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Abstract
Introduction: Effects of systemic inflammation on cerebral function are not clear, as both inflammation-induced 
encephalopathy as well as stress-hormone mediated alertness have been described.

Methods: Experimental endotoxemia (2 ng/kg Escherichia coli lipopolysaccharide [LPS]) was induced in 15 subjects, 
whereas 10 served as controls. Cytokines (TNF-α, IL-6, IL1-RA and IL-10), cortisol, brain specific proteins (BSP), 
electroencephalography (EEG) and cognitive function tests (CFTs) were determined.

Results: Following LPS infusion, circulating pro- and anti-inflammatory cytokines, and cortisol increased (P < 0.0001). 
BSP changes stayed within the normal range, in which neuron specific enolase (NSE) and S100-β changed significantly. 
Except in one subject with a mild encephalopathic episode, without cognitive dysfunction, endotoxemia induced no 
clinically relevant EEG changes. Quantitative EEG analysis showed a higher state of alertness detected by changes in 
the central region, and peak frequency in the occipital region. Improved CFTs during endotoxemia was found to be 
due to a practice effect as CFTs improved to the same extent in the reference group. Cortisol significantly correlated 
with a higher state of alertness detected on the EEG. Increased IL-10 and the decreased NSE both correlated with 
improvement of working memory and with psychomotor speed capacity. No other significant correlations between 
cytokines, cortisol, EEG, CFT and BSP were found.

Conclusions: Short-term systemic inflammation does not provoke or explain the occurrence of septic 
encephalopathy, but primarily results in an inflammation-mediated increase in cortisol and alertness.

Trial registration: NCT00513110.

Introduction
With recorded prevalence rates of up to 70% [1], most
patients with sepsis develop reversible brain dysfunction
called sepsis-associated delirium or septic encephalopa-
thy [2]. In patients suffering from septic encephalopathy,
electroencephalographic (EEG) abnormalities have been
observed [2], although there are conflicting results con-
cerning elevated levels of serum brain specific proteins
(BSP) in septic patients [3,4]. The mechanisms for brain
dysfunction in septic patients are far from clear. Accumu-
lating data suggest that circulating cytokines are associ-
ated with a neurotoxic effect in humans [1,2,5,6], either

through a direct effect [7] or mediated via oxidative stress
[8,9]. In addition, genetic variation in the IL-1β-convert-
ing enzyme resulting in chronically higher levels of IL-1β
is associated with memory and learning deficits [10].
Moreover, there is evidence that increased levels of TNF-
α and IL1-β further exacerbate ischemic and excitotoxic
brain damage in humans [11,12].

On the other hand systemic inflammation induces a
stress hormone response. This may lead to improvement
of alertness, as throughout daytime temporal coupling
between endogenous cortisol release and central alert-
ness has been demonstrated in humans [13]. Also, ele-
vated cortisol concentrations and cortisol administration
[13-19] were shown to improve cognitive functions (CF).
Intravenous administration of Escherichia coli lipopoly-
saccharide (LPS) to young healthy volunteers induces an
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acute systemic inflammatory response mediated by high
levels of cytokines, resulting in oxidative stress [9,20,21]
and increased levels of cortisol [22]. These effects are
dose-dependent [23], and currently the administration of
2 or 4 ng/kg of LPS is mostly used in cases of experimen-
tal human endotoxemia. Human experimental endotox-
emia can be used as a model to study the
pathophysiological changes observed in septic patients,
resulting in for example cardiac [24], vascular and
endothelial dysfunction [21,25], coagulation abnormali-
ties [26,27] and other subclinical end-organ dysfunction
[28]. However, up to now the effects of experimental
human endotoxemia on brain function has not been ade-
quately investigated. Although high-dose LPS infusion in
mice results in encephalopathy [29], experiments in
humans demonstrated conflicting results. Experimental
endotoxemia resulted in no change [30], deterioration
[31] or improvement and deterioration of different cogni-
tive function tests (CFTs) [22]. Endotoxemia-induced
effects on EEG and BSP have not been investigated.

