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Background: We propose a new method for supervised learning from gene expression data. We
call it ‘tree harvesting’. This technique starts with a hierarchical clustering of genes, then models
the outcome variable as a sum of the average expression profiles of chosen clusters and their
products. It can be applied to many different kinds of outcome measures such as censored survival
times, or a response falling in two or more classes (for example, cancer classes). The method can
discover genes that have strong effects on their own, and genes that interact with other genes.

Results: We illustrate the method on data from a lymphoma study, and on a dataset containing
samples from eight different cancers. It identified some potentially interesting gene clusters. In
simulation studies we found that the procedure may require a large number of experimental
samples to successfully discover interactions.

Conclusions: Tree harvesting is a potentially useful tool for exploration of gene expression data and

identification of interesting clusters of genes worthy of further investigation.

Background

In this paper we introduce ‘tree harvesting’ - a general method
for supervised learning from gene expression data. The sce-
nario is as follows. We have real-valued expression measure-
ments for thousands of genes, measured over a set of samples.
The number of samples is typically 50 or 100, but will be larger
in the future. An outcome measurement is available for each
sample, such as a survival time or cancer class. Our objective is
to understand how the genes relate to the outcome.

The generic problem of predicting an outcome measure from
a set of features is called ‘supervised learning’. If the
outcome is quantitative, the term ‘regression’ is used; for a
categorical outcome, ‘classification’. There are many tech-
niques available for supervised learning: for example, linear
regression, discriminant analysis, neural networks, support
vector machines, and boosting. However, these are not likely
to work ‘off the shelf, as expression data present special

challenges. The difficulty is that the number of inputs
(genes) is large compared with the number of samples, and
they tend to be highly correlated. Hastie et al. [1] describe
one simple approach to this problem. Here we build a more
ambitious model that includes gene interactions.

Our strategy is first to cluster the genes via hierarchical clus-
tering, and then to consider the average expression profiles
from all of the clusters in the resulting dendrogram as poten-
tial inputs into our prediction model. This has two advan-
tages. First, hierarchical clustering has become a standard
descriptive tool for expression data (see, for example, [2]),
so by ‘harvesting’ its clusters, the components of our predic-
tion model will be convenient for interpretation. Second, by
using clusters as inputs, we bias the inputs towards corre-
lated sets of genes. This reduces the rate of overfitting of the
model. In fact we go further, and give preference to larger
clusters, as detailed below.
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The basic method is described in the next section for a quan-
titative output and squared error. We then generalize it to
cover other settings such as survival data and qualitative
responses. Tree harvesting is illustrated in two real examples
and a simulation study is described to investigate the perfor-
mance of the method. Finally, we generalize tree harvesting
further, allowing nonlinear expression effects.

Results

Tree harvesting

As our starting point, we have gene expression data x; for
genes 1 = 1,2, ...p and samples j = 1,2, ...n, and a response
measure Y = (Y, Yy, - Yy) for each sample (each y; may be
vector-valued). The response measure can take many forms:
for example, a quantitative measure such as percentage
response to a treatment, a censored survival time, or one of K
cancer classes. The expression data x; may be from a cDNA
microarray, in which case it represents the log red to green
ratio of a target sample relative to a reference sample. Or x;;
might be the expression level from an oligonucleotide array.

The basic method has two components: a hierarchical clus-
tering of the gene expression profiles, and a response model.
The average expression profile for each cluster provides the
potential features (inputs) for the response model.

We denote a cluster of genes by X, and the corresponding
average expression profile by %, = (%, ,, X, ,, --- %.,,). Starting
with p genes, a hierarchical clustering agglomerates genes in
p - 1 subsequent steps, until all genes fall into one big cluster.
Hence it generates a total of p + (p - 1) = 2p - 1 clusters,
which we denote by ¢,, ¢, ... ¢, ;.
The response model approximates the response measure-
ment by some of the average gene expression profiles and
their products, with the potential to capture additive and
interaction effects. To facilitate construction of the interac-
tion model, we translate each x;; to have minimum value 0
over the samples:

N .
X <= X;; + min; (xl-j) (1)
The notation %} denotes the average expression profile for a
cluster c, using these translated values. The translation is done
solely to make interactions in the model more interpretable.

