
third-position sites are variable (that is, that under this
initial model there is no selective consequence to silent
mutations). Accordingly, GC3 (the third-position GC
content) reflects the ratio of AT—>GC to GC—AT mutations.
When plotted against GC3, the slope of the GC1 and GC2
graphs give the intensity of selection at those two positions
relative to GC3 [4], whereas the values at GC3 = 0% and GC3
= 100% give the identity of the bases at the constant posi-
tions (Figure 3). In other words, when all the variable sites
(as measured by GC3) are as biased as possible towards one
state, we assume that any sites at position 1 or 2 that still
have the opposite state are maintained by selection and
cannot change. Thus, the frequency of each codon can be
estimated as:

P[XYZ] = P[X,]P[Y,]P[Z,] (1
where P[X,], P[Y,], and P[Z3] denote the probability of
getting base X at position 1, base Y at position 2, and base Z

at position 3, respectively.

The probability of getting a particular base at a particular
position is given by:

P[X 1= P[X|c,]P[c,] + P[X|VIP[v,] (2)

where P[c,] denotes the probability that a site is constant at
position n, and P[v,] denotes the probability that a site is

Figure 2

Codon and amino-acid responses are determined by their
individual GC content. (a) Plot of response to GC content
(here, the slope of the regression of absolute frequency in
coding sequences on genome GC content) versus
composition of the 21 codon sets (20 amino acids and
termination) for archaea/bacteria (black symbols, thick lines)
and eukaryotes (white symbols, thin lines). (b) A similar plot
for the 64 codons. Note that, of the three measures of
response, the slope is the least highly correlated with codon
or amino-acid composition (see Table 2). For amino acids the
composition is the mean GC content of their codons (a). For
codons (b,c) the composition is the difference (AGC)
between the codon’s GC content and the mean GC content
for all codons encoding the corresponding amino acid. (c) A
response-composition plot of the 64 codons showing
response within genomes rather than between them, for a
bacterium (Synechocystis, black symbols, thick line), an
archaean (Archaeoglobus, gray symbols, gray line), and a
eukaryote (Drosophila, white symbols, dashed line). The gray
line is almost coincident with the thick line; the points are
clustered along the abscissa because the structure of the
code restricts the possible GC content of the codon sets.
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The codon response to genome GC content varies with
position. A re-plot of GC3 versus GCI, GC2 from [4], using
the additional sequence data now available. Each point
represents an organism, classified by domain: archaea, gray;
bacteria, black; eukaryotes, white. GCI, diamonds; GC2,
squares. Lines are model | least-squares regressions. VWhere
GC3 = 0%, the remaining %GC in position | and position 2
is assumed to represent constant sites (that is, those fixed
by selection to remain G or C). Similarly, where GC3 =
100%, the remaining %AT in position | and position 2 is
assumed to represent constant sites where A or T have
been fixed.

variable at position n (that is, that it is not constant). These
two probabilities sum to 1. P[X|c,] denotes the conditional
probability of getting base X at a constant site at position n,
and P[X|v] denotes the conditional probability of getting
base X at a variable site (assumed to be the same across all
three positions).

Comparing the responses of GC1 and GC2 to GC3 (Figure 3,
Tables 2 and 3), we can see that:

1. The slopes for GC1 in bacteria and archaea are almost iden-
tical. However, the bacterial/archaeal slope differs signifi-
cantly from the eukaryotic slope. Thus, first-position residues
are less labile among the eukaryotes tested. (Note that the
number of degrees of freedom is n1 + n2 — 4: the data are
constrained by a sum and a regression mean-square).

2. The slopes for GC2 are not significantly different in the
three domains.

3. The intercepts for archaea and bacteria do not differ,
except for GC2 when GC3 is 100%. The intercepts for the
pooled archaea/bacteria sample always differ from those of
eukaryotes.

Table 2

Correlations between composition and response to GC content

Amino acids Codons
Correlation Archaea/ Eukaryotes Archaea/ Eukaryotes
with: bacteria bacteria
Slope 0.842 0.853 0.840 0.849
Intercept 0.878 0.886 0.931 0910
Correlation 0.886 0.887 0.934 0.922
coefficient

Amino acids: correlation of each measure of response with mean codon
GC content. Codons: correlations with difference between GC content
and mean GC content of synonymous codons. See also Figure 2.

