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Abstract

inflammation or survival.

prevented by rm-APC treatment.

Introduction: Influenza accounts for 5 to 10% of community-acquired pneumonias and is a major cause of mortality.
Sterile and bacterial lung injuries are associated with procoagulant and inflammatory derangements in the lungs.
Activated protein C (APC) is an anticoagulant with anti-inflammatory properties that exert beneficial effects in models
of lung injury. We determined the impact of lethal influenza A (H1N1) infection on systemic and pulmonary
coagulation and inflammation, and the effect of recombinant mouse (rm-) APC hereon.

Methods: Male C57BL/6 mice were intranasally infected with a lethal dose of a mouse adapted influenza A (H1N1)
strain. Treatment with rm-APC (125 g intraperitoneally every eight hours for a maximum of three days) or vehicle was
initiated 24 hours after infection. Mice were euthanized 48 or 96 hours after infection, or observed for up to nine days.

Results: Lethal HINT influenza resulted in systemic and pulmonary activation of coagulation, as reflected by elevated
plasma and lung levels of thrombin-antithrombin complexes and fibrin degradation products. These procoagulant
changes were accompanied by inhibition of the fibrinolytic response due to enhanced release of plasminogen
activator inhibitor type-1. Rm-APC strongly inhibited coagulation activation in both plasma and lungs, and partially
reversed the inhibition of fibrinolysis. Rm-APC temporarily reduced pulmonary viral loads, but did not impact on lung

Conclusions: Lethal influenza induces procoagulant and antifibrinolytic changes in the lung which can be partially

Introduction

Influenza A infection is a major cause of morbidity and
mortality: Seasonal influenza A infection causes over
200,000 hospitalizations and approximately 41,000 deaths
in the United States annually, being the seventh leading
cause of mortality [1]. Besides its regular seasonal charac-
ter, influenza A, due to the introduction and adaptation
of novel hemagglutinin subtypes from other mammals or
birds resulting in antigenic shifts, has the potential to
cause pandemics, as the pandemics in 1918, 1957 and
1968 have shown [2]. Currently, a novel influenza A
(HIN1) strain from swine origin has evolved to a pan-
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demic, now worldwide causing major concern for the
near future [3]. Although the greatest proportion of mor-
tality caused by influenza A infection is due to secondary
bacterial pneumonia and cardiovascular complications,
influenza itself is also an important cause of community-
acquired pneumonia (CAP), causing 5 to 10% of CAP-
cases [4-7]. As such, influenza is a major concern for pul-
monologists and intensive care physicians [8].

Severe infection and inflammation have been closely
linked to activation of coagulation and downregulation of
anticoagulant mechanisms and fibrinolysis [9]. In bacte-
rial pneumonia, pulmonary activation of coagulation as
well as downregulation of the anticoagulant protein C
(PC) pathway and fibrinolysis have been demonstrated
[10-12]. Beside anticoagulant properties, activated (A)PC
has been shown to have profibrinolytic, anti-inflamma-
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tory, anti-apoptotic and other cytoprotective properties
[13]. Downregulation of the PC pathway has been corre-
lated to disease severity and mortality in severe bacterial
pneumonia and sepsis [14,15] and continuous intrave-
nous administration of recombinant human (rh-) APC
for four days (Human Activated Protein C Worldwide
Evaluation in Severe Sepsis (PROWESS) trial) has been
shown not only to downregulate activation of coagula-
tion, but also to reduce inflammation and improve sur-
vival in patients with severe sepsis [16]. The benefical
effect of rh-APC in this trial seemed especially prominent
in patients with severe sepsis due to pneumonia [17].
While much research has been done on coagulation acti-
vation during severe bacterial infection, data on coagula-
tion activation in viral infection like influenza are sparse.
Evidence that influenza can be associated with coagula-
tion activation comes from a clinical study in pediatric
patients hospitalized for severe influenza [18] and from a
recent study showing elevated plasma levels of thrombin-
antithrombin complexes (TATc) in mice infected with a
non-lethal dose of influenza A [19]. Interestingly, and as
mentioned above, many elderly patients with influenza
infections suffer from cardiovascular complications.

At present it is unknown whether APC can influence
the procoagulant and inflammatory response to lethal
influenza A infection. Therefore, in the present study we
sought to establish the effect of recombinant mouse (rm)-
APC treatment on local and systemic activation of coagu-
lation and fibrinolysis during lethal HIN1 influenza A in
mice and moreover determined the effect of rm-APC on
lung inflammation, pulmonary viral loads and survival.
We here show, that lethal HIN1 influenza A infection is
associated with both pulmonary and systemic activation
of coagulation and inhibition of fibrinolysis. Moreover,
we show that rm-APC treatment, started 24 hours after
the onset of infection, partially prevents these hemostatic
derangements, but does not impact on lung inflammation
or survival.

Materials and methods

Animals

Male C57BL/6 mice were purchased from Charles River
(Maastricht, the Netherlands) and maintained in the ani-
mal facility of the Academic Medical Center (University
of Amsterdam) according to national guidelines with free
access to food and water. Ten-week-old mice were used in
experiments. All experiments were approved by the Insti-
tutional Animal Care and Use Committee of the Aca-
demic Medical Center.

Experimental infection and treatment

Influenza infection was induced by intranasal instillation
of a lethal dose (28,000 copies) of influenza A/PR/8/34
(HIN1, ATCC no. VR-95; Rockville, MD, USA), as
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described [20,21]. This infectious dose was chosen based
on a previous study from our laboratory showing that it
caused lethality in C57BL/6 mice which could be delayed
by eliminating signalling via the proinflammatory recep-
tor for advanced glycation end products (RAGE) [20].
Recombinant murine (rm-) APC and buffer control were
generated by Eli Lilly & Co (Indianapolis, IN, USA) as
described [22]. Rm-APC (2 mg/ml) was diluted in sterile
pyrogen-free saline to a concentration of 625 pg/ml. The
buffer control was diluted likewise. Uninfected mice were
euthanized before or at one, four or eight hours (n = 4 per
time point) after a single intraperitoneal injection of 125
pg of rm-APC (200 pl) to determine plasma APC-levels.
In infection experiments, from 24 hours after infection
on, mice were treated every eight hours for a maximum
of three days with 125 pg of rm-APC or buffer. Sample
harvesting and processing, and determination of viral
copies were done as described (n = 8 per group at each
time point) [20,21].

Assays

M-APC levels were measured by an enzyme capture assay
[23]. TATc (Behringwerke AG, Marburg, Germany),
fibrin degradation products (FDP) [24], plasminogen
activator inhibitor type-1 antigen (PAI-1) [25], myeloper-
oxidase (MPO; HyCult Biotechnology, Uden, the Nether-
lands), interleukin  (IL)-1B,  keratinocyte-derived
chemokine (KC) and macrophage inflammatory protein
(MIP)-2 (all R&D Systems, Minneapolis, MN, USA) were
measured by ELISA. Plasminogen activator activity
(PAA) was determined by an amidolytic assay [26].
Tumor necrosis factor (TNF)-qa, IL-6, IL-12p70, IL-10
and interferon (IFN)-y were measured by cytometric
bead array (CBA) multiplex assay (BD Biosciences, San
Jose, CA, USA).

Histology and immunohistochemistry

Paraffin lung sections were stained with haematoxylin
and eosin or fluorescein isothiocyanate-labeled anti-
mouse Ly-6G mAb (Pharmingen, San Diego, CA, USA) as
described [27]. To score lung inflammation, the lung sur-
face was analyzed with respect to the following parame-
ters: bronchitis, interstitial inflammation, oedema,
endothelialitis, pleuritis and thrombus formation. Each
parameter was graded on a scale of 0 to 4 (0: absent, 1:
mild, 2: moderate, 3: severe, 4: very severe). The total his-
topathological score was expressed as the sum of the
scores for the different parameters, the maximum being
24. Ly-6G stained slides were photographed with a micro-
scope equipped with a digital camera (Leica CTR500,
Leica Microsystems, Wetzlar, Germany). Stained areas
were analysed with Image Pro Plus (Media Cybernetics,
Bethesda, MD, USA) and expressed as percentage of the
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surface area. The average of 10 pictures was used for
analysis.

Statistical analysis

Data are expressed as box-and-whisker diagrams (depict-
ing the smallest observation, lower quartile, median,
upper quartile and largest observation), medians with
interquartile ranges or as survival curves. Differences
between groups were determined with Kruskal-Wallis,
Mann-Whitney U test or log rank test. Analyses were
performed using GraphPad Prism version 4.0 (GraphPad
Software, San Diego, CA, USA). P-values less than 0.05
were considered statistically significant.

Results

Plasma m-APC levels after single dose administration of
rm-APC

To determine plasma levels of m-APC after single dose
administration of rm-APC, uninfected mice were
injected intraperitoneally with 125 ug of rm-APC (200 pl)
and sacrificed after one, four or eight hours. Plasma levels
of rm-APC after single dose administration were 154
(interquartile range 76 to 250), 122 (96 to 131) and 33 (27
to 40) ng/ml after one, four and eight hours, respectively.

Activation of coagulation and downregulation of
fibrinolysis

Administration of APC has been found to inhibit activa-
tion of coagulation in animals and patients with severe
bacterial sepsis [13,16,28]. To determine the effect of
APC on the procoagulant response in severe influenza,
we infected mice with a lethal dose of influenza A virus
and initiated rm-APC (or buffer control) treatment 24
hours after infection; subsequently, we determined the
levels of TATc and FDP in lung homogenates (Figure 1A,
B) and plasma (Figure 1C, D) at 48 and 96 hours after
infection. Inoculation with a lethal dose of influenza sig-
nificantly increased the levels of TATc and FDP in both
lung homogenates and plasma after 48 and 96 hours as
compared to uninfected control mice. Treatment with
rm-APC strongly inhibited local and systemic activation
of coagulation as shown by decreased levels of TATc and
FDP in rm-APC treated animals in both lungs and plasma
(Figure 1A-D).

Evidence derived from in vitro investigations indicates
that APC may stimulate fibrinolysis by inhibiting the
main inhibitor of this system, PAI-1 [29,30]. To study the
effect of lethal influenza A infection on fibrinolysis and
the impact of rm-APC treatment hereon, we determined
the levels of PAI-1 and PAA in lung homogenates and
plasma. In influenza PAI-1 levels were increased at 48
and 96 hours both locally and systemically as compared
to controls (Figure 2A, C), which was associated with
downregulation of PAA in both lung and plasma (Figure
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2B, D). Treatment with rm-APC reduced PAI-1 concen-
trations in lung and plasma, but this was only significant
in plasma 96 hours after infection. Although the effect of
rm-APC on PAI-1 was not significant at 48 hours, rm-
APC treatment did partially preserve fibrinolytic activity
at 48 hours both in lung and plasma, as indicated by
higher PAA as compared to buffer control treated mice
(Figure 2B, D). After 96 hours differences in PAA had
subsided.

Of note, no bleeding complications were seen in mice
treated with rm-APC, except for the occasional small
peritoneal haematomas at the injection site, which were
not seen in buffer control treated mice.

Lung inflammation

Lethal influenza was associated with pulmonary inflam-
mation and damage as evidenced by the occurrence of
bronchitis, interstitial inflammation, oedema and
endothelialitis both at 48 hours (pictures not shown) and
96 hours after infection (Figure 3A, B). There were no dif-
ferences in total histopathological scores between rm-
APC and buffer control treated mice at either 48 or 96
hours after infection (Figure 3C). Moreover, there were
no differences in the separate scores for bronchitis, inter-
stitial inflammation, oedema and endothelialitis (not
shown).

One of the prominent features in lethal influenza is
neutrophil influx into the lung parenchyma both after 48
hours (pictures not shown) and 96 hours (Figure 4A, B).
There were no differences in neutrophil influx between
rm-APC and buffer control treated mice after 48 or 96
hours, as evidenced by equal percentages of positivity in
Ly-6G stainings (Figure 4C). In line, pulmonary MPO
concentrations, indicative for the number of neutrophils
in lung tissue, were similar in both treatment groups at
both time points (Table 1).

To further investigate the effect of rm-APC treatment
on the inflammatory response in severe influenza, we
determined pulmonary levels of various cytokines (TNF-
a, IL-1B, IL-6, IL-10, IL-12p70, IFN-y) and chemokines
(KC, MIP-2) in lung homogenates obtained 48 and 96
hours after infection. After 48 hours of infection, there
were no statistically significant differences in cytokine
levels between rm-APC and buffer control treated ani-
mals (Table 1). After 96 hours, the levels of the pro-
inflammatory cytokines TNF-a and IL-12p70 were lower
in rm-APC treated animals. Levels of KC and MIP-2 did
not differ between treatment groups at any time point.

Viral load

To investigate the effect of rm-APC on the antiviral
response in influenza infection, we determined viral
loads in lungs over time. Remarkably, after 48 hours, rm-
APC treatment was associated with more than four-fold



Schouten et al. Critical Care 2010, 14:R65
http://ccforum.com/content/14/2/R65

Page 4 of 10

12.5+
—_ #HiHE
o
£ 7.54
'E ## L il
= 5.0
o *k
5 254 |
=
A- 0 c
0 48h 96h
25+
— #i
E 204 T
(=]
E
(2] 15+
< #
104 T T xkk
: a =
o 59 ==
-} ==
C. 0
0 48h 96h
and P < 0.001 respectively, Mann-Whitney U test).

Figure 1 Activation of coagulation in lethal HIN1 influenza A infection is attenuated by recombinant murine activated protein C treat-
ment. Levels of A. and C. thrombin-antithrombin complexes (TATc) and B. and D. fibrin degradation products (FDP) in A. and B. lung and C. and D.
plasma at baseline (dashed) and 48 and 96 hours after induction of lethal influenza A infection in buffer control treated mice (white) and recombinant
murine activated protein C treated mice (grey). Data are expressed as box-and-whisker diagrams depicting the smallest observation, lower quartile,
median, upper quartile and largest observation (eight mice per group at each time point). # and ## indicate statistical significance as compared to
baseline (P < 0.01 and P < 0.001 respectively, Mann-Whitney U test), ** and *** indicate statistical significance as compared to buffer control (P < 0.01
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less viral RNA copies as compared to buffer control treat-
ment (Figure 5). However, after 96 hours after infection
this difference in viral load had subsided completely.

Survival

To substantiate whether differences in activation of coag-
ulation, downregulation of fibrinolysis, viral loads and
TNEF-a and IL-12p70 levels between rm-APC and buffer
control treated animals were associated with an altered
mortality we performed a survival study. The infection
was associated with 100% lethality within nine days in
both treatment groups and mortality curves did not differ
between rm-APC and buffer control treated mice (Figure
6).

Discussion

Influenza is an important cause of pneumonia, causing 5
to 10% of all CAP cases [4,7]. While bacterial pneumonia
has been linked to activation of coagulation and down-
regulation of anticoagulant mechanisms and fibrinolysis
[10-12], knowledge of the impact of influenza on hemo-
stasis is limited. We here studied alterations in local and

systemic activation of coagulation and fibrinolysis
together with induction of inflammation during lethal
influenza A infection. In addition, considering that previ-
ous investigations in patients and animals have especially
pointed to beneficial effects of APC treatment in the
lungs [17,31-33], we determined the effect of APC on the
procoagulant and inflammatory response to and the out-
come of lethal influenza. We show that lethal HIN1 influ-
enza A infection is associated with extensive pulmonary
and systemic activation of coagulation accompanied by
inhibition of fibrinolysis. Systemic administration of
APC, started 24 hours after infection, mimicking a possi-
ble clinical scenario, strongly attenuated coagulation acti-
vation and partially reversed inhibition of fibrinolysis, but
did not influence lung inflammation or survival.
Concurrent alterations in coagulation and fibrinolysis
during influenza have not been studied in detail thus far.
One clinical study in children has indicated that severe
influenza can be associated with disseminated intravas-
cular coagulation [18]. In addition, mice with non-lethal
influenza A infection displayed a rise in plasma TATc and
PAI-1 levels; although fibrinolytic activity (such as mea-
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Figure 2 Induction of plasminogen activator inhibitor type-1 and downregulation of fibrinolysis in lethal HIN1 influenza A infection is par-
tially reversed by recombinant murine activated protein C treatment. Levels of A. and C. plasminogen activator inhibitor type-1 (PAI-1) and B.
and D. plasminogen activator activity (PAA) in A.and B. lung and C. and D. plasma at baseline (dashed) and 48 and 96 hours after induction of lethal
influenza A infection in buffer control treated mice (white) and recombinant murine activated protein C treated mice (grey). Data are expressed as
box-and-whisker diagrams depicting the smallest observation, lower quartile, median, upper quartile and largest observation (eight mice per group
at each time point). *and ## indicate statistical significance as compared to baseline (P < 0.05 and P < 0.01 respectively, Mann-Whitney U test), * and
** indicate statistical significance as compared to buffer control (P < 0.05 and P < 0.01 respectively, Mann-Whitney U test).
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sured by PAA) was not determined in this previous inves-
tigation, these data point to concurrent activation of
coagulation and inhibition of fibrinolysis at the systemic
level during mild influenza [19]. Our own preliminary
data have suggested that lethal influenza not only results
in systemic coagulation activation, but also in induction
of the coagulation system in the lungs (Schouten et al,
XXIst Congress of the International Society of Thrombo-
sis and Haemostasis, Boston, July 2009, abstract no.
3065). Our current results confirm and expand these pre-
vious data. First, we demonstrate local and systemic acti-
vation of coagulation, as evidenced by increased lung and
plasma TATc and FDP levels in influenza infected mice at
48 and 96 hours. Moreover, we show that activation of
coagulation is accompanied by local as well as systemic
downregulation of fibrinolysis, as reflected by elevated
PAI-1 and reduced PAA levels in lung homogenates and
plasma, which probably further contributes to the influ-
enza-induced procoagulant state. Most likely, the down-
regulation of fibrinolytic activity can be explained at least
partially by upregulation of PAI-1, the main inhibitor of

the fibrinolytic system. As such, severe influenza appears
to cause similarly opposite changes in pulmonary coagu-
lation and fibrinolysis as previously reported for bacterial
pneumonia and acute respiratory distress syndrome [34-
37].

Systemic administration of rm-APC strongly inhibited
activation of the coagulation system, as indicated by
markedly reduced plasma and lung concentrations of
TATc and FDPs in rm-APC treated mice relative to vehi-
cle treated animals. In addition, rm-APC had a modest
but statistically significant effect on the fibrinolytic sys-
tem, partially blunting the influenza-induced rise in
plasma and lung PAI-1 levels and partially preserving
plasma and lung fibrinolytic activity. The capacity of APC
to attenuate systemic coagulation during severe bacterial
infection has been demonstrated in several studies
[13,16,38]. Our group previously reported on the effects
of intravenous administration of recombinant APC on
pulmonary coagulation in healthy humans intrabronchi-
ally challanged with lipopolysaccharide (LPS) [39] and in
rats challenged with LPS systemically [40] or with viable
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Figure 3 Lung histopathology in lethal HIN1 influenza A infection is not influenced by recombinant murine activated protein C treatment.
Representative slides of lung haematoxylin and eosin staining 96 hours after induction of lethal influenza A infection in A. buffer control treated mice
and B. recombinant murine activated protein C treated mice (original magnification x 100). C. Total pathology score (described in methods section)
48 and 96 hours after induction of lethal influenza A infection in buffer control treated mice (white) and recombinant murine activated protein C treat-
ed mice (grey). Data are expressed as box-and-whisker diagrams depicting the smallest observation, lower quartile, median, upper quartile and largest
observation (eight mice per group at each time point). No statistical differences between the groups at each time point.

bacteria via the airways [41,42]. All of these previous
studies [39-42], in which APC treatment was started
before the challenge with LPS or bacteria, revealed the
capacity of APC to inhibit coagulation in the lungs. The
current study adds to these earlier findings that APC is
capable of inhibiting systemic and local coagulation dur-
ing influenza-induced pneumonia and that this effect is
present when APC administration is initiated 24 hours
after infection, that is, in a clinically more relevant set-
ting. Of interest, endogenous APC may also reduce influ-
enza-induced coagulation, as indicated by studies in mice
with a mutation in their thrombomodulin gene that
results in a minimal capacity for endogenous APC gener-
ation: these mice demonstrated increased plasma levels
of TATc (relative to wild-type mice) during non-lethal
influenza [19]. Our finding that rm-APC stimulated
fibrinolysis by inhibiting PAI-1 is supported by evidence
derived from in vitro investigations [29,30]. Of note, pre-
vious studies from our laboratory could not demonstrate
an effect of recombinant APC on pulmonary fibrinolysis

during LPS-induced lung injury [39,40] or bacterial pneu-
monia [41,42].

Besides anticoagulant and profibrinolytic properties,
APC has been found to exert anti-inflammatory activity
(reviewed in [13]). Previous studies have suggested that
recombinant APC can inhibit LPS-induced neutrophil
recruitment and activation in the lungs [31,43]. Nonethe-
less, in the current study rm-APC did not have a major
impact on lung inflammation during lethal influenza A
infection, as indicated by similar histopathology scores of
lung tissue, a similar influx of neutrophils to the site of
infection and largely similar cytokine and chemokine
concentrations in lung homogenates. Interestingly, rm-
APC did reduce lung TNF-a and IL-12 levels 96 hours
after infection; similarly, APC has been found to inhibit
the LPS-induced production of TNF-a in vitro and in
vivo [32,44].

To our knowledge, the effect of APC on antiviral
defense per se has not been studied. We here show that
rm-APC temporarily lowers pulmonary viral loads about
four-fold, as measured 48 hours after infection. These dif-
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Figure 4 Lung neutrophil influx in lethal HIN1 influenza A infection is not influenced by recombinant murine activated protein C treat-
ment. Representative slides of lung Ly-6G staining (brown) 96 hours after induction of lethal influenza A infection in A. buffer control treated mice
and B. recombinant murine activated protein C treated mice (original magnification x 100). C. Quantitation of pulmonary Ly-6G content 48 and 96
hours after induction of lethal influenza A infection in buffer control treated mice (white) and recombinant murine activated protein C treated mice
(grey). Data are expressed as box-and-whisker diagrams depicting the smallest observation, lower quartile, median, upper quartile and largest obser-
vation (eight mice per group at each time point). No statistical differences between the groups at each time point.

Table 1: Pulmonary myeloperoxidase, cytokine and chemokine levels 48 and 96 hours after induction of lethal H1N1
influenza A infection

Placebo rm-APC placebo rm-APC
MPO (ng/ml) 5.0(3.9t05.9) 49(4.2t05.1) 6.4(5.6106.9) 6.8 (6.2108.9)
TNF-a (pg/ml) 120 (97 to 134) 121 (101 to 143) 393 (293 to 495) 167 (139 to 344) *
IL-1B (pg/ml) 236 (100 to 415) 389 (331 to 389) 479 (444 to 549) 371 (345 to 587)
IL-6 (ng/ml) 0.9(0.7t0 1.0) 0.8(0.7t00.9) 1.3(1.0t0 1.6) 1.0(0.7 to 1.3)
IL-12 (pg/ml) B.D. B.D. 54 (37 to 64) 11(5.0to 28) *
IL-10 (pg/ml) 137 (86 to 165) 131 (101 to 153) 115(82to 175) 65 (23 to 147)
IFN-y (pg/ml) 6.8 (6.0t09.7) 6.9(5.8t07.9) 6.7 (4910 8.1) 56(3.5t07.9)
KC (ng/ml) 3.1(23t03.7) 4.0(29to05.1) 34(26to4.4) 4.2(3.3t05.6)
MIP-2 (ng/ml) 1.2(0.8to 1.4) 1.5(1.2to 1.6) 1.4(1.3to 1.5) 1.5(1.4t01.7)

Data are medians (interquartile ranges) of eight mice per group at each time point. * indicates statistical significance compared to placebo
(P < 0.05). MPO, myeloperoxidase, TNF-a, tumor necrosis factor-g, IL, interleukin, IFN-y, interferon-y, KC, keratinocyte-derived chemokine,
MIP-2, macrophage inflammatory protein-2, B.D., below detection.
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Figure 5 Pulmonary viral loads in lethal HIN1 influenza A infec-
tion are transiently reduced by recombinant murine activated
protein C treatment. Lung viral RNA copies 48 and 96 hours after in-
duction of lethal influenza A infection in buffer control treated mice
(white) and recombinant murine activated protein C treated mice
(grey). Data are expressed as box-and-whisker diagrams depicting the
smallest observation, lower quartile, median, upper quartile and larg-
est observation (eight mice per group at each time point). * indicates
statistical significance as compared to buffer control (P < 0.05, Mann-
Whitney U test).

ferences between rm-APC and vehicle treated mice had
disappeared 96 hours post infection. The transiently
reduced viral loads in rm-APC treated animals are sur-
prising considering that APC is not known to impact on
antiviral mechanisms and did not influence the inflam-
matory response to influenza A in a way that might have
improved host defense. The difference in viral load
between rm-APC and buffer treated mice did not result
in a substantially changed inflammatory response or a
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Figure 6 Survival in lethal HIN1 influenza A infection is not af-
fected by recombinant murine activated protein C treatment. Sur-
vival of buffer control treated mice (open squares, n = 12) and
recombinant murine activated protein C treated mice (grey squares, n
=12)in lethal influenza A infection. No statistical differences between
the groups (log rank test).
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delayed mortality. However, since we tested only one
infectious dose of influenza A, we cannot exclude that
rm-APC does impact on lethality after infection with dif-
ferent viral doses. The mechanism by which rm-APC
reduces viral loads at an early stage of influenza infection
needs further investigation. Besides anticoagulant and
anti-inflammatory properties, APC has been described to
influence the hemodynamic response to an inflammatory
stimulus [13,45]. The potential effect of rm-APC on
hemodynamics was not measured in our current study
and therefore warrants further investigation.

In order to mimic the clinical situation, APC should be
administered by a continuous intravenous infusion. How-
ever, this is difficult to achieve in mice for a period of sev-
eral days. In this study, we therefore administered rm-
APC intraperitoneally every eight hours at a dose of 125
pug (a daily dose of approximately 15 mg/kg, that is,
approximately 25 times higher than the daily dose admin-
istered to humans). This administration protocol resulted
in plasma levels which were not dissimilar to the levels
observed after intravenous administration of lower doses
in previous studies in rodents in which anti-inflammatory
effects of recombinant APC were demonstrated after LPS
administration [31,32,46,47] and which are in the same
range as those achieved by continuous intravenous infu-
sion in septic patients [48]. In light of these earlier rodent
and patient investigations [31,32,46-48] and considering
that the APC dosing schedule used here caused profound
anticoagulant effects, we consider it unlikely that higher
APC doses would have had a significant effect on lung
inflammation or survival. Such studies would be less clin-
ically relevant and moreover would be associated with an
increased risk for bleeding, which was not observed with
the current dosing regimen. It would be of considerable
interest, however, to study the effects of mutant forms of
APC with reduced anticoagulant but enhanced cytopro-
tective properties in models of lethal influenza [46,47,49].

Conclusions

Lethal HIN1 influenza infection is associated with both
pulmonary and systemic activation of coagulation and
inhibition of fibrinolysis. Rm-APC treatment, started 24
hours after the onset of infection, partially prevents these
hemostatic derangements, but does not impact on lung
inflammation or survival.

Key messages

+ Lethal HIN1 influenza infection is associated with
both pulmonary and systemic activation of coagula-
tion and inhibition of fibrinolysis.

+ Rm-APC treatment, started 24 hours after the onset
of lethal HIN1 infection, partially prevents influenza-
induced procoagulant and anti-fibrinolytic derange-
ments.
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« Rm-APC treatment, started 24 hours after the onset
of lethal HIN1 infection, does not impact on lung
inflammation or survival.
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