Note that the untranslated values are used in the clustering.

For a quantitative response yj, j = 1,2,..n, the model takes
the form:

A - - -
Yj=Bo+ %ﬁkxa,j + % BucXe, %, i+

k%{”ﬁkk,k”xﬁk, X R (2)

where 3, and f3, are parameters that are estimated by mini-
mizing the sum of squared errors 2 i ;- f)j)Q. As each xj;
has minimum value 0, the product terms represent positive
or negative synergy between the genes involved.

Clearly it is not feasible, or even desirable, to include all clus-
ters in the sums in Equation 2. Instead we build up the
model in a forward stepwise manner as follows. Initially the
only term in the model M is the constant function 1. The
candidate terms € consists of all of the 2p - 1 average expres-
sion profiles x¥. At each stage we consider all products con-
sisting of a term in M and a term in €, and add in the term
that most improves the fit of the model in terms of a score
statistic S. We continue until some maximum number of
terms JM have been added to the model.

For example, at the first stage we enter the best average
expression profile X7; this corresponds to the product of %}
and the constant /function 1. Thg\ res/\ulting model has the
form ﬁj =B, + B Ko where f,, B, are found by least
squares. At the sec01/1\d stage, the possible additions to the
model are §,%¢_;or B,,%¢ ;%% ;for some cluster c,.

In general, this algorithm can produce terms involving the
products of three or more average expression profiles.
However, the user can put an explicit limit on the order of
interaction, I, allowed in the model. For simplicity of inter-
pretation, in the examples here we set I = 2, meaning that
products are limited to pairwise products. This is achieved
by only considering single terms (non-products) in M as
candidates in the second step.

Models with pairwise interactions as in Equation 2 are often
used in statistical applications. The interactions are usually
included in an ad hoc basis, after the important additive
terms have been included. An exception is the MARS (multi-
variate additive regression spline) procedure of Friedman
[3]. This is a general adaptive learning method, which builds
up an interaction model as products of piecewise linear func-
tions of the inputs. The model is built up in the same way as
in the tree-harvest procedure. MARS is a very popular
methodology and inspired some of the ideas in this paper.

There are crucial computational details that make this algo-
rithm run fast enough for practical applications. First, before
the forward stepwise process is started, we need the average
expression profiles for all of the 2p - 1 clusters. This is achieved
in a natural recursive fashion using the tree structure available
after a hierarchical clustering: the average expression profile in
a node is the weighted average of the two average profiles of
the daughter nodes, where the weights are the sizes of the
daughter nodes. Other node specific statistics, such as vari-
ances and within-variances can be computed in a similar way.

Second, in the second step of the algorithm we must search
over all 2p - 1 clusters to find the term that most improves



the fit of the model. This is achieved by orthogonalizing the
candidate average expression profiles with respect to the
terms already in the model, and then computing a score
test for each candidate term. With a quantitative response
and least squares, this process gives exactly the contribu-
tion of each candidate term to the model. For survival, clas-
sification, and other likelihood-based models, it is a widely
used approximation.

Additional features and issues

Data normalization

As with most sets of microarray experiments, the data for
each experiment come from different chips and hence must
first be normalized to account for chip variation. We assume
that the values for each experiment j have been centered,
that is x; —x;; - (1/p) 2 X;; -