The aim of our present study was to investigate the
effects of endotoxemia-induced inflammation on the
brain. We addressed the question of whether LPS infu-
sion induces changes in EEG, cortisol, BSPs, and CFs.
Furthermore we wanted to examine if there is a correla-
tion between the LPS-induced increased level of cytok-
ines, cortisol, changes in EEG signals, BSPs and various
CFs.

Materials and methods
Study design of human endotoxemia experiments
This study is registered at the Clinical Trial Register
under the number NCT00513110. After approval of our
ethics committee, 15 healthy male volunteers gave writ-
ten informed consent to participate in the LPS study.
Screening before the experiment revealed no abnormali-
ties in medical history or physical examination. Routine
laboratory tests and electrocardiogram (ECG) were nor-
mal and the volunteers had no reported brain dysfunc-
tion or psychiatric disorders. Ten healthy male volunteers
were recruited for only cognitive measurements after
they gave informed written consent.

During the experiment all 15 volunteers were moni-
tored for heart rate (ECG), blood pressure (intra-arteri-
ally), body temperature (infrared tympanic thermometer;
Sherwood Medical, 's-Hertogenbosch, the Netherlands)
and EEG activity (Nicolet One system, Viasys Healthcare,
Houten, The Netherlands), from about two hours before
the administration of LPS and continued until the end of
the experiment (about eight hours after the LPS adminis-
tration). A cannula was inserted in a deep forearm vein
for prehydration (1.5 L of 2.5% glucose/0.45 saline solu-
tion in the hour before LPS administration). During the
first six hours after the LPS administration all subjects

received 150 mL/h, and after that period until the end of
the experiment 75 mL/h of 2.5% glucose/0.45 saline solu-
tion to ensure an optimal hydration status [32].

In one minute E. coli LPS 2 ng/kg was injected at t = 0
hours. The course of symptoms (headache, nausea, shiv-
ering, muscle pain and back pain) were scored on a six-
point Likert scale; 0 = no symptoms, 5 = very severe
symptoms, resulting in a total score of 0 to 25.

Laboratory tests (cytokines, cortisol and brain specific 
proteins)
Analysis of cytokines and cortisol
All blood was allowed to clot and after centrifugation
serum was stored at -80°C until analysis.

To determine the time course and peak values per indi-
vidual, serial blood samples were taken. Cytokines con-
centrations of TNF-α, IL-6, IL-1-receptor antagonist, and
IL-10 were measured in samples taken at baseline (t = 0)
and at one, two, four and eight hours after LPS adminis-
tration and batchwise analysed using Luminex assay. Cor-
tisol levels were determined with luminometric
immunoassay on a random access analyzer (Architect® i
System, Abbott, Illinois, USA) at baseline (t = 0) and at
two, four and eight hours after LPS administration.
Analysis of brain specific proteins: S100-β, NSE, and GFAP
Proteins S100 calcium binding protein-β (S100-β) and
neurospecific enolase (NSE) were analyzed using a com-
mercially available monoclonal two-site luminometric
assay (Sangtec Medical, Dietzenbach, Germany) accord-
ing to the manufacturer's instructions using a Liaison
automated analyzer (Byk Sangtec, Dietzenbach, Ger-
many). The lower detection limit for S100-β is 0.02 μg/L.
The upper reference range (95%) of S100-β serum con-
centrations in healthy subjects is 0.12 μg/L. The lower
detection limit for NSE is 0.04 μg/L, and the upper refer-
ence range (95%) of NSE in serum from healthy subjects
is 12.5 μg/L. The glial fibrillary acidic protein (GFAP)
assay is a two-site luminometric assay. The serum sample
is pipetted into coated wells of a microtitre strip contain-
ing the tracer antibody labelled with an isoluminol deriv-
ative. After incubation, the strips are washed and the
chemiluminescent signal is measured in a luminometer.
All steps of the assay are performed at room temperature.
The lower detection limit for GFAP is 0.02 μg/L, and the
upper limit (95%) of GFAP in serum in 75 healthy sub-
jects was 0.49 μg/L.

