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Introduction: Sedative and analgesic medications are routinely used in mechanically ventilated patients. The aim
of this review is to discus epidemiologic data that suggest a relationship between infection and sedation, to
review available data for the potential causes and pathophysiology of this relationship, and to identify potential

Methods: Data for this review were identified through searches of PubMed, and from bibliographies of relevant

Results: Several epidemiologic studies suggested a link between sedation and ICU-acquired infection. Prolongation
of exposure to risk factors for infection, microaspiration, gastrointestinal motility disturbances, microcirculatory
effects are main mechanisms by which sedation may favour infection in critically ill patients. Furthermore,
experimental evidence coming from studies both in humans and animals suggest that sedatives and analgesics
present immunomodulatory properties that might alter the immunologic response to exogenous stimuli. Clinical
studies comparing different sedative agents do not provide evidence to recommend the use of a particular agent
to reduce ICU-acquired infection rate. However, sedation strategies aiming to reduce the duration of mechanical
ventilation, such as daily interruption of sedatives or nursing-implementing sedation protocol, should be promoted.
In addition, the use of short acting opioids, propofol, and dexmedetomidine is associated with shorter duration of
mechanical ventilation and ICU stay, and might be helpful in reducing ICU-acquired infection rates.

Conclusions: Prolongation of exposure to risk factors for infection, microaspiration, gastrointestinal motility
disturbances, microcirculatory effects, and immunomodulatory effects are main mechanisms by which sedation
may favour infection in critically ill patients. Future studies should compare the effect of different sedative agents,
and the impact of progressive opioid discontinuation compared with abrupt discontinuation on ICU-acquired

Introduction

Healthcare-associated infections are the most common
complications affecting hospitalized patients [1]. Inten-
sive care unit (ICU)-acquired infections represent the
majority of these infections [2]. In a recent multicenter
study conducted in 71 adult ICUs [3], 7.4% of the 9,493
included patients had an ICU-acquired infection. ICU-
acquired pneumonia (47%) and ICU-acquired blood-
stream infection (37%) were the most frequently
reported infections. Another recent multicenter study
was conducted in 189 ICUs [4]. Of the 3,147 included
patients, 12% had an ICU-acquired sepsis. ICU-acquired
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infections are frequently advocated as a significant con-
tributor to mortality and morbidity [5,6]. Diagnosing
these infections can be difficult in ICU patients with
multiorgan failure. In addition, differentiating lower
respiratory tract infection from colonization can be a
difficult task in patients requiring mechanical ventilation
[7]. Although mortality attributable to ICU-acquired
infection is a matter of debate, high attributable morbid-
ity and cost were repeatedly reported in patients with
these infections [7-10].

Sedative and analgesic medications are routinely used
in mechanically ventilated patients to reduce pain and
anxiety and to allow patients to tolerate invasive proce-
dures in the ICU [11]. Mostly a combination of an
opioid, to provide analgesia, and a hypnotic, such as a
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benzodiazepine or propofol to provide anxiolysis, is used
[12]. A variety of opioids used by intravenous adminis-
tration in adults are available for use in the ICU, includ-
ing morphine, fentanyl, alfentanil, sufentanil, and
remifentanil [13-15].

Recently, several studies reported longer duration of
mechanical ventilation and hospital stay in patients
receiving sedation in the ICU [16,17]. Prolonged dura-
tion of mechanical ventilation and ICU stay are well-
known risk factors for ICU-acquired infection. In addi-
tion, sedation could favour infection by several other
mechanisms. The aim of this review is to discuss epide-
miologic data that suggest a relation between infection
and sedation, to review available data for the potential
causes and pathophysiology of this relation, and to iden-
tify potential preventive measures.

Materials and methods

Data for this review were identified through searches of
PubMed, and from bibliographies of relevant articles.
We undertook a comprehensive search in PubMed,
from April 1969, through to April 2009, using the terms
“infection AND sedation”, “pneumonia AND sedation”,
“bloodstream infection AND sedation”, “infection AND
opioids”, “infection AND hypnotics”, or “infection AND
opioid withdrawal” without time limit. The search was
limited to publications in English and French.

Clinical studies were selected for this review if they
reported on the relation between infection and sedatives
used for long-term sedation in ICU patients. Animal
and in vitro studies were included if they reported on
the relation between infection and immunologic effects
of sedation or on other potential mechanisms of infec-
tion in sedated patients. All abstracts were reviewed by
two independent reviewers (SN and DeM). Articles of
relevant abstracts were reviewed. All relevant articles
were included in this review. After PubMed searches,
192 original articles were selected on abstracts. After
reading these articles, 121 were kept in this review. Six
additional original studies were found using references
of selected articles.

Results

Epidemiology

Analgesia and sedation have routinely been employed in
ICU patients for many years, particularly among those
receiving mechanical ventilation. Surveys and prospec-
tive cohort studies have revealed wide variability in
medication selection, monitoring using sedation scales
and implementation of structured treatment algorithms
among practitioners in different countries and regions
of the world [18]. However, protocols that guide the
clinician to administer the least necessary sedation to
achieve patient comfort while maintaining patient-
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examiner interactivity are recommended [19]. In an
international cohort study conducted in 1998 [17], 68%
of the 5,183 mechanically ventilated adults received a
sedative at any time while receiving mechanical ventila-
tion. At least one analgesic or sedative drug was used
on 58% of days of ventilatory support, including benzo-
diazepines in 69%, propofol in 21% and opioids in 63%
of sedation days. Heterogeneity in clinical practice for
different regions of the world was demonstrated, with
use of analgesic and sedative drugs being most common
in Europe and least common in Latin America. Accord-
ing to the results of a recent survey performed in 647
ICU physicians [20], substantial differences exist in seda-
tive and analgesic practices in western European ICUs.
Midazolam and propofol were the more frequently used
sedatives, and morphine and fentanyl were the most fre-
quently used analgesics. In France, a prospective, obser-
vational study was performed on 1,381 adult patients in
44 ICUs [21]. Sedatives were used less frequently than
opioids (72% and 90%, respectively), and a large propor-
tion of assessed patients (40 to 50%) were in a deep
state of sedation.