Choice of clustering method and criterion

The tree-harvest procedure just starts with a set of clusters,
and these can be provided by any clustering method. We
have chosen to base the procedure on hierarchical cluster-
ing, because of its popularity and effectiveness for microar-
ray data (see, for example, [2]). The sets of clusters are
conveniently arranged in a hierachical manner, and are
nested within one another. Specifically if the clustering
tree is cut off at two different levels, producing say four
and five clusters, respectively, then the four clusters are
nested within the five. Hence one can look at clusterings of
all different resolutions at the same time. This feature is
convenient for interpretation of the tree-harvest results,
and is not a property of most other clustering methods.
Despite this, other clustering methods might prove to have
advantages for use in the tree-harvest procedure, including
K-means clustering, self-organizing maps [4], and proce-
dures that allow overlapping clusters (for example, gene
shaving [1]). The choice of clustering criterion will also
effect the results. Again, we have followed Eisen et al. [2]
and used average linkage clustering, applied to the correla-
tion matrix of the genes. The use of correlation makes the
clustering invariant to scaling of the individual genes.
Expanding the final clusters (see below) alleviates some of
the sensitivity of the results to the choice of clustering
method and criterion.

Biasing towards larger clusters

Typically gene expression datasets have many highly corre-
lated genes. In addition, most clusters considered in the
harvest procedure are subsets of other clusters. Hence if an
average expression profile x# is found to most improve the
fit of the model in step 2 of the procedure, it is likely that
the average expression profile of some larger cluster,
perhaps containing the chosen cluster, does nearly as well
as X¥. Now all else being equal we prefer larger clusters,
because they are more likely to be biologically meaningful.
Large clusters can result from a pathway of genes involved
in a biological process, or a heterogeneous experimental
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sample containing different cell types. In addition, the
finding of a large cluster correlated with the outcome is
less likely to be spurious than that of a small cluster,
because there are many more smaller clusters than larger
clusters. For these reasons, we bias the selection procedure
towards larger clusters. Specifically, if the score for the
cluster c is S,, we chose the largest cluster ¢’ whose score
S. is within a factor (1 - o) of the best, that is satisfying S,
> (1- o) S,. The parameter o. may be chosen by the user: we
chose o = 0.10 in our examples. The cluster ¢’ often con-
tains some or all of the genes in ¢, but this is not a require-
ment. Although this biases the selection towards larger
clusters, a single gene can still be chosen if its contribution
is spectacular and unique.

Model size selection and cross-validation

Having built a harvest model with some large number of
terms, M, we carry out a backward deletion, at each stage
discarding the term that causes the smallest increase in sum
of squares. We continue until the model contains only the
constant term. This gives a sequence of models with
numbers of terms 1,2, ... M, and we wish to select a model
size, and hence one of these models. The model size is
chosen by K-fold cross-validation. The data is split into K
parts. For each k = 1,2, ... K the harvest procedure is trained
on all of the data except the kth part, and then data in the kth
part is predicted from the trained model. The results are
averaged over k = 1,2, ...K. This is illustrated in the examples
in the next two sections.

Expanding the clusters

Hierarchical clustering uses a sequence of discrete partitions
of genes. Hence, for a given cluster, there may be genes not
in that cluster that are more highly correlated with the clus-
ter’s average expression profile than some of the genes in the
cluster. To account for this, we simply look for such genes in
the final set of clusters and report them as ‘extra genes’
belonging to each cluster.

We summarize all of the steps in Algorithm 1 (Box 1).

Tree harvesting for general response variables

The tree-harvest method can be applied to most commonly
occurring types of response data. Given responses y =(y,, Y.,
... Yp), we form a model-based approximation 1 =(n,, 1,, ...
7,,) to minimize a loss function:

ty,n) (3

Each quantity 7; is a function of the average gene expression
profiles, having the form given in Equation 2:

ni=B+ %ﬁkf*ék,j + % B, j%e, i+

k%{ﬁkk’k"f?k,jfik X @
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Box |

Algorithm I: Tree harvesting

average expession profiles x*.

whose score is at least (I - o0)S, with oo = 0.10 say.

Initially the only term in the model M is the constant function |. The candidate terms € consists of all of the 2p - |

At each stage we consider all products consisting of a term in M and a term in €, and find the term that most improves
the fit of the model based on a score statistic S. We add to the model the term involving the largest incoming cluster

We continue until some maximum number of terms M has been added to the model.