Electroencephalography
Subjects were monitored continuously with EEG, using a
standard 21-lead recording with surface Ag/AgCl cup
electrodes that were attached with Elefix EEG paste
(Nihon Koden Inc., Foothill Ranch, California, USA) and
placed according to the international 10-20 system.
Recordings were made from electrode positions Fp1, Fp2,
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Fz, F3, F4, F7, F8, Cz, C3, C4, Pz, P3, P4, T3, T4, T5, T6,
A1, A2, O1, and O2. Additional electrodes were placed
for the recording of ocular movements and the ECG.
Electrode impedance was kept below 5 KOhm, and the
signals were filtered with a 1 Hz (high-pass) and 70 Hz
(low-pass) filter. EEG signals were digitally sampled with
a frequency of 256 Hz and stored on a computer hard
disk. The full-length recordings were analyzed visually by
an experienced clinical neurophysiologist (NvA) blinded
to the LPS protocol. Raw EEGs were scored using a five
category classification system for septic encephalopathies
[33]. At least once per hour a one-minute artefact-free
raw EEG sample (10-second epoch) of the subject lying
awake with his eyes closed was selected for further quan-
titative analysis. In each subject, the power spectrum of
samples was calculated for the standard frequency bands
(delta <4 Hz; theta 4 to <8 Hz; alpha 8 to <13 Hz, beta >13
Hz) using Fourier transformation. The peak frequency in
the occipital regions (P3 to O1 and P4 to O2 bipolar mon-
tages) was assessed for each time point. To detect
changes in central alertness alpha and beta activity
changes in the relative band power and absolute band
power of the occipital and central electrodes (P4O2,
P3O1 and F4C4, F3C3, respectively) were used, and also
changes in peak frequency in the occipital region [13].
Changes in activity were expressed as percentage of
change of the individual baseline level of activity before
the LPS administration.

Cognitive function tests
The anxiety level of each individual was measured at
baseline after arrival at our research unit, with the Dutch
State-Trait Anxiety Inventory (STAI) scale [34]. Higher
scores (range 0 to 80) indicate higher levels of psycholog-
ical distress. The time the participants required to finish
the Grooved Pegboard test with the dominant hand
served as an indication of fine motor control [35]. Work-
ing memory was assessed with the digit span forward and
backward subtests of the Dutch translations of the
Wechsler Adult Intelligence Scale (WAIS) III [36]. The
total number of correct responses on the two-second
stimulus interval condition of the Paced Auditory Serial
Addition Test (PASAT) served as a measure for divided
attention under time pressure [37]. The total number of
correct responses on the Digit Symbol Test (SDT) of the
WAIS III was chosen as an indication of psychomotor
speed capacity as well as the information processing abil-
ity [36]. Reading speed, colour naming speed and dis-
tractibility were measured with the Stroop colour-word
naming test [38] (Pearson Assessment and Inofrmation
BV, Amsterdam, The Netherlands). To measure a possible
practice effect as a result of test-retesting of the CFTs, the
same CFTs under the same conditions and time intervals

were performed in a reference group of 10 healthy male
volunteers that did not receive LPS.

Data analysis and statistics
All data were analyzed using SPSS version 16.01 (SPSS,
Chicago, Illinois, USA). Results are expressed by means ±
standard error of the mean or median (interquartile range
(IQR)) depending on their distribution. LPS-induced
effects were tested for significance with Friedman's analy-
sis of variance (non-parametric test). To detect practice
effect we compared the experimental group and the refer-
ence group with the repeated measurement-analysis of
variance. Correlation analysis was performed with the
Spearman's correlation coefficient. Because of the explor-
atory nature of this study, a correction for multiple testing
was not included. Statistical significance was defined as a
P value less than 0.05.

Results
Baseline characteristics
Baseline characteristics of the 15 healthy male volunteers
are shown in Table 1. All participants had a mean age of
23 ± 2 years, and had a high (college or university) educa-
tional level.