4. Archaea behave far more like bacteria than like eukaryotes.
Using the Kolmogorov-Smirnov test in two dimensions as
implemented in [64], N, = 28, Ny = 311, N = 257: for GC1
versus GC3, D,y = 0.19, P, = 0.33, D, = 0.30, P, = 0.03;
for GC2 versus GC3, D,; = 0.21, P,; =0.02; D, = 0.54,
P,; = 4 x 10°. Differences between eukaryotes and bacteria,
or between eukaryotes and the combined archaeal /bacterial
data set, were highly significant (P < 106 that both repre-
sent samples drawn from the same population for each
pairwise test).

5. The general patterns are replicated in the three domains.
Thus, the relationship between the first-, second- and third-
position GC content emerges independently in evolutionarily
separate groups. Further subdividing each domain shows
that many lineages have explored the same wide range of GC
contents, reproducing the same relationships.

The major distinction is between eukaryotes and prokary-
otes, which presumably has an ecological or structural rather
than a phylogenetic explanation. The slopes may be different
because of the great differences in genome size and genera-
tion time, or because the partitioning of genetic material into
the specialized environment of the nucleus changes patterns
of mutation. Eukaryotes also have far more noncoding DNA,
which could potentially isolate coding regions from selection
for genomic GC content if this were an important force:
however, for this analysis we consider only the coding
regions, which still differ greatly in composition among dif-
ferent eukaryotes (suggesting that selection has not acted to
conserve the GC content of coding sequences). The inter-
cepts may be different because the set of proteins in each
domain differs, and so the distribution of nucleotides in crit-
ical sites need not be conserved. It is also possible that the
selection of genes that have been studied differs between the
groups, although the few organisms for which complete
genomes are known are not outliers. To reflect the major dif-
ferences separating the eukaryotes from the other domains,
we pooled the archaeal and bacterial data and contrast this
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Responses of GCl and GC2 to changes in GC3, by domain

n R? Slope + SE YatGC3=0+SE Y at GC3 = 100 + SE
Bacteria 31l GCI 091 0.370+0.007 0.367+0.004 0.737+0.003
GC2 0.80 0.219+0.006 0.291+0.004 0.510+0.003
Archaea 28 GCI 0.85 0.38+0.03 0.35+0.02 0.73£0.02
GC2 0.60 0.16+0.03 0.30+0.01 0.45+0.01
Eukaryotes 257 GCI 0.57 0.24+0.01 0.402+0.008 0.643+0.007
GC2 0.38 0.15 +0.01 0.334+0.007 0.482+0.006

Because there is error in both axes, but there should be a definite causal relationship between GC3 and GCI| or GC2, we use model | regression to
predict specific values of GC| or GC2 from a set value of GC3, and thus to calculate the most likely proportion and GC content of constant sites [73].

with the eukaryotic data, fitting slopes and intercepts to the
model for the two groups separately.

Does the model accurately reflect codon usage?

The model outlined above requires four parameters (esti-
mated GC1 and GC2 at GC3 = 0% and GC3 = 100%) defined
from the data, and uses these to predict the slopes and inter-
cepts of regressions on GC content of the 64 codons and 21
codon sets (20 amino acids and termination). As the model
is deterministic, it is not useful for predicting the correlation
coefficients. When composition is summed across all three
codon positions (for example, CGA and GGT would be
counted among the eight codons comprised of two G or C
and one A or T, with the A/T at the third position), the
model is remarkably accurate for both bacteria (Figure 4a-c)
and eukaryotes (Figure 4d), though in each case, GC3 shows
the greatest deviations from the model (perhaps indicating
that the labile GC3 is ‘fine tuned’ by the other selective pres-
sures linked to codon usage).

This model even performs moderately well when applied to a
random sample of 500 genes from the Drosophila genome
(Figure 4e): although the unexplained variance is much
greater, the points clearly cluster around the three lines pre-
dicted by the position-dependent model rather than the
single (orange) line that overall composition alone would
predict (as in previous, simpler models). In each case, the
white-centered lines are the theoretical predictions, and
each dark point represents a species. The orange line is the
frequency that would be expected from the GC content
without taking into account the position-dependent compo-
sition biases, that is by (GC)*(1-GC)3™, where GC is the
genome GC content and n is the number of G and C in the
codon [56]. Taking the position dependence into account
thus provides a much better fit to the data.

We compare the predicted and actual slopes for each of the 64
codons in Figure 5. The model explains 77% of the variance in
slopes for the regression of codon frequency on GC content
in eukaryotes, and 80% of the variance in prokaryotes.

Additionally, the model is an unbiased estimator: the slopes
are 1, and the intercepts are 0. The results are similar for the
intercepts, and for amino-acid usages (Table 4).

Can selection account for the remaining variance?

The four-parameter model discussed above assumes, for the
sake of simplicity, that A = T and C = G (Chargaff’s rule).
For double-stranded DNA molecules, this is necessarily true
because of Watson-Crick base pairing. Less well known is
the intra-strand Chargaff’s rule, which states that the same
relationship holds within large, single-stranded DNA mole-
cules (in particular, the two strands of the Bacillus subtilis
genome) [65,66]. The interpretation of this intra-strand
rule is statistical rather than mechanical: if there are no
biases in mutation and selection between the two strands,
or if genes are distributed evenly between the two strands, a
C—G mutation on one strand (for example) cannot be dis-
tinguished from a G—C mutation on the other. Thus, the
twelve possible nucleotide-substitution rates reduce to just
six and, at equilibrium, Chargaff’s rule should hold even
within the set of coding sequences in a genome [30]. As
long as all nucleotide-substitution rates are positive, this
equilibrium condition holds for all possible substitution
matrices [67].

In actual genomes, however, the intra-strand Chargaff’s rule
is frequently violated because the leading and lagging
strands have different substitution patterns and genes are
not evenly distributed [31]. In respect of our model, not only
the position of a base but also its identity affects how fast it
responds to genome GC content (Table 5). Interestingly, the
intra-strand Chargaff’s rule is violated in a position-depen-
dent manner. For both prokaryotes and eukaryotes, the third
codon position is pyrimidine-rich (C3/G3 = 1.11 and 1.15
respectively; T3/A3 = 1.24 and 1.36), and the first codon
position is purine-rich (C1/G1 = 0.58 and 0.62; T1/A1 = 0.63
and 0.65). The second codon position is mixed (C2/G2 =
1.34 and 1.32; T2/A2 = 0.97 and 0.87). Consequently, relax-
ing the assumption of the intra-strand Chargaff’s rule should
increase the accuracy of the model.
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Figure 4

Predicted versus actual responses for sets of codons with identical composition. Each line is the sum of eight codons with the

80%

80%

same GC content (by position). Each solid circle is a species. Lines of open circles are the theoretical predictions based on
the four-parameter model. (a) All-GC (blue) and all-AT (red) codons in prokaryotes. (b) Codons with two G or C and one

A or T, the minority base being at the first (blue), second (green), or third (red) position. Note that the third-position slope is
actually of opposite sign to the first- and second-position slopes. The orange line is what would be expected if there were no

position dependence (that is, P(GC)2P(AT) as in [56]). (c) As in (b), but for codons with two A or T and one G or C. In this
case, the orange line is P(AT)2P(GC). (d) As in (c), but for eukaryotes. (€) As in (d), but now each point is a randomly
chosen gene in Drosophila.




Table 4
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Concordance between predictions and data

Archaea/bacteria

Eukaryotes

Amino acids/codons Observed Four-parameter  24-parameter Observed Four-parameter  24-parameter
Observed Slope - 0.89 0.93 - 0.88 0.92
Intercept - 0.91 0.92 - 0.90 091
Four-parameter Slope 0.83 - 0.95 0.80 - 0.96
Intercept 0.82 - 0.99 0.80 - 0.98
24-parameter Slope 0.90 0.94 - 0.85 0.95 -
Intercept 0.86 0.96 - 0.80 0.95 -

Each entry is the correlation coefficient between the predicted and observed values for the 64 codons (above the diagonal) or 2| amino acid sets (below
the diagonal) for archaea and bacteria (left) and eukaryotes (right). See Figure 5 for an example (the graph for the first entry on the second column: note

that the graph shows R2, not R).

These differences in composition could reflect coding con-
straints, if a functional proteome required a particular
amino-acid composition. As we have seen, however, the fre-
quency of particular amino acids varies greatly among differ-
ent organisms, decreasing the likelihood that there is a
unique, optimal composition. Additionally, the amino acids
respond predictably with changing GC content, in a manner
consistent with processes acting only at the level of single
nucleotides.