Backward deletion is applied, and cross-validation is used to select the best model size, and hence the final model.

Some common response types and loss functions are listed
in Table 1.

As outlined in the previous section, the model is built up in a
forward stepwise manner. Considering ¢ to be a function of
the parameters 8 = {B, B}, addition of each new term to
the model is based on the size of the score statistic:

I
§= — )
—(22l/9B3%)

and similarly for f; ;.. The censored survival time and categor-
ical response models are illustrated in the next two sections.

Survival of lymphoma patients

Figure 1 shows the dataset used in this example consisting
of 3,624 gene expression measurements on 36 patients with
diffuse large cell lymphoma (DLCL). These data are
described in Alizadeh et al. [5]. The column labels refer to
different patients, and the row labels identify the genes. We
have applied hierarchical clustering to the genes and a sepa-
rate clustering to the samples. Each clustering produces a
(non-unique) ordering, one that ensures that the branches
of the corresponding dendrogram do not cross. Figure 1 dis-
plays the original data, with rows and columns ordered
accordingly.

For each of the 36 patients, a (possibly censored) survival
time is available; these range from 1.3 to 102.4 months, and

Table |

Some common response types and loss functions

Response type Loss function

Quantitative Sum of squares E,(Y, - T]j)2

Censored survival time Partial log-likelihood

Categorical Multinomial log-likelihood

19 of the 36 patients died in the study period. An appropriate
response model is Cox’s proportional hazards model [6].
This has the form:

h(tlzj) = h,(Der@). 6)
Here z; = (zlj, Zyjy e zmj) are m risk factors (features) for
sample j, and h(t|z,) denotes the hazard function for an indi-
vidual with feature values z; h,(t) is the baseline hazard
function for an individual with risk factors z=0. The
unknown function r(z;) represents the log-relative risk of
dying at any time ¢ for an individual with z = z; versus an
individual with z = 0. In the tree harvest model, the features
(2, 2y, ... Z,,) are average expression profiles and we take
r(zj) to be of the form:

r(z) = By + 2B+ 2 Bkl XE

as in Equation 2. The tree-harvest algorithm computes an
approximate score test from the partial likelihood, to decide
which term is entered at each stage.

We ran the harvest procedure allowing a maximum of six
terms, and it produced the results shown in Table 2.

Some explanation is needed. At each stage the ‘Node’ refers
to the cluster whose average expression profile is chosen for
addition to the model. ‘Parent’ is the number of the cluster,
already in the model, that is to be multiplied by the Node
average expression profile; Parent = 0 refers to the constant
function 1. Nodes starting with ‘s’ for Node or Parent indi-
cate single genes. ‘Score’ is the score value achieved by addi-
tion of the term; it is roughly a Gaussian variate, so that
values > 2 are reasonably large.

Focusing just on the selection of the first cluster, Figure 2
shows all of the cluster scores. The green horizontal line is
drawn at (1 - o) times the maximum score (o = 0.1), and we
chose the largest cluster (blue point) above this line. This
cluster is the eight-gene cluster 3005, shown in Figure 3.
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The DLCL expression matrix, with rows and columns ordered according to a hierarchical clustering applied separately to the

rows and columns.
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Results of tree harvesting applied to lymphoma data

Node Parent Score -2log-likelihood Size
I 3005 0 2.980 104.34 8
22236 3005 2.784 9491 3

3 443 0 2.579 84.12 2
4 s2461 3005 2.948 70.06 |

5 52188 3005 2.658 60.16 |
Cox survival model fit to all five terms:

Coef exp(coef) se(coef) z p

zl 4.118 61.442 0.921 4.47 7.7e-06
72 1.072 2.922 0.293 3.66 2.5e-04
z3 2.195 8976 0.528 4.15 3.3e-05
74 1.079 2.941 0.281 3.83 1.3e-04
z5 -0.667 0.513 0.221 -3.02 2.5e-03

Overall the resulting model has the form:

= . * . . i * .o * .
1(z) = 4.118 - X755 i+ 1.072 - X500 i X300 i +
v v vl
2.195 X5,. i+ 1.079 - X5546, i X005, —

0.667 - )2?2188,j' f§005,j

A positive coefficient indicates increased risk. The training
set and cross-validation curves are shown in Figure 4. The
minimum of the cross-validation (CV) curve occurs at one
term, suggesting that the subsequent terms may not

improve prediction.