LPS-induced changes in clinical and inflammatory 
parameters and cortisol levels
LPS administration induced the expected transient flu-
like symptoms. Body temperature increased by 1.4 ±
0.1°C (P < 0.0001) and heart rate by 27 ± 2 bpm (P <
0.0001). Cumulative symptom scores increased from a
median score of 0 (IQR 0 to 1) to 4 (IQR 2 to 7) at 70 min-
utes after LPS administration, after which there was a
decrease to a median of 2 (IQR 1 to 5) and 1 (IQR 0 to 2)

Table 1: Baseline demographic characteristics of the study 
group

Characteristic (n = 15)

Age (years) 23 ± 2

Height (cm) 186 ± 7

Weight (kg) 77.1 ± 9.0

Body mass index (kg/m2) 22.3 ± 2.0

Systolic blood pressure 
(mmHg)

130 ± 6

Diastolic blood pressure 
(mmHg)

65 ± 9

Heart rate (bpm) 61 ± 8

Temperature (°C) 35.7 ± 0.3

Symptom score (median) 0 (interquartile range 0-1)

All values are means ± standard deviation unless other reported.
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at two and four hours, respectively (P < 0.0001). Relevant
to the present study, LPS administration induced an
increase in headache score from 0 score to a maximum of
2 (IQR 1 to 3) at 90 minutes after endotoxin administra-
tion (P < 0.0001).

All plasma cytokine concentrations increased signifi-
cantly (all P < 0.0001) after the administration of LPS
(Figure 1). Cortisol levels increased significantly from
0.31 ± 0.07 to 0.60 ± 0.07 μmol/l (P < 0.0001) two hours
after LPS administration and dropped to baseline levels
eight hours after LPS administration (Figure 1).

Figure 1 LPS-induced changes in cytokine plasma concentrations, cortisol and brain specific proteins. Time -0- reflects baseline concentra-
tions. Administration of lipopolysaccharide (LPS) resulted in a marked increase in TNF-α, IL-6, IL-10, IL-1Ra and cortisol concentrations. All changes in 
cytokine and the cortisol concentrations were significant (P < 0.001). Concentrations of neuron specific enolase (NSE) decreased after administration 
of LPS (P < 0.001) and S100-β showed a significant biphasic change (P = 0.038). All data are expressed as mean ± standard error of the mean (n = 15). 
GFAP, glial fibrillary acidic protein; S100β, S100 Calcium Binding Protein B. * P < 0.05. ** P < 0.001.
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LPS-induced changes in brain specific proteins
As illustrated in Figure 1, NSE levels showed a small, but
statistically significant decrease from 11.1 ± 0.47 to 7.7 ±
0.39 μg/L after the administration of LPS (P < 0.0001).
S100-β showed a significant biphasic change (from 0.049
± 0.002 up to 0.055 ± 0.004 and down to 0.047 ± 0.002 μg/
L, P = 0.04), whereas GFAP levels did not change signifi-
cantly (P = 0.41).

LPS-induced changes in EEG
Visual analysis
For each subject, at least eight hours of raw EEG were
available for visual analysis. All EEGs before LPS infusion
were within the normal range. One hour after LPS infu-
sion mild transient encephalopathic EEG changes in the
theta range were present in one subject for 15 minutes,
without associated cognitive impairment. Of note, this
subject had a very low cytokine response during endotox-
emia (TNF-α level of 169 pg/ml compared with the group
mean of 814 ± 133 pg/ml, and IL-6 level of 508 pg/ml
compared with the group mean of 1,111 ± 142 pg/ml) and
an average cortisol response (0.29 to 0.67 μmol/l). The
EEGs from the other 14 subjects remained within the
normal range after LPS infusion, and no focal or epilepti-
form abnormalities were found.
Quantitative analysis
LPS induced a significant increase of the peak frequency
and absolute band power of alpha and beta activity in the
occipital region, P4O2 and P3O1 (all P < 0.0001). The
absolute power of the alpha activity in the central region,
F4C4 and F3C3, increased significantly (both P < 0.0001).
The relative band power of the beta activity in P4O2
increased significantly (P = 0.017), indicating a higher
state of alertness. No other relevant EEG changes were
found (Figure 2).