In a retrospective case-control study, opiate analgesics
were found to contribute to the development of post-
burn infectious complications when the burn injury is of
a less severe nature [22]. With 187 controls, 187
patients with at least one infectious complication were
matched according to age + one year, length of hospital
stay before infection, and total body surface area burned
+ 5%. The median opiate equivalent was 14 in cases
compared with 10 in controls (P = 0.06). Cases were
more likely to be classified into the high opiate equiva-
lent group relative to controls (odds ratio (OR), 1.24;
95% confidence interval (CI), 1 to 1.54; P = 0.049). The
duration of opiate use was significantly longer in cases
as compared with controls (P < 0.001). The association
between opiate use and infection was modified by burn
size. Limitations of this study included the retrospective
observational design, and the absence of adjustment for
comorbidities. In a large prospective observational mul-
ticenter study, an intermediate value (6 to 13) of the
actual Glasgow coma scale on day 1, reflecting either
preexisting disease or the effects of sedation, was signifi-
cantly more frequent in patients with early-onset venti-
lator-associated pneumonia (VAP) compared with those
without early-onset VAP (52% vs 37%, P = 0.03). In
addition, a Glasgow coma scale value of 6 to 13 was
independently associated with early-onset VAP (OR,
1.95; 95% CI, 1.2 to 3.18). In a prospective observational
multicenter study, Metheny and colleagues determined
risk factors for VAP [23]. A high level of sedation was
identified as an independent risk factor for VAP (OR,
2.3; 95% CI, 1.3 to 4.1; P = 0.006). Other risk factors
included abundant aspiration (OR, 4.2; 95% CI, 2.7 to
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6.7; P < 0.001), and paralytic agent use (OR, 2.7; 95% CI,
1.6 to 4.5; P < 0.001).

Another recent prospective observational study evalu-
ated risk factors for ICU-acquired infection [24]. Of the
587 patients, 39% developed at least one ICU-acquired
infection. Although higher rates of sedation were found
in patients with ICU-acquired infection compared with
those without ICU-acquired infection (87% vs 53%; OR,
5.7; 95% CI, 3.7 to 8.9; P < 0.001), sedation was not
independently associated with ICU-acquired infection.
However, remifentanil withdrawal was identified as an
independent risk factor for ICU-acquired infection (OR,
2.53; 95% CI, 1.28 to 4.19; P = 0.007). The highest rate
of ICU-acquired infection was observed at day 4 after
remifentanil discontinuation. However, this study was
observational, and performed in a single center. There-
fore, no cause-to-effect relation could be determined,
and the results may not be applicable to patients hospi-
talized in other ICUs. Results of studies reporting on
the relation between sedation and ICU-acquired infec-
tion are presented in Table 1.

The data from these epidemiologic studies suggest
that there is a potential association between sedation
and infection. In light of the wide and variable applica-
tion of sedatives in ICU patients, where management of
infection is crucial, the relation between sedative agents
and infection merits further investigation.

Pathophysiology

Exposure to risk factors for ICU-acquired infection

Several studies demonstrated that sedation prolongs
exposure to risk factors for ICU-acquired infection. In a
prospective observational cohort study performed on
252 consecutive ICU patients requiring mechanical ven-
tilation [16], Kollef and colleagues found that duration
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of mechanical ventilation was significantly longer for
patients receiving continuous intravenous sedation com-
pared with patients not receiving continuous intrave-
nous sedation (185 * 190 vs 55.6 = 75.6 hours;
P < 0.001). Similarly, the lengths of intensive care (13.5
+ 33.7 vs 4.8 £ 4.1 days; P < 0.001) and hospitalization
(21.0 + 25.1 vs 12.8 + 14.1 days; P < 0.001) were statisti-
cally longer among patients receiving continuous intra-
venous sedation. In a multicenter study performed on a
cohort of 5,183 patients receiving mechanical ventilation
[17], a total of 3,540 (68%) patients received sedation.
The persistent use of sedatives was associated with
more days of mechanical ventilation (median, 4 (inter-
quartile range (IQR), 2 to 8), vs 3 (2 to 4) days,
P < 0.001; in patients who received sedatives, and those
who did not receive sedatives; respectively); and longer
length of stay in the ICU (8 (5 to 15), vs 5 (3 to 9) days,
P < 0.001). Further, muscle relaxants are adjuncts to
sedation in some patients. The use of muscle relaxant
agents is a well-known risk factor for polyneuropathy
and prolonged mechanical ventilation duration [18].
Duration of mechanical ventilation is a well-known
risk factor for VAP. Cook and colleagues [25] reported
that the cumulative risk of VAP increased over time,
although the daily hazard risk decreased after day 5 of
mechanical ventilation (3.3% at day 5, 2.3% at day 10,
and 1.3% at day 15). Prolonged stay in the ICU is asso-
ciated with increased exposure to invasive procedures
such as intubation, and central venous, arterial and urin-
ary catheters. Device use is the major risk factor for
VAP, bloodstream infection, and urinary tract infection
[3,26,27].
Microaspiration
Many studies have found an association between coma
as the reason for ICU admission and VAP [25,28-31].

Table 1 Results of studies reporting on relation between sedation and infection

First Year of Setting Study design/ Type of Number of patients with sedation
author publication/ Number of patients infection
[Reference] country
Type of sedation Infection Number of P OR (95% Cl)
infections
Bornstain 2004/France Mixed  Prospective cohort/ Early-onset NR* 42/80 251/667 0.03 1.9 (1.2-3.0)**
[29] ICUs 747 VAP (52) (37)
Schwacha ~ 2006/USA Burn Retrospective nested  Hospital- Opiate analgesics NR NR 0049° 12 (1-15)
[22] unit case-control study/ acquired
374 infection
Metheny 2006/USA Mixed  Prospective cohort/ VAP NR 150/173  132/187 0006 23 (1.3-4.1)*
[23] ICUs 360 (86) (70)
Nseir [24] 2009/France Mixed  Prospective cohort/ ICU-acquired  Remifentanil with or  203/233  191/354 <0.001 5.7 (3.7-89)
ICU 587 infection without midazolam  (87) (53)

*Results for patients with neurologic impairment at ICU admission, the number of patients with neurologic impairment related to sedation or to preexisting

disease was not reported.
**Adjusted odds ratio (OR).