The gene clusters are shown in Figure 3 and listed in the
Additional data file, available with the online version of this
article. Focusing only on the first cluster (3005), we com-
puted the average expression for each of the 36 patients.
Then the patients were divided into two groups: those with
average expression below the median (group 1), and those
with average expression above the median (group 2). The
Kaplan-Meier survival curves for these two groups are shown
in Figure 5 and are significantly different (p = 2.4 x 1075).

If each of the 3,624 genes is ranked from lowest (1) to
highest (3,624) value of the Cox score statistic, the average
rank of the eight genes in the cluster 3005 is 3,574.5. Hence
these genes are among the strongest individually for predict-
ing survival, but are not the eight strongest genes. Rather
they are a set of genes with very similar expression profiles,
highly correlated with survival.

3.0_ ° ‘e

2.5 '

2.0

Score

1.0

0.5

'

0.0+

T T T T
50 100 500
Cluster size

5000

Figure 2

Scores for each cluster, from the first stage of the harvest
procedure. The green horizontal line is drawn at (I - o)
times the maximum score, with o = 0.1. The largest cluster
having a score above this line is chosen, indicated by the
blue plotting symbol.

Human tumor data

In this example, the response is a categorical variable desig-
nating a cancer class. We use a subset of 61 of the tumors
described in Ross et al. [7] and Scherf et al. [8], omitting the
two prostate tumors and the one unknown class. There are
expression values for 6,830 genes for each of the tumors,
with the distribution across cancer classes shown in Table 3.

Here, the tree-harvest method builds a multiple logistic
regression (MLR) model in a stepwise fashion, using similar
steps to those used for the Cox model for survival data. The
goal here is to model the probability of the tumor class, given
the expression values. In general terms, if the class variable
is denoted by y taking values in {1,2, ..., J} and the predictor
variables by x,,x,, ..., x,a linear MLR model has the form:

Py=1lx
log il = Pio + By + BioXo + o + Bpx,
Table 3

Distribution of gene expression across cancer class

Breast CNS Colon Leukemia Melanoma NSCLC Ovarian Renal

9 5 7 8 8 9 6 9

NSCLC, non-small cell lung cancer



DLCL-0010
DLCL-0034
DLCL-0001
DLCL-0016
DLCL-0013
DLCL-0005
DLCL-0048
DLCL-0049
DLCL-0007
DLCL-0040
DLCL-0006
DLCL-0039
DLCL-0037
DLCL-0021
DLCL-0042
DLCL-0031
DLCL-0012

Figure 3

DLCL-0017

http://genomebiology.com/2001/2/1/research/0003.7

DLCL-0009
DLCL-0002
DLCL-0027
DLCL-0011
DLCL-0025
DLCL-0015
DLCL-0029
DLCL-0028
DLCL-0008
DLCL-0014
DLCL-0032
DLCL-0004
DLCL-0036
DLCL-0020
DLCL-0003
DLCL-0030
DLCL-0018
DLCL-0033

Lymphoma data. Clusters from tree harvest procedure, with columns in (expected) survival time order.

2.0

o
5 157 \
© \o
g .
€ 10- >I/I
8 I/I/I T
[2]
= 0.5
5 .