LPS-induced changes in cognitive function
Baseline STAI in the LPS group was 32.7 ± 1.5, indicating
a low level of anxiety that did not differ from the refer-
ence group 29.1 ± 3.7 (P = 0.13). During endotoxemia all
measured CFs significantly improved. These improve-
ments were not significantly different from those
observed in the reference group who did not receive LPS
(Table 2), indicating that the improvement of the CFT in
the LPS group was due to a practice effect.

Correlation analyses
Cytokines, cortisol, BSP, EEG, and CF
To analyse the effects between the measured cytokine
levels, cortisol, BSP levels, EEG parameters and cognitive
performances, data were correlated.

In the LPS group the elevated levels of the anti-inflam-
matory cytokine IL-10 significantly correlated with the
improvement of the working memory (r = 0.71, P = 0.003)
and the psychomotor speed capacity (r = 0.71, P = 0.003).
The increased cortisol levels significantly correlated with

the increased peak frequency in the occipital electrodes
P4O2 (r = 0.61, P = 0.016) and P3O1 (r = 0.69, P = 0.005).
In the LPS group, the decreased level of NSE significantly
correlated with the improvement of the working memory
and psychomotor speed capacity (r = -0.53, P = 0.048 and
r = -0.67, P = 0.006, respectively). The increased alpha
activity in F3C3 central region correlated significantly
with the improvement of the working memory (r = 0.66,
P = 0.007). No other correlations between cytokines, cor-
tisol, BSP, EEG and CF were found.

Discussion
The main result of the present study is that, despite very
high cytokine concentrations during experimental endo-
toxemia, no indications were found that acute systemic
inflammation results in increased levels of BSPs and dete-
rioration of CFs in humans in vivo. In addition, a group
level quantitative EEG analysis showed a higher state of
alertness that correlated with cortisol concentrations.
Nevertheless, the concomitant improvement in CFTs
turned out to represent a practice effect as a similar
improvement was observed in subjects who did not
receive LPS. Although the increased alpha activity in the
central region of the brain correlated with the improve-
ment of working memory in the LPS group, it appears
conceivable that this correlation may also be present in
the control group during the repeated CFTs, but this
finding needs to be confirmed. Interestingly, the one sub-
ject with a transient mild encephalopathic episode on
EEG, that is category 2 following the score used by Young
and colleagues [33], showed that this was not associated
with objective cognitive dysfunction. In addition, this
subject had one of the lowest LPS-induced proinflamma-
tory cytokine responses of the whole group, arguing
against a cytokine-mediated effect.

Although experimental endotoxemia in young humans
without any co-morbidity mimics the pathophysiological
changes in septic patients in many ways, important differ-
ences also exist. For example, TNF-α concentrations
found during experimental endotoxemia are much higher
than in septic patients, whereas other cytokines are
released to a lesser extent and some inflammatory media-
tors found in septic patients are not induced during
experimental endotoxemia [39]. It appears likely that the
relatively mild insult and short duration of elevated
cytokine levels during experimental endotoxemia does
account for the increase in cortisol concentration and
observed stimulating effects on the brain, but may not
reflect the neurotoxic effects of inflammatory mediators
present in septic patients. In addition, age and the pre-
existing neurological situation is likely to be important.
Healthy elderly people show a more pronounced inflam-
matory response during experimental endotoxemia [40]
and pre-existing micro-glial inflammation primes the
brain for development of cognitive impairment in non-
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Figure 2 Increase of the EEG occipital peak frequencies, relative alpha band power and absolute alpha and beta band power two to three 
hours after LPS infusion. Data of peak frequency are absolute numbers, data of absolute and relative band power are expressed as percentage 
changes. Time -0- reflects baseline measurements. (standard error of the means were omitted for reasons of clarity). * P < 0.05. ** P < 0.001. (a) Peak 
frequency in occipital region. Friedman analysis of variance revealed changes in P4O2 and P3O1 (both P < 0.001). (b) Percentage change compared 
to baseline in absolute band power (ABP) of alpha activity in occipital and central region. Friedman analysis of variance revealed changes for alpha 
activity in P4O, P3O1 and F4C4, F3C3 all P < 0.001. (c) Percentage change compared with baseline in absolute band power (ABP) and relative band 
power (RBP) of beta activity in occipital region. Friedman analysis of variance revealed changes of RBP for beta activity in P4O2 (P = 0.017), P3O1 (P = 
0.575) and ABP for beta activity in P4O and P3O1 (both P < 0.001).
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Table 2: Neuropsychological test outcomes (mean ± SD) at 0 (baseline), 2 and 8 hours after LPS administration

LPS group (n = 15) Reference group (n = 10) P value 
(between 

group)

Age
(Dutch) STAI total

22.8 ± 2.2 25.5 ± 2.5 0.87*

32.7 ± 1.5 29.1 ± 3.7 0.13*

Neuropsychological 
test

t = 0 t = 2 t = 8 P value 
(within 
group)

t = 0 t = 2 t = 8 P value 
(within 
group)

Stroop A (in seconds) 1 39 ± 2 35 ± 2 35 ± 2 0.0001 37 ± 5 34 ± 4 34 ± 4 0.001 0.49

Stroop B (in seconds) 1 51 ± 3 45 ± 3 43 ± 2 0.0001 48 ± 7 44 ± 7 43 ± 7 0.001 0.45

Stroop C (in seconds) 1 75 ± 6 65 ± 4 64 ± 4 0.003 67 ± 10 62 ± 12 61 ± 11 0.004 0.23

Pasat 2 49 ± 2 50 ± 2 56 ± 2 0.001 50 ± 7 54 ± 4 54 ± 5 0.031 0.07

Digits forward 2 11 ± 1 12 ± 1 11 ± 1 0.115 10 ± 2 11 ± 1 11 ± 2 0.235 0.81

Digits backward 2 8 ± 1 9 ± 1 9 ± 1 0.30 9 ± 2 9 ± 1 9 ± 2 0.454 0.65

Digits total 2 19 ± 1 20 ± 1 20 ± 1 0.066 19 ± 4 20 ± 3 21 ± 4 0.203 0.63

Pegboard 1 64 ± 2 59 ± 2 61 ± 2 0.037 58 ± 5 56 ± 6 56 ± 7 0.362 0.35

Symbol substitution 
task2

87 ± 3 99 ± 4 101 ± 3 0.0001 98 ± 14 108 ± 17 112 ± 19 0.0001 0.53

All values are means ± SD unless other reported.
* Unpaired T-test.
1 Decrease indicates an improvement of the test.
2 Increase indicates an improvement of the test.
Reading speed was measured by Stroop A-B-C word naming test.
Attention under time pressure was measured by the paced auditory serial addition test (PASAT).
Working memory was tested in numbers with the Digits forward and backward test.
The fine motor control was tested with the Grooved Pegboard test.
Psychomotor speed capacity was measured by the symbol substitution task.
LPS, lipopolysaccharide; SD, standard deviation; STAI, Dutch State-Trait Anxiety Inventory scale.

infectious and infectious central nervous system dysfunc-
tion [41]. Therefore, although our study shows that a
short duration of very high cytokine levels is not associ-
ated with brain dysfunction it does not exclude the possi-
ble effects of cytokines on neurons in older ICU patients
with co-morbidities.

Cortisol secretion is related to electroencephalographic
alertness [13]. We showed a significant correlation
between the elevated levels of cortisol and the change in
occipital peak frequency. It is likely that this higher state
of alertness was due to the LPS-induced inflammation
with feelings of sickness resulting in a stress hormone-
driven 'flight-fight' response [42], which is also associated
with increased cortisol. This appears to be a short-lived
effect, because chronically elevated levels of glucocorti-
coids result in a deterioration of CF [43]. As a result of
this, it is possible that in the septic patient the stimulating
effect of stress hormones on the brain is overshadowed by
the neurotoxic effect of persistently elevated level of
cytokines and other mediators. In septic patients, levels

of some proinflammatory cytokines are not as high as in
the LPS model, but the duration of the elevated cytokine
level is much longer [44]. If these cytokines play a role in
the sepsis-associated encephalopathy, it is apparently not
the absolute peak concentration of the proinflammatory
cytokine that is of importance. Presumably, sustained ele-
vated levels of cytokines are more important in the devel-
opment of organ failure and brain dysfunction in sepsis.
In accordance, chronic small increases in proinflamma-
tory cytokine levels due to polymorphisms were found to
be associated with decreased brain function [10]. Natu-
rally, other not yet identified mediators of inflammation
that may be increased in septic patients but not during
experimental endotoxemia may also account for brain
dysfunction observed in septic patients.

In previous studies with much lower doses of LPS (0.2
to 0.8 ng/kg), with little systemic inflammatory response,
conflicting effects on CFs were reported [22,30,31]. Com-
pared with experiments with 0.2 ng/kg, improvement of
working memory was shown in a study with 10 healthy
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volunteers with a dose of 0.8 ng/kg LPS [22]. In these
studies, cortisol level and cytokines increased slightly,
compared with our results [22,30,31], which is associated
with dysfunction of other organs [24,28,45]. Furthermore,
a potential problem in the studies with low doses of LPS
was that no correction for practice effect was performed
while practice effects during CFT are common, especially
in situations with short test-retest intervals. Our study
demonstrates that the observed improvement in CFs
after LPS infusion in all domains was due to a practice
effect. Without the use of a control group and the mea-
surement of practice effect results are bound to be misin-
terpreted. Our results suggest that a short-term
inflammation does not influence practice effect or lead to
a significant deterioration or improvement of CFs.

The observed relations between EEG changes and
inflammatory markers indicate a higher state of inflam-
mation-induced alertness. Higher dosages of LPS result
in higher levels of cytokines [23] and more elevated levels
of cortisol result in a higher state of alertness [13]. The
higher state of alertness during endotoxemia is possibly a
so-called fight and flight response, rather than being due
to the increased cytokine concentrations.

Although it is tempting to speculate, due to the obser-
vational nature of the present study we cannot conclude
whether or not the anti-inflammatory innate immune
response, measured by IL-10, exerts a protective effect on
the brain, and this correlation needs further study. In
addition, the pathophysiological mechanism by which
systemic inflammation results in the observed decrease
of NSE is not clear. Increased levels of NSE are associated
with deterioration of CF after cardiac surgery [46]. Also,
increased NSE levels are associated with brain injury in
septic patients, but an association between NSE and CFs
in septic patients has not been examined.

Conclusions
Administration of LPS to humans results in systemic
inflammation with high levels of cytokines and increased
cortisol levels. In young healthy volunteers this can spo-
radically lead to a transient mild deterioration of brain
function without clinical correlation. Overall, LPS infu-
sion results in a higher state of alertness determined on
the EEG, while the practice effects in CFTs are not signif-
icantly influenced. Short-term systemic inflammation
does not provoke or explain the occurrence of a septic
encephalopathy.

Key messages
• Despite very high cytokine concentrations during
experimental endotoxemia, no indications were
found that acute systemic inflammation results in
increases of BSPs and deterioration of CFs in humans
in vivo.

• LPS-induced increases in cortisol significantly cor-
related with a higher state of alertness detected on the
EEG.
• Although most of the improvements in CF were
identified as practice effects, increased IL-10 and the
decreased NSE both correlated with improvement of
working memory and with psychomotor speed capac-
ity.
• An acute systemic inflammation induced by LPS
does not suppress this practice effect in CFTs.
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