5P value for the difference in rate of cases and controls classified into the high opiate equivalent group.
Cl: confidence interval; ICU: intensive care unit; NR: not reported; VAP: ventilator-associated pneumonia;
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One potential explanation for the association between
neurologic impairment and VAP is microaspiration of
contaminated oropharyngeal secretions. Bacterial coloni-
zation of the aerodigestive tract and entry of contami-
nated secretions into the lower respiratory tract are
critical in the pathogenesis of VAP [32]. The endotra-
cheal tube is an important risk factor for VAP, because
it permits leakage of oropharyngeal secretions around
the cuff and may act as a nidus for the growth of intra-
luminal biofilms [33]. A recent prospective observational
study aimed to determine the frequency of pepsin-posi-
tive tracheal secretions (a proxy for the aspiration of
gastric contents), outcomes associated with aspiration,
and risk factors for aspiration in 360 critically ill tube-
fed patients [23]. Almost 6,000 tracheal secretions col-
lected during routine suctioning were assayed for pep-
sin; of these, 31.3% were positive. At least one aspiration
event was identified in 88.9% (n = 320) of the partici-
pants. The incidence of pneumonia (as determined by
the Clinical Pulmonary Infection Score) increased from
24% on day 1 to 48% on day 4. Patients with pneumonia
on day 4 had a significantly higher percentage of pepsin-
positive tracheal secretions than did those without pneu-
monia (42.2% vs. 21.1%, respectively; P < 0.001). Inter-
estingly, a Glasgow Coma Scale score of less than nine
(P = 0.021) was significantly associated with aspiration
by univariate analysis. Other risk factors for aspiration
included a low backrest elevation (P = 0.024), vomiting
(P = 0.007), gastric feedings (P = 0.009), and gastroeso-
phageal reflux disease (P = 0.033). In a 24-hour mano-
metric study, esophageal motility was investigated in 21
adults, including 15 consecutive ventilated patients, and
6 healthy volunteers [34]. Irrespective of the underlying
disease, propulsive motility of the esophageal body was
significantly reduced during any kind of sedation.
Impaired tubular esophageal motility is involved in the
pathogenesis of gastrointestinal reflux disease, which, in
turn has been shown to cause nosocomial pneumonia in
critically ill patients.

Microcirculatory effects of sedation

In a pilot study performed on 10 ICU patients, benzo-
diazepine induced an increase in cutaneous blood flow
secondary to vasodilation, a decrease in reactive hypere-
mia, and alterations of vasomotion [35]. Addition of
sufentanil did not substantially modify the results
obtained. Clinical studies have clearly established that
alterations of normal microcirculatory control mechan-
isms may compromise the tissue nutrient blood flow
and may contribute to the development of organ failure
in septic patients [36,37]. In addition, numerous experi-
mental studies have reported that microvascular blood
flow is altered in sepsis and common findings include a
decrease in functional capillary density and
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heterogeneity of blood flow with perfused capillaries in
close vicinity for nonperfused capillaries [38,39]. Multi-
ple factors may contribute to these findings, including
alterations in red blood cell rheology and leucocyte
adhesion to endothelial cells, endothelium dysfunction,
and interstitial edema. These observations suggest that
sedation may alter tissue perfusion when already com-
promised, as in septic patients, and contribute to the
development of multiorgan failure.

Intestinal effects of sedation

Gastrointestinal motility disturbances are common in cri-
tically ill patients [40]. These disturbances cause consid-
erable discomfort to the patients and they are also
associated with an increased rate of complications. In
addition, fecal stasis induces microbiological imbalance,
resulting in overgrowth of Gram-negative bacteria, rela-
tive reduction of the endogenous anaerobic and Gram-
positive flora, and increase in endotoxin load. Transloca-
tion of bacteria may lead to infections, and translocation
of endotoxins may enhance systemic inflammation
[41-44]. Opioid drugs inhibit gastrointestinal transit by
inhibiting neurotransmitter release and by changing
neural excitability [45]. An animal model demonstrated
that one-quarter of the dose needed to produce analgesia
inhibits intestinal motility and one-twentieth of the
analgesic dose is sufficient to stop diarrhea [40]. In con-
trast to many other opioid-induced side effects such as
nausea, vomiting, and sedation, patients rarely develop
tolerance to constipating effects of opioids [46]. Dexme-
detomidine was also found to inhibit gastric, small bowel,
and colonic motility [47]. In contrast, continuous infu-
sion of propofol does not alter gastrointestinal tract moti-
lity more than a standard isolflurane anaesthesia [48].

Immunomodulatory effects of sedation

Opioids

Experimental evidence coming from in vitro and in vivo
animal studies suggests that opioids may alter the
immunologic response to exogenous stimuli resulting in
higher risk of infection. Opioids have been found to
have deleterious effects on host immunity across a
broad range of pathogenic microorganism [49-55]. Their
immunomodulatory effects have been observed follow-
ing acute and chronic exposure and after opioid with-
drawal in several infectious models.