0.0

0 1 2 3 4 5
Terms

Figure 4

Lymphoma data. Training error curve (upper curve) and
cross-validation error curve (lower curve with error bars).
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o-o L T T T T T
0 20 40 60 80 100
Months
Figure 5

Survival curves of the two groups defined by the low or high
expression of genes in the first cluster from tree harvesting.
Group | has low gene expression, and group 2 has high gene
expression. The survival in the groups is significantly
different (p = 2.4 x 10-%).
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Ply=2 )

1Og P(y=—J|x) = ﬁzo + ﬂ21x1 + ﬁ22x2 Tt ﬁQp—pr (7)
Ply=J-1 [x)

log P(yz—Jlx) = Birno + B + BurnoXa +  + BuopXp

As before, the x; will be cluster averages, possibly individual
genes, or pairwise products of these. The logistic transform
is a natural scale on which to model the K probabilities; the
inverse transformation:

Ply=klX=x) =
eXp(ﬁko + ﬁk1x1 + ﬁkzxz +... ﬁkpxp)

1+ Elf:_: exp(ﬁko + ﬂklxl + ﬁk2x2 +oeet kaxp)
fork=1,..,K—1,andfork =K

P(y:K|X=x) =

1

1+ Elgl eXp(ﬁko + ﬂk1x1 + ﬁk2x2 +oeet ﬂkprxp)

guarantees that the probabilities sum to 1 and are positive.
The model is usually fit by multinomial maximum likeli-
hood. Because the response is really multidimensional, we
do not expect a single x to be able to distinguish all the
cancer classes; this would imply that a single gene average
creates an ordering that separates the cancer classes. Typi-
cally several are required.

At each stage, the tree-harvest algorithm considers augment-
ing the current fitted MLR model with a new term, candidates
being any of the node averages, individual genes, or products
of these with terms already in the model. As before, a score
statistic is used, appropriate for the multinomial model.

The results of a tree harvest fit allowing seven terms are
shown in Table 4. The deviance is a measure of lack-of-fit of
the multinomial model, and we see that with seven terms in
the model we have a saturated fit (the model produces prob-
ability estimates that are essentially 1 for each observation
and the relevant class). This is almost certainly an overfit sit-
uation, since we are fitting 56 parameters to 61 observations.

Figure 6 shows all of the genes in the seven terms found by
the model; the column order is chosen arbitrarily to separate
the cancer classes (and is randomly chosen within cancer
class). We used ten-fold cross-validation to find a good

Table 4

Results of tree harvesting applied to human tumor data

Node Parent Score -2log-likelihood Size
I 1177 0 6.48 197.53 6
2 3843 0 1.97 132.34 4
3 2008 0 1.78 79.34 3
4 1665 3843 0.85 71.01 3
5 5009 0 0.69 51.91 68
6 5087 2008 0.59 9.32 9
7 820 3843 0.55 0.00 2

number of terms for the model. Figure 7 shows the results,
in terms of the deviance statistic (-2 x log-likelihood). For
these data, the two-term model minimizes the CV deviance
curve and corresponds to the top two bands in Figure 6.

Figure 8 shows a scatterplot of the average expression for each
of the first two clusters, with samples identified by cancer
class. Some clear separation in the cancer classes is apparent.

Simulations

We carried out a simulation experiment to assess how well
tree harvesting discovers ‘true’ structure. To ensure that the
gene expression measurements were realistic in magnitude
and correlation, we used the matrix of 3624 x 36 lymphoma
expression measurements for our study. Artificial survival
and censoring times were then generated, to produce a sim-
ulated dataset for harvesting.

Two scenarios were considered, additive and interaction. For
the additive scenario, we chose a cluster at random and gen-
erated the censored survival time with a relative risk of 2 as a
function of its average expression profile. As indicated in
Table 5, the randomly chosen cluster was taken from either
single genes, small clusters (< 10 genes) or larger clusters
(between 10 and 300 genes). Tree harvesting was allowed to
enter just one term.

For the interaction scenario, we randomly chose one cluster
c, with between two and ten genes, and then chose the
second cluster c, to be the cluster containing between two
and ten genes whose average expression profile had the
smallest correlation with that for c,. This made the two clus-
ters as independent as possible, giving the harvest procedure
the most chance of discovering their interaction. The
survival data were then generated with relative risk function

Figure 6

The seven clusters found by tree harvesting for predicting the tumor classes. They are ordered from top to bottom in terms
of stepwise entry into the model. The vertical boundaries separate cancer classes.
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Training and ten-fold CV deviance

3=
/\I

250 \ I/I/I
\I\I/

200 .