If the bases do not change at the same rates, the assumption
that the GC content at each position completely describes
the nucleotide composition is unwarranted. The four-para-
meter model discussed above assumes that, for each of the
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Figure 5

Comparison of predicted versus actual codon responses.
Both bacteria/archaea (black) and eukaryotes (white) show a
very good fit between the model and the data (in this case,
predicted slopes along the x axis and actual slopes along the
y axis). The slope is | and passes through the origin in both
cases, indicating that the model is an unbiased predictor of
codon usage trends. See Table 4 for other comparisons.

three codon positions, each of the four bases changes equally
rapidly with changing genome GC content. Interestingly, this
is not actually the case. For example, G changes far more
slowly than any other nucleotide when at the third codon
position, but faster than T when at the first or second codon
position. Furthermore, A at the second position changes
nearly twice as fast as T at the second position (Table 5).
This violates the assumption that all variable sites are equal.

Is there any rationale behind these seemingly arbitrary
rates? Here, selection rather than mutation may provide an
answer. Most mutations are deleterious; furthermore, the
greater the effect of a particular change, the less likely it is to
be advantageous [68]. We can estimate the average effect of
changing each base at each position according to a method
used previously to calculate the effects of errors in individual
codons [69]. Briefly, for each mutation, the difference in
‘polar requirement’ [70,71] between amino acids encoded by
the original and new codons is squared. The resulting error
value is averaged for all applicable mutations, weighting
transitions more heavily than transversions because they
occur more frequently (in this case, by a factor of 4 as
reported in [72] for comparison of human pseudogenes with
their functional predecessors). This gives an a priori esti-
mate of the impact of a given set of mutations based on the
chemical properties of the amino acids and the configuration
of the genetic code.

In fact, the mean-square error does an excellent job of
accounting for the difference in slopes. The mean-square
errors give a logarithmic fit to the rates of change, but
because there is no reason to believe this functional relation
to be the correct one we used a nonparametric test for corre-
lation (Spearman’s rank coefficient [73]). For eukaryotes,
r, =-0.83 (P = 8.3 x 104); for prokaryotes, r, = -0.86 (P =
3.3 X 104); n = 12 in both cases. The rank order of the mean-
square errors does not change when the modular power
and/or the transition bias are varied over the range one to
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Table 5

Violations of Chargaff’s rule and rate constancy

|slope A/B| |slope E| Error
Tl 0.251 0.248 6.591
Cl 0.421 0.382 4.640
Al 0.466 0.334 2.474
Gl 0.296 0.201 3.930
T2 0.095 0.126 7.738
Cc2 0.221 0.217 5.256
A2 0.333 0.254 11.984
G2 0.207 0.163 7.487
T3 0.938 0.986 0.065
C3 1.108 1.212 0.065
A3 0917 1.051 0.076
G3 0.746 0.825 0.082

|slope AB| is the absolute value of the change of a given nucleotide at a
given position (relative to total coding sequence GC content) in
archaea/bacteria; [slope E| is the corresponding slope in eukaryotes. Error
is a measure of the average consequence of a change in a particular base
at a particular codon position (for example, T| is T at the first position,
using a methodology based on [69]. See text for explanation.

ten, so the correlations are robust across parameter space. In
other words, because the rate of change of the different
nucleotides depends on the magnitude of error introduced
on average by altering them, we interpret the variable
response of GC content at each position to be dependent on
base identity as the result of selection against substitution of
dissimilar amino acids.

Relaxing the constraints of the model

To take differential selection into account, we relax the
assumption of the intra-strand Chargaff’s rule as follows. The
four-parameter model presented above requires two parame-
ters each for two regression lines, relating the first- and
second-position GC content to the third-position GC content.
However, if the frequencies of the four nucleotides at each
codon position can vary independently with GC content
(subject to the constraint that the nucleotide frequencies at
each position are constrained by a sum), it is necessary to
characterize the regression lines of each base at each position
to make predictions about the nucleotide composition of the
set of constant bases at each position, and of the most likely
states of variable bases for a given GC content.

Hence we constructed a 24-parameter model (4 bases x 3
positions x 2 parameters for each regression line) where, for
each position, we plotted the percentage of each of the four
bases against total GC content. For a given total GC content,
the expected frequency of a particular base at a particular
position is estimated directly from its regression line, which

is based on two parameters (the slope and the intercept).
This takes into account the fact that an organism at a given
GC content will predictably violate the intra-strand Char-
gaff’s rule in its coding sequences. This could be considered
an extension of Takahata’s analysis of rate heterogeneity
among the four nucleotides [74], but extended for the
reading-frame-dependent selection in coding sequences. The
model actually has only 18 degrees of freedom (rather than
24), as the sums are constrained, but predicts a set of codon
frequencies that potentially has 63 degrees of freedom.

This 24-parameter model explains somewhat more of the
variance in both codon and amino-acid responses (slope and
intercept), although the marginal benefit is greater in
prokaryotes than in eukaryotes (Table 4). The improvement
in R2 can explain nearly 40% of the variance unexplained by
the four-parameter model in some cases (amino-acid slopes
in archaea/bacteria), although in other cases the 24-parame-
ter model does not offer an improvement (for example,
amino-acid intercepts in eukaryotes). One possible interpre-
tation is that for our data set selection plays a greater role in
the genome composition of prokaryotes. This is certainly
plausible given the bias in eukaryotic sequences towards
large species with small populations. More generally, we
may infer that, on the scale of whole genomes, differential
mutation and selection between the two strands play rela-
tively little role in determining codon usage.

Conclusions

We have shown that the GC content of individual codons and
amino acids is the primary determinant of their response to
biases in sequence composition, both among and (to a lesser
extent) within genomes. Although the literature contains
many examples of correlations between GC content and the
frequency of particular codons and amino acids, our model
is able to recapture quantitatively the behavior of essentially
all codons and amino acids by invoking forces that act only
on the level of individual nucleotides. This is likely to be due
to a combination of mutation and selection: mutation can
act in parallel across an entire genome, changing many sites
simultaneously; however, this process is limited by the con-
sequences of error at each position.

The simplest hypothesis, that codon usage depends solely on
codon GC content [56], fits the data poorly (compare orange
lines with red, green and blue lines in Figure 4). One can,
however, explain most of the variance in the response of
both codons and amino acids by taking into account the fact
that the three codon positions change at different rates, and
that the four nucleotides are not evenly distributed among
the sites that are functionally constrained. Additionally,
accounting for the fact that the four nucleotides change at
different rates allows some further improvement, which
ranges from minimal to drastic depending on the exact cir-
cumstances. This supports the basic principle of neutral



evolution, the idea that most change in nucleotide and
protein sequences is driven by mutation and limited by puri-
fying selection that varies for different sites and molecules
(reviewed in [75]). Within this context, it supports the idea
that most of this neutral change is driven by directional
mutation, which thus explains differences in nucleotide
composition among species [4].

Although the conclusion that amino acids with GC-rich codon
doublets are more frequent in GC-rich genomes, and that
those with AU-rich codon doublets are more frequent in AT-
rich genomes, is neither new nor surprising [34], our model
accurately and quantitatively predicts these responses for
essentially all codons and amino acids by invoking forces
acting on individual nucleotides. The genetic code constrains
which codons and which amino acids can respond to biases in
nucleotide composition, in part because mixed codons neces-
sarily respond more slowly to forces acting on particular
types of bases than do homogeneous codons. Thus, although
GC content only explains the variance in usage of some
codons and some amino acids, we can accurately predict
which codons and amino acids will show clear responses and,
for those that do show clear responses, accurately predict
their frequencies in particular genomes (for example, Figure 1
shows an example of a codon for which 85% of the variance in
usage is explained by genome GC content, and an amino acid
for which 79% of the variance is explained). Thus, especially
for species with few close relatives, variable sites may even be
more useful for predicting PCR primer sequences than con-
served sites, although this will depend on the particular
sequence and genome composition.

We have focused on codon usage at the level of whole
genomes (or samples of genes where whole genomes are not
available), an area that has received relatively little attention.
This large-scale view does not consider the selective factors
influencing individual genes, and the fact that the model pro-
vides much better fit across genomes than within them may
reflect local adaptation to factors such as expression level
[11]. What remains surprising is that our simple model can
explain so much of the variance in codon and amino-acid
response to GC content in these different systems. Identifying
deviations from the predictions based on nucleotide composi-
tion may identify genes that are under unusual selection pres-
sures, whether for a particular amino-acid composition or for
a specific pattern or degree of codon bias.

The fact that both amino-acid and codon usage are so closely
entwined with genome composition has important practical
implications. For phylogenetic analysis, the fact that some
amino acids (such as arginine) change rapidly and pre-
dictably with GC content slightly undermines the idea that
amino-acid sequences are more stable than nucleotide
sequences: pairs of species with convergent GC contents
might also evolve convergent protein sequences, especially
at functionally unconstrained positions. For example, the

http://genomebiology.com/2001/2/4/research/0010.1 |

frequencies of both lysine and arginine are highly (but oppo-
sitely) correlated with GC content, and lysine and arginine
can easily substitute for one another in proteins. Each of the
three domains of life has explored a wide range of genome
GC contents, and organisms at the extremes of the range but
with different evolutionary histories may share more conver-
gent amino-acid substitutions than currently recognized.

For sequence analysis, the prospects are more promising:
given very limited information about a species (the GC
content), it may be possible to estimate the codon usage and
therefore minimize the degeneracy of PCR primers, even if
no closely related species have been characterized. Organ-
isms with extreme genome compositions, or with genome
compositions that differ markedly from their close relatives
(such as Mycoplasma pneumoniae versus other mycoplas-
mas) should be particularly accessible. This should be espe-
cially useful in developmental genetics and in environmental
applications where model systems are not available.

The fact that the model holds independently for different lin-
eages of organisms (for example, bacteria and eukaryotes),
and, to a lesser extent, for individual genes within species,
strongly suggests that the trends are ahistorical. Given rates
of change for each nucleotide at each codon position, deter-
mined jointly by selection, mutation, and the genetic code
structure, we can predict the codon and amino-acid compo-
sition of a particular sequence from its overall compositional
properties, without reference to related sequences. Interest-
ingly, the history of a sequence seems relatively important in
determining its codon and amino-acid usage. This fact is
likely to be particularly important in cases where a species
diverges greatly in GC content from its closest relatives:
knowing its GC content will allow much better prediction of
specific gene sequences than simple comparison with con-
served sites in related sequences (which may in some cases
be similar because of shared genome composition rather
than functional constraint).

Finally, our model explains many of the details of individual
codon and amino-acid responses over the wide range of
genome compositions found in nature. Perhaps surprisingly,
individual amino acids with specific structural or functional
roles within proteins (such as and arginine) respond to GC
content no differently than the rest, and their frequencies
can be very sensitive to genome composition despite the
effects this might have on the properties of the translated
products. This ability of amino-acid frequencies to vary so
widely implies that functional proteins may be less con-
strained by sequence (and therefore easier to evolve) than
previously imagined.

Materials and methods
Species and gene codon usage totals were downloaded from
CUTG (Codon Usage Tabulated from GenBank) [2,76], which
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is based on GenBank Release 117.0. Of 675 species with at least
20 protein-coding sequences tabulated from nuclear DNA, we
excluded 53 eukaryotes and 17 bacteria on the grounds that
they had alternative genetic codes (for example, Tetrahymena
and Mycoplasma), or had introns accidentally tabulated in the
database as part of the coding sequence (for example, Pongo
and Homo). These were detected as an excess of termination
codons greater than 1 per 20 coding sequences (that is, at least
5% more stop codons than genes). We excluded an additional
nine eukaryotes for which a few genes had been tabulated
repeatedly as independent sequences (for example, Naja
atra), leaving a sample size of 311 bacteria, 28 archaea, and
257 eukaryotes with at least 20 distinct coding sequences tab-
ulated in the database. The choice of 20 coding sequences was
arbitrary, intended to ensure a sufficiently large sample size to
estimate properties of entire genomes; raising the stringency
to species with 50 or 100 coding sequences (288 and 176
species, respectively) reduced the size of our data set but gave
almost identical results (data not shown). We made no
attempt to separate the genes by chromosome (for eukary-
otes), expression level, or location, except that organellar
genes were not considered. Except where otherwise noted,
‘total GC’ refers to the total GC content of coding sequences,
rather than of genomes. These values are sufficiently highly
correlated that it makes no difference which is used.

We estimated nucleotide and amino-acid compositions for
genomes from the species sum records from CUTG, which
sum the codons for all nuclear coding sequences deposited
in GenBank for each species. We did not make any effort to
exclude short, truncated, duplicated or hypothetical genes,
although comparison with a filtered data set based on an
earlier release of GenBank revealed no significant differ-
ences (data not shown). Thus, genes made contributions
proportional to their lengths.

Codon frequencies were calculated both including and
excluding termination codons. Data reported here include
termination codons. Because termination codons are rare,
this does not significantly alter the results, except for allow-
ing inferences about the relative usage of UAA, UAG and
UGA as termination signals.
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