1. Acute exposure to opioids Acute exposure to mor-
phine suppresses mitogen-stimulated proliferation of
T- and B-lymphocytes [56,57], natural killer (NK) cell
cytotoxic activity, primary antibody production [58-60],
phagocytosis by macrophages [61,62], macrophage
migration via its apoptotic effects [63], and IL2, inter-
feron y (IFN), TNF-o, and nitric oxide (NO) production
[64-71]. These suppressive effects are blocked by
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naloxone, a competitive opioid antagonist, suggesting
that the effects are mediated via opioid receptors [72].
Location of opioid receptors on immunocytes suggests
that morphine suppressive effects on the immune sys-
tem may be due to a direct interaction [73-76]. Another
possible mechanism is that central opioid receptors acti-
vate the sympathic nervous system and the hypothala-
mic-pituitary-adrenal axis, which subsequently suppress
immune function [77-80]. The production of cathecola-
mines and neuropeptides from sympathic nerves and
glucocorticoids from the adrenals are responsible for
many of the immunomodulatory effects of morphine
[81]. Recently, the neuroimmune mechanism of opioid-
mediated conditioned immunomodulation was investi-
gated [81-84]. Saurer and colleagues [83] provided evi-
dence that the expression of morphine conditioned
effects on NK cell activity requires the activation of
dopamine D1 receptors in the nucleus accumbens shell.
Furthermore, the antagonism of NPY Y1 receptor pre-
vents the conditioned suppression of NK activity, sug-
gesting that the conditioned and unconditioned effects
of morphine involve similar mechanisms. Zaborina and
colleagues [85] demonstrated that Pseudomonas aerugi-
nosa can intercept opioid compounds released during
host stress and integrate them into core elements of
quorum sensing circuitry leading to enhanced virulence.
These authors found that x-opioid receptor agonists
induce pyocyanin production in P. aeruginosa, and that
dynorphin is released into the intestinal lumen following
ischemia/reperfusion injury and accumulates in desqua-
mated epithelium, where it binds to P. aeruginosa.
Wang and colleagues [86] found that morphine treat-
ment impairs TLR9-NF-xB signalling and diminishes
bacterial clearance following Streptococcus pneumoniae
infection in resident macrophages during the early
stages of infection, leading to a compromised innate
immune response. Another suggested mechanism for
the immunosuppressive effects of morphine is enhance-
ment of cellular apoptosis. In an in vitro study per-
formed on lymphocytes infected with simian
immunodeficiency virus (SIV), morphine-induced altera-
tion in apoptotic and anti-apoptotic elements was found
to be associated with accelerated viral progression [87].
One could wonder whether the immunomodulatory
effects of sedative agents could be beneficial in septic
patients by damping down an uncontrolled immune
response to sepsis. However, to our knowledge, no pub-
lished data support this hypothesis.

2. Chronic exposure to opioids Morphine immuno-
pharmacological effects following chronic administration
are controversial. Kumar and colleagues [88] reported
that chronic morphine exposure caused pronounced
virus replication in the cerebral compartment and accel-
erated onset of AIDS in SIV/SHIV-infected Indian
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rhesus macaques. Moreover, chronic exposure to mor-
phine altered lipopolysaccharide (LPS)-induced inflam-
matory response and accelerated progression to septic
shock in the rat [89]. Martucci and colleagues [90] ana-
lyzed the effects of fentanyl and buprenophine on sple-
nic cellular immune responses in the mouse. They
found that opioid-induced immunosuppression was less
relevant in chronic administration than in acute or
short-time administration. In mice implanted with mor-
phine pellets, concanavalin (Con) A and LPS-stimulated
splenocyte proliferation is maximally suppressed at 72
hours post implantation [91]. This suppression recov-
ered by 96 hours independent of plasma morphine con-
centration, suggesting tolerance development [92].
Another study reported tolerance to morphine-induced
suppression of NK cell activity after a 14 day period of
chronic morphine administration [93]. Avila and collea-
gues [94] found that animals chronically treated with
morphine became tolerant to its effects on the hypotha-
lamic-pituitary-adrenal axis, and to its effects on T-lym-
phocyte proliferation. In contrast, other studies report
that immune status does not recover after chronic mor-
phine administration [60,95,96].

3. Opioid withdrawal Several recent animal studies
reported profound and prolonged immunosuppressive
effects during the period following opioid withdrawal.
Increased levels of corticosterone were observed on sud-
den withdrawal of morphine administration [94,97],
with return to basal levels within 72 hours. A significant
suppression of lymphocyte responses was also observed
within 24 hours after cessation of morphine administra-
tion. The suppression of lymphocyte proliferation was
significant up to 72 hours of withdrawal of chronic mor-
phine [94]. A decrease in animal weight, with a peak
occurring at 24 hours following withdrawal induction,
and a time-dependent suppression of concalavalin A
(Con-A) and toxic shock syndrome toxin (TSST)-1-sti-
mulated splenic T-cell proliferation, Con-A-stimulated
splenocyte, IFN-y production, and splenic NK cell activ-
ity were also reported [98]. Because clonidine inhibited
these norepinephrine-dependent systems, it was sug-
gested that opioid withdrawal-induced hyperactivity of
the sympathic nervous system, and hypothalamic-pitui-
tary-adrenal axis were responsible for these immunomo-
dulatory effects. Abrupt morphine withdrawal, by
removal of morphine pellets from dependent animals,
resulted in profound immunosuppression that was maxi-
mal at 48 hours after pellet removal and was still pre-
sent at 144 hours. In contrast, precipitated withdrawal,
by removal of morphine pellets from dependent animals
and injection of opioid antagonist, resulted in a short
period of immunopotentiation at three hours after pellet
removal, followed by profound immunosuppression at
24 hours post-withdrawal with a rapid return to normal
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immune response by 72 hours [99]. In an in vitro
model, morphine withdrawal enhances HIV infection of
peripheral blood lymphocytes and T cell lines through
the induction of substance P [100]. Further, morphine
withdrawal favoured hepatitis C virus (HCV) persistence
in hepatic cells by suppressing IFN-o.-mediated intracel-
lular innate immunity and contributed to the develop-
ment of chronic HCV infection [101]. Other studies,
performed in mice, demonstrated that morphine with-
drawal was associated with increased production of
TNF-a. and NO, and decreased IL-12 levels [102,103].
Feng and colleagues [104] showed that morphine with-
drawal sensitizes to oral infection with a bacterial patho-
gen and predisposes mice to bacterial sepsis. Withdrawal
significantly decreased the mean survival time and sig-
nificantly increased the Salmonella burden in various
tissues of infected mice compared with placebo-with-
drawn animals. Increased bacterial colonization in this
variety of tissues was observed from one day to as long
as six days after withdrawal.

Benzodiazepines

It was suggested that benzodiazepines bind to specific
receptors on macrophages and inhibit their capacity
to produce IL-1, IL-6, and TNF-a [105]. Several stu-
dies have found that midazolam inhibits human neu-
trophil function and the activation of mast cells
induced by TNF-a in vitro and suppresses the expres-
sion of IL-6 mRNA in blood monoclear cells [106].
Midazolam and propofol were found to inhibit both
chemotaxis and exocytosis of mast cells, whereas thio-
pental only inhibited chemotaxis, and ketamine only
inhibited exocytosis [107]. In utero exposure of rats to
low dosages of diazepam has been found to result in
depression of cellular and humoral immune responses
during adulthood, with marked changes in macro-
phage spreading and phagocytosis. An impaired
defence against Mycobacterium bovis was found in
adult hamsters after in utero exposure to a dosage of
1.5 mg/kg of diazepam [108]. These effects could be
explained by a direct and/or indirect action of diaze-
pam on the cytokine network. They could also be
related to stimulation of peripheral benzodiazepine
receptor binding sites (PBR) by macrophages and/or
lymphocytes, or they may be mediated by PBR stimu-
lation of the adrenals [109]. In contrast, other investi-
gators reported that midazolam did not alter LPS-
stimulated cytokine response in vitro, or cytokine pro-
duction in septic patients [110,111].

Propofol

An in vitro study tested the effects of propofol and mid-
azolam on neutrophil function during sepsis [112]. In
both early (at 4 hours) and late (at 24 hours) sepsis, pro-
pofol and midazolam depressed hydrogen peroxide pro-
duction by blood and peritoneal neutrophils at clinical
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concentrations. Propofol caused more depression than
midazolm (P < 0.005). Further, propofol was found to
improve endothelial dysfunction and to attenuate vascu-
lar superoxide production in septic rats [113]. Propofol
treatment attenuated the overproduction of NO and
superoxide, thus restoring the acetylcholine-responsive
NO-cyclic guanosine monophosphate (GMP) pathway in
cecal ligation and puncture (CLP)-induced sepsis. It also
significantly improved the CLP-impaired endothelium-
dependent relaxation and endothelium-derived NO in a
parallel manner. In rats with endotoxin-induced shock,
treatment with propofol suppressed the release of TNF-
o, IL-1B, IL-10, and NO production [114]. In addition,
in anesthetized rabbits with acute lung injury, propofol
attenuated lung leucosequestration, pulmonary edema,
pulmonary hyperpermeability, and resulted in better
oxygenation, lung mechanics, and histologic changes
[115]. Taken together, these findings suggest that propo-
fol administration could be beneficial in sepsis.

Clonidine and dexmedetomidine

Studies have shown that central-acting alpha-2 agonists
inhibit noradrenergic neurotransmission and have a
strong sedative component secondary to sympathetic
inhibition [116]. This formerly adverse side effect is
widely used nowadays in critical care settings to sedate
patients and to reduce the amount of co-medication
needed. A recent study has shown the beneficial effects
of dexmedetomidine over lorazepam as an adjunct seda-
tive in a critical care setting [117]. Furthermore, cloni-
dine is an integral part of the sedation regimen in
German ICUs [118].

Evidence that the clinically used medication clonidine
has the potential to be a prophylactic option in treating
sepsis has come from Kim and Hahn [119]. They have
shown that clonidine pre-medication is able to signifi-
cantly reduce the pro-inflammatory cytokines IL-1f and
IL-6 in patients undergoing hysterectomy.

In rats, with endotoxin-induced shock, dexmedetomi-
dine dose-dependently attenuated extremely high mor-
tality rates and increased plasma cytokine concentration
[120]. In addition, the early administration of dexmede-
tomidine drastically reduced mortality and inhibited
cytokine response in endotoxin-exposed rats. Moreover,
Hofer and colleagues [121] demonstrated that clonidine
and dexmedetomidine improve survival in murine
experimental sepsis. Down-regulation of pro-inflamma-
tory mediators due to sympatholytic effects of the above
mentioned drugs most probably responsible for this
effect. The authors suggested that sympatholytics such
as clonidine or dexmedetomidine may therefore be use-
ful adjunct sedatives in the pre-emptive treatment of
patients with a high risk for developing sepsis. However,
recent studies ruled out a cholinergic interaction
between the vagus nerve and the immune system [122].
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Physiologic studies understanding the neuroimmune
connections can provide major advantages to design
novel therapeutic strategies for sepsis [123].
Barbiturates
Barbiturates are used for deep sedation in patients with
elevated intracranial pressure refractory to standard
therapeutic regimens. Correa-Sales and colleagues [124]
showed that antigen-specific lymphocyte proliferation
and IL-2 production by peripheral blood lymphocytes
from patients under thiopental anesthesia were signifi-
cantly depressed. In contrast, mitogen-induced lympho-
cyte proliferation, IL-2, and IL-4 secretion were not
depressed. In spite of the transient decrease in antigen-
driven IL-2 synthesis, no clinical evidence of infection
was noted in any healthy patient. In an in vivo study,
pentobarbital suppressed the expression of TNF-a
mRNA and its proteins, which may result from a
decrease in the activities of nuclear factor-xB and acti-
vator protein 1 and the reduction of the expression of
p38 mitogen-activated protein kinase by pentobarbital
[125]. In addition, pentobarbital directly enhanced the
viabilities of cells, and protected cells from apoptosis
induced by deferoxamine mesylate-induced hypoxia.
Further, in an in vitro model substantially different
effects of barbiturates and propofol were found on pha-
gocytosis of Staphylococcus aureus [126]. The inhibitory
effects of barbiturates demonstrated a strong dose-
dependency. Impairment of phagocytosis activity was
more pronounced than granulocyte recruitment.
Mechanisms by which sedation might favor infection
are presented in Tables 2 and 3, and Figures 1 and 2.

Discussion

Modulation of sedation to prevent ICU-acquired infection
Daily interruption of continuous sedation

Recently, the impact of daily interruption of continu-
ous sedative infusions on patient outcome was evalu-
ated by a randomized controlled trial involving 128
adult patients receiving continuous sedation and
mechanical ventilation in a medical ICU [127]. Dura-
tion of mechanical ventilation was significantly shorter
in the daily interruption group compared with control
group (median 4.9 vs 7.3 days, P = 0.004). Complica-
tions related to undersedation, such as removal of the
endotracheal tube by the patient, were similar in the
two groups. These results were confirmed by two sub-
sequent randomized trials that paired daily interrup-
tion of sedation with ventilator weaning protocol
[128], or early physical and occupational therapy [129].
Several recent studies evaluated the efficacy of an
expanded ventilator bundle, including daily interrup-
tion of sedation, for the reduction of VAP in ICU
patients [130-135]. A significant reduction of VAP rate
was found by these studies. However, many of these
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studies are difficult to interpret because they do not
report bundle compliance rate, do not control for
other specific VAP risk factors, and use the clinical
definition of VAP [136]. In addition, whether this
reduction in VAP rate is related to daily interruption
of sedation or to other measures used to prevent VAP,
such as head-of-bed-elevation, peptic ulcer disease pro-
phylaxis, oral care, or hand washing, is unknown.
Nurse-implemented sedation protocol

In a randomized controlled trial including 321 patients
[137], Brook and colleagues compared a practice of pro-
tocol-directed sedation during mechanical ventilation
implemented by nurses with traditional non-protocol-
directed sedation administration. The median duration
of mechanical ventilation was significantly shorter in
patients managed with protocol-directed sedation com-
pared with patients receiving non-protocol-directed
sedation (55.9 vs 117 hours, P = 0.008). Lengths of stay
in the intensive care unit (5.7 £ 5.9 vs 7.5 + 6.5 days;
P = 0.013) and hospital (14.0 + 17.3 vs 19.9 + 24.2 days;
P < 0.001) were also significantly shorter among patients
in the protocol-directed sedation group. In addition, a
before-and-after prospective study found the implemen-
tation of a nursing-driven protocol of sedation to be
associated improved probability of successful extubation
in a heterogeneous population of mechanically venti-
lated patients [138]. Another recent randomized study
compared daily interruption of sedation and sedation
algorithms in 74 patients under mechanical ventilation
[139]. The protocol-directed sedation group had shorter
duration of mechanical ventilation (median 3.9 vs 6.7
days; P = 0.0003), faster improvement of Sequential
Organ Failure Assessment over time (0.23 vs 0.7 units
per day; P = 0.025), shorter ICU length of stay (8 versus
15 days; P < 0.0001), and shorter hospital length of stay
(12 vs 23 days; P = 0.01). However, two recent Austra-
lian trials provided no evidence of a substantial reduc-
tion in the duration of mechanical ventilation or length
of stay with the use of protocol-directed sedation com-
pared with usual local management [140,141]. Qualified
high-intensity nurse staffing and routine Australian ICU
nursing responsibility for many aspects of ventilatory
practice may explain the contrast between these findings
and other studies.

Quenot and colleagues [142] performed a prospective
before-after study to determine the impact of a nurse-
implemented sedation protocol on the incidence of
VAP. A total of 423 patients were enrolled (control
group, n = 226; protocol group, n = 197). The incidence
of VAP was significantly lower in the protocol group
compared with the control group (6% and 15%, respec-
tively; P = 0.005). A nurse-implemented protocol was
found to be independently associated with a lower inci-
dence of VAP after adjustment on Simplified Acute
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Table 2 Mechanisms by which sedation might promote ICU-acquired infection

Mechanism References Study design/Number of patients

Main results

Prolongation of
exposure to risk factors

Longer duration of [17,23] Prospective cohorts/5183, and 252; respectively
mechanical
ventilation, and

ICU stay
Microaspiration

Neurologic [23]
impairment

Prospective cohort/360

Impaired tubular [34]
esophageal
motility

Prospective cohort/21

Microcirculatory [35]
disturbances

Prospective cohort/10

Gastrointestinal motility
disturbances

Opioids [40] Double-blind, placebo-controlled, randomized study
comparing the effects of lactulose, polyethylene

glycol, or placebo on defecation/308

Dexmedetomidine  [47] Animal study/NA

and clonidine

Immunomodulatory - -
effects

Durations of mechanical ventilation and ICU stay
significantly longer in patients receiving sedation
compared with those without sedation

Heavy sedation significantly associated with
microaspiration confirmed by pepsin-positive tracheal
aspirate

Esophageal motility significantly reduced in sedated
patients compared to healthy controls

Sedation induced an increase in cutaneous blood
flow, a decrease in reactive hyperemia, and alterations
of vasomotions

Morphine administration associated with a longer
time before first defecation, except in the
polyethylene glycol group

Clonidine and dexmedetomidine concentration-
dependently increased peristaltic pressure threshold
and inhibited peristalsis

Please see Table 3 for details

ICU: intensive care unit; NA: not applicable.

Table 3 Immunomodulatory effects of sedative agents used in ICU patients

Sedative agent References Main results
Opioids [55,56,99] Suppression of mitogen-stimulated proliferation of T and B-lymphocytes
[57-59,97] Suppression of natural killer, and primary antibody production
[60-62] Inhibition of phagocytosis by macrophages
[63-70,101,102] Suppression of IL2, IL12, INFy, and NO production
[77-80,82,83,94,97-99]  Activation of sympathic nervous system, and the hypothalamic-pituitary-adrenal axis
[84] Enhancement of Pseudomonas aeruginosa virulence
[85] Reduction of bacterial clearance via impairment of TLR9-NF-xB signaling
[86] Enhancement of cellular apoptosis
Benzodiazepines [105] Inhibition of IL-1, IL-6, and TNF-a. production
[109] Supression of macrophage migration and phagocytosis
Clonidine and dexmetetomidine  [119] Reduction of IL-1B, and IL6 production
[121] Sympatholytic effects
Propofol [112,113] Suppression of H,O,, NO, and O* production; improvement of endothelial dysfunction
[113] Suppression of TNF-a, ILB, IL-10
[114] Attenuation of leukosequestration, pulmonary edema, and pulmonary hyperpermeability
Barbiturates [124] Suppression of antigen-specific lymphocyte proliferation, and IL-2 production
[125] Suppression of TNF-a. mRNA expression
[126] Impairment of phagocytosis

ICU: intensive care unit; IL: interleukin; INF: interferon; NO: nitric oxide; TNF: tumor necrosis factor.

Physiology Score II in the multivariate Cox proportional
hazards model (hazard rate, 0.81; 95% CI, 0.62 to 0.95;
P = 0.03). The median duration of mechanical ventila-
tion was significantly shorter in the protocol group com-
pared with the control group (4.2 vs 8 days; P = 0.001).

Potential means to reduce ICU-acquired infection in
sedated patients are presented in Table 4.

Comparison of sedative agents

In a prospective randomized pilot study, the influence
of fentanyl-based versus remifentanil-based anesthesia
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Figure 1 Potential mechanisms of immunomodulatory effects of sedative agents.

on cytokine responses and expression of the suppres-
sor of cytokine signalling (SOCS)-3 gene was compared
in 40 patients following coronary artery bypass graft
surgery [143]. The IFN-y/IL-10 ratio after Con-A sti-
mulation in whole blood cells on post-operative day 1,
and SOCS-3 gene expression on post-operative day 2
were significantly lower in the remifentanil group than
in the fentanyl group. The time in the ICU was also
significantly lower in the remifentanil group. These
findings suggest that remifentanil can attenuate the
exaggerated inflammatory response that occurs after
cardiac surgery with cardiopulmonary bypass. Two
recent randomized controlled studies found a remifen-
tanil/propofol-based sedation regimen to be associated
with shorter duration of mechanical ventilation and
ICU stay compared with a conventional regimen
[14,15].

In a double-blind randomized placebo-controlled trial
performed in 33 newborn babies, sedation provided by
continuous infusion of midazolam and morphine was
comparable to morphine alone, with no significant
adverse effects [144]. Interestingly, infection rate was

similar in the two groups. The effects of prolonged infu-
sion of midazolam and propofol on immune function
were compared in a randomized study including 40 cri-
tically ill surgical patients who were to receive long-
term sedation for more than two days [145]. Although
midazolam suppressed the production of the pro-inflam-
matory cytokines IL-1B, IL-6 and TNF-a, both agents
caused suppression of IL-8 production. Propofol inhib-
ited IL-2 production and stimulated IFN-y production,
whereas midazolam failed to do so. Kress and colleagues
[146] compared propofol and midazolam in a rando-
mized study involving 73 patients (37 in propofol group
and 36 in midazolam group). The propofol group had a
significantly narrower range of wake-up times with a
higher likelihood of waking in less than 60 minutes.

An observational study found patients with withdrawal
syndrome to have significantly elevated hemodynamic,
metabolic, and respiratory demands [147]. Clonidine sig-
nificantly decreased these demands, induced mild seda-
tion, and facilitated patient cooperation with the
ventilator, enabling ventilator weaning. A recent pro-
spective randomized study compared the effects of
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Table 4 Potential means to reduce ICU-acquired infection in sedated patients

Intervention First author Year of Study design/ Main results*
[Reference] publication/ Number of patients
country
Daily interruption of sedation Kress [127] 2000/USA Randomized Shorter duration of MV
controlled/128 (median 4.9 vs 7.3 d, P = 0.004)
Daily interruption of sedation, and Girard [128] 2008/USA Randomized Higher number of MV-free days (14.7
ventilator weaning protocol controlled/336 vs 11.6 days; P = 0.02)
Shorter mean duration of ICU stay (9.1
vs 129 days; P = 0.01)
Reduced ICU mortality
(HR 068, 95% CI 0.5 to 0.92; P = 0.01)
Daily interruption of sedation, and early Schweickert 2009/USA Randomized Higher number of MV-free days
physical therapy [129] controlled/104 (23 vs 21 days, P = 0.05)
Higher rate of hospital discharge (59%
vs 35%, P = 0.02)
Expanded ventilator bundle, including daily Papadimos 2008/USA Before-after cohort/ Reduced incidence rate of VAP
interruption of sedation [130] 2968 (7.3 vs 19.3/1000 MV-days, P = 0.028)
Blamoun [131]  2009/USA Before-after cohort/NR  Reduced incidence rate of VAP

Nurse-implemented sedation protocol

Resar [132]

2005/USA and

Before-after cohort/NR

Canada

Berriel-Cass 2006/USA Before-after cohort/NR
[133]

Youngquist 2007/USA Before-after cohort/NR
[134]

Unahalekhaka 2007/Thailand Before-after cohort/NR
[135]

Brook [137] 1999/USA Randomized

controlled/321

Arias-Rivera 2008/Spain Before-after cohort/356
[138]

Quenot [142] 2007/France Before-after cohort/423

(0 vs 12/1000 MV-days, P = 0.0006)

Reduced incidence rate of VAP
(2.7 vs 6.6/1000 MV-days)

Reduced incidence rate of VAP
(3.3 vs 8.2/1000 MV-days)

Reduced incidence rate of VAP
(2.7 vs 6; and 0 vs 2.6/1000 MV-days)

Reduced incidence rate of VAP
(8.3 vs 13.3/1000 MV-days)

Shorter duration of MV

(55.9 vs 117.0 hours, P = 0.008)
Shorter length of ICU stay

(5.7 £59vs. 75 + 65 days; P = 0.013)

Increased rate of successful extubation
(P =0.002)

Reduced incidence of VAP
(6 vs 15%, P = 0.005)
Shorter duration of MV
(4.2 vs 8 days, P = 0.001)

*intervention group compared with control group, respectively.
Cl: confidence interval; HR: hazard ratio; ICU: intensive care unit; MV: mechanical ventilation; NR: not reported; VAP: ventilator-associated pneumonia;



Nseir et al. Critical Care 2010, 14:R30
http://ccforum.com/content/14/2/R30

dexmedetomidine or midazolam infusion together with
an alfentanil infusion for analgesia if required on the
inflammatory responses and gastric intramucosal pH in
critically ill patients [111]. Fourty patients were
included, and there was no statistically significant differ-
ences between the groups with respect to hemodynamic
and biochemical measurements, or gastric intramucosal
pH. However, there were significant decreases in TNF-a,,
IL-1B, IL-6 at 24 hours in the dexmedetomidine group
compared with the midazolam group. Another recent
prospective double-blind randomized study compared
the efficacy and safety of prolonged sedation with dexme-
detomidine and midazolam among 375 mechanically
ventilated patients [148]. Infection rate was significantly
lower in the dexmedetomidine group compared with the
midazolam group (10.2 vs 19.7%, P = 0.02). Although
length of ICU stay was similar in the two groups, median
time to extubation was significantly shorter in the dex-
medetomidine group compared with the midazolam
group (3.7 vs 5.6 days, P = 0.01).

A retrospective study compared the rate of pneumonia
between ventilated head trauma patients who received
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thiopental therapy (n = 75) and those who did not receive
thiopental (n = 76) [149]. The rate of noscomial pneumo-
nia was higher in patients who received thiopental com-
pared with those who did not receive thiopental (53 vs
35%; OR, 1.85; 95% CI, 0.97 to 3.51). In addition, thiopen-
tal therapy was independently associated with nosocomial
pneumonia. Results of studies comparing different sedative
agents with regard to cytokine levels, infection rate and
other outcomes are presented in Table 5.

Limitations

Our review has some limitations. First, there is strong evi-
dence coming from animal studies that sedative agents
could alter immune function and increase the risk of infec-
tion. However, clinical studies are needed to determine
whether these data are relevant in the clinical setting. The
epidemiologic studies showed a link between sedation and
infection. However, no cause-to-effect relation could be
demonstrated. Second, the subject of our review is vast
and the literature covering the effects of sedative agents
on immune function is very large. Therefore, this could
not be a comprehensive review of the total literature on
this subject within the size of the article. Third, some

Table 5 Results of clinical studies comparing different sedative agents with regard to cytokine levels, infection rate,

and duration of mechanical ventilation

Outcome  First Year of Study design/Number of patients Main results*
author publication/
[Reference] country
Cytokine von 2008/ Randomized controlled study comparing fentanyl with  IFNy/IL-10 after concanavalin A stimulation, and
responses  Dossow Germany remifentanil/40 patients SOCS-3 gene expression significantly lower in
[143] remifentanil group
Helmy [145] 2001/Egypt  Randomized controlled study comparing propofol Both agents suppressed IL-8 production
with midazolam/40 patients Midazolam suppressed production of IL-1B, IL-6,
and TNF-a.
Propofol inhibited IL-2 production and stimulated
IFNy production
Memis 2007/Turkey ~ Randomized controlled study comparing Significant decreases in TNF-a, IL-18, and IL-6 in
[111] dexmedetomidine vs midazolam/40 patients dexmedetomidine group
Infection Arya [144]  2001/India Randomized controlled study comparing midazolam Comparable rate of infection (6%) in the two
and other and morphine with midazolam/33 newborn babies groups
outcomes
Muellejans 2006/ Randomized controlled study comparing remifentanil ~ Mean time intervals from arrival at the ICU until
[14] Germany and propofol with fentanyl and midazolam/80 patients extubation (20.7 vs 24.2 hours) and from arrival
until eligible discharge from the ICU (46.1 vs 624
hours) were significantly (P < 0.05) shorter in the
remifentanil/propofol group
Rozendaal 2009/ Randomized controlled study comparing remifentanil ~ The remifentanil-based regimen reduced median

[15] Neatherlands and propofol with propofol, midazolam or lorazepam
combined with fentanyl or morphine/215 patients

Kress [146]  1996/USA Randomized controlled study comparing propofol
with midazolam/73 patients

Riker [148]  2009/USA Randomized controlled double-blind study comparing
dexmedetomidine with midazolam/375 patients

Nadal [149] 1995/Spain  Retrospective cohort comparing patients with

thiopental with those without thiopenthal

weaning time by 189 hours (P = 0.0001),
increased the likelihood to be extubated (P =
0.018), and the discharge from the ICU (P = 0.05)

Narrower range of wake-up times with a higher
likelihood of waking in less than 60 minutes in
propofol group

Reduced rate of infection (10.2 vs 19.7%, P = 0.02),
and shorter time to extunation (median 3.7 vs 5.6
days, P = 0.01) in the dexmedetomidine group

Higher rate of VAP in patients who received
thiopenthal (53 vs 35%)

ICU: intensive care unit; IFN: interferon; IL: interleukin; TNF: tumour necrosis factor; VAP: ventilator-associated pneumonia.
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sedative agents used for short sedation, such as etomidate,
were not reviewed. In addition, effects of muscle relaxants
on infection were not reviewed.

Future studies

Future studies should compare the effect of different
sedative agents on the incidence of ICU-acquired infec-
tion. Further, the impact of progressive opioid disconti-
nuation on the risk of ICU-acquired infection should be
compared with abrupt discontinuation. The role of
intermittent dosing rather than infusion of sedative
agents should also be evaluated. The impact of adjunc-
tive agents, such as clonidine, should be evaluated. In
addition, analgesics other than opioids should be
explored in ICU patients, and the risk of ICU-acquired
infections should be compared between opioids and
other analgesics. Volatile sedation using isoflurane
appears a promising alternative to intravenous sedatives
for adult patients mechanically ventilated in the ICU.
Finally, peripherally acting mu-opioid receptor antago-
nists methylnatrexone and alvimopan are a new class of
drugs designed to reverse opioid-induced side effects on
the gastrointestinal system without compromising pain
relief [150]. A recent randomized controlled study
demonstrated that methylnatrexone rapidly induced
laxation in patients with advanced illness and opioid-
induced constipation [151]. Treatment did not appear to
affect central analgesia or precipitate opioid withdrawal.
Future studies should determine whether these results
are applicable in ICU patients, and whether treatment
with these antagonists could influence gastrointestinal
translocation and ICU-acquired infections.

Conclusions

Sedation is associated with increased risk of ICU-
acquired infection. Prolongation of exposure to risk fac-
tors for infection, microaspiration, gastrointestinal moti-
lity disturbances, microcirculatory effects, and
immunomodulatory effects are the main mechanisms by
which sedation might favor infection in critically ill
patients. Clinical studies comparing different sedative
agents do not provide evidence to recommend the use
of a particular agent to reduce ICU-acquired infection
rate. However, sedation strategies aiming to reduce the
duration of mechanical ventilation, such as daily inter-
ruption of sedatives or nursing-implementing sedation
protocol, should be promoted. In addition, the use of
short-acting opioids, propofol, and dexmedetomidine is
associated with shorter duration of mechanical ventila-
tion and ICU stay, and might be helpful in reducing
ICU-acquired infection rates.

Key messages
+ Several epidemiologic studies suggest a link
between sedation and ICU-acquired infection.
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+ Prolongation of exposure to risk factors for infection,
microaspiration, gastrointestinal motility disturbances,
microcirculatory effects and immunomodulatory
effects are main mechanisms by which sedation may
favor infection in critically ill patients.

+ Clinical studies comparing different sedative agents
do not provide evidence to recommend the use of a
particular agent to reduce ICU-acquired infection rate.
+ Sedation strategies aiming to reduce the duration
of mechanical ventilation, such as daily interruption
of sedatives or nursing-implementing sedation proto-
col, should be promoted.

« The use of short-acting opioids, propofol, and