150

Deviance

100

50 .

0 2 4 6
Number of terms

Figure 7

Model deviance for the tumor data. The lower curve is on
the training data, and reaches 0 after seven terms (a
saturated fit). The Oth term is the constant fit. The upper
curve is based on ten-fold cross-validation, where care was
taken to balance the class distribution in each fold.

7 1 Breast
2 CNS
3 Colon
34 7 7 4 Leukemia
76 3 Melanoma
6 gSCLC
—~ 7 Ovarian
8 24 73 8 Renal
c 33
)
o 3
5 14 / 8 4 4
[} 8 4
3 04 1 4
S ] 4 4
-1 21 021 4
£
o
T T T T
—2 0 2 4
Node 1177 (six genes)
Figure 8

Plot of average expression for each of the first two clusters,
with samples identified by cancer class. Some clear
separation is apparent.

Table 5

Simulation results

Scenario Average Average Proportion Proportion Average
number number  of harvest of true  correlation
in in genes in genes in
true estimate true harvest

3,624 total genes, 36 samples. Relative risk = 2.0 in additive scenarios

p=1 1.0 2.4 0.80 0.80 0.86
2<p<I10 34 4.8 0.60 0.60 0.91
10<p<300 26.2 6.4 0.60 0.19 0.77
Interaction 34 2.6 0.28 0.21 0.65

3,624 total genes, 36 samples. Relative risk = 1.0 in additive scenarios

p=1 1.0 1.6 0.24 0.60 0.61
2<p<I0 34 4.6 0.13 0.20 0.58
10<p<300 26.2 38 0.40 0.21 0.61

1,622 total genes, 129 samples. Relative risk = 2.0 in additive scenarios

p=1 1.00 1.60 0.77 1.00 0.97
2<p<10 2.80 3.00 0.93 1.00 0.99
10<p<300 646 16.6 0.94 0.66 0.91
Interaction 9.4 7.6 0.85 0.87 0.86

The value p is the number of genes in the true underlying model.

4%, + 4%, + 3[x X, - r] whereris the projection of X, X, on
X, and %, . Tree harvesting was allowed to enter three terms.

The results are shown in the top panel of Table 5. The
numbers are averages over five simulations. The columns
show the average number of genes in the true cluster,
average number of genes in the cluster found by tree har-
vesting, the proportion of the genes found by tree harvest-
ing that are in the true cluster, and vice versa. The final
column shows the average absolute correlation of the
average expression profile of the true cluster with the esti-
mated cluster. For the interaction scenario, these quantities
refer to the pooled set of genes that make up the interac-
tion. If more than one interaction was found, the one having
greatest overlap with the true interacting clusters is
reported. We see that tree harvesting returns clusters that
are a little too large when the true cluster is a single gene,
and too small when the true cluster is large. In the additive
scenario, it does a fairly good job at discovering the true
cluster or one similar to it. However, it correctly discovers
interactions only about a quarter of the time. A greater
number of samples are needed to accurately find interac-
tions among such a large set of genes. On the other hand,
the correlations in the rightmost column are all quite high,
indicating that tree harvesting is able to find clusters that
are nearly as good as the true ones.

The middle panel of Table 5 shows the results for the addi-
tive scenarios when the relative risk is lowered to 1.0. As



expected, they are somewhat worse, although the average
correlations are still around 0.60.

To investigate whether a greater number of samples
would improve the detection of interactions, we applied
the same methodology to a set of 129 samples and 1,622
genes, from an unpublished study of breast cancer (T.
Sorlie, C. Perou, and collaborators, personal communica-
tion). As before, we used the expression values and simu-
lated sets of synthetic survival times. The results are
shown in the bottom panel of Table 5. Now the tree-
harvest procedure does a good job of recovering the inter-
actions. The greater number of samples, together with the
smaller number of genes, resulted in a significant
improvement in performance.

Nonlinear tree-harvest models

In the harvest procedure described above, the effect of gene
expression is modeled linearly. Thus, in modeling each term
we assume that increasing or decreasing gene expression has
a consistent effect on the outcome. However, it is biologically
plausible for a gene to have a nonlinear effect: for example,
increasing expression may correlate with longer survival, but
only up to some level. Beyond that level, the same or worse
survival might result.
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Figure 9
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To allow for nonlinear effects, flexible bases of functions
could be used for each gene. However, with a large number
of genes this would tend to overfit quickly. Hence we allow a
simple quadratic function for each gene:
b() = (x - d)? ®
We first orthogonalize b(x) with respect to the linear term
for the same gene, and then allow the transformed expres-
sion b(x) in place of the expression x in the tree-harvest
model. In detail, the model has the same form as Equation 2:

A - - -
yi=Bo+ Eﬁks?k,j +> B8t 86 .+
k ok’

> Buacr 32,55, i
e

* .
Cprnd Tt

(9)

S . 1 X . 2 .- X . 1
where 5, ; equals either X, ; or X2, ;- v -, ; and yis chosen
to make X2,

orj uncorrelated with %, ; over the dataset.

If a quadratic term is multiplied by a positive coefficient,
then the effect of a gene has a ‘U’ shape, decreasing and then
increasing. For a negative coefficient, the effect is an
inverted ‘U’. A product interaction between two quadratic
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terms would indicate a strong synergistic effect between the
two genes, with direction of expression (below or above
average) ignored. When the nonlinear option is used in har-
vesting, the procedure tries both linear and nonlinear terms
at each stage, and chooses the one with maximum score.

Lymphoma data continued

We tried tree harvesting with the nonlinear option for the
lymphoma dataset, and it gave the first four terms shown in
Table 6. Quadratic terms were entered in terms 2-4; these
gave a better fit up to term 3 than the linear model fit earlier,
but didn’t do as well after that. The clusters from this model
are shown in Figure 9.

In the second cluster, for example (marked ‘2’ in Figure 9),
we see that survival time is greatest for moderate expression
levels, and is worse for very low or very high levels.

Overall, the lack of significant improvement of the nonlinear
model over the linear model gives greater confidence that
the linear shape for each term is appropriate in this example.
However, quadratic models may well be useful for other
gene expression experiments.

Conclusions

The tree harvest procedure is a promising, general method
for supervised learning from gene expression data. It aims to
find additive and interaction structure among clusters of
genes, in their relation to an outcome measure. This proce-
dure, and probably any procedure with similar aims,
requires a large number of samples to uncover successfully
such structure. In the real data examples, the method was
somewhat hampered by the paucity of available samples. We
plan to try tree harvesting on larger gene expression
datasets, as they become available.

Table 6

Results of nonlinear tree harvest procedure applied to
lymphoma data

Node Parent Score -2Log-likelihood Size  Nonlinear?
| 3005 2.980 104.34 8 No
2 52597 0 3.891 91.18 | Yes
3 s1021 3005 3919 81.59 | Yes
4 5583 3005 3314 7239 | Yes
Cox model fit to all 4 terms

coef exp(coef) se(coef) z p
zI  3.107 22.36 0.6551 4.74 2.1 x 106
72 0794 221 0.1990 3.99 6.6 x 10
z3 0380 1.46 0.0954 3.98 6.8x 10
z4 0238 1.27 0.0729 327 I.I x 103

We used a forward stepwise strategy involving sum and prod-
ucts of the average gene expression of chosen clusters. We
chose this strategy because it produces interpretable, biologi-
cally plausible models. Other models could be built from the
average gene expression of clusters, including tree-based
models or boosting methods (see, for example, Friedman et
al. [10]).

Additional data

Additional data available with the online version of this
article include clusters from the harvest model applied to
lymphoma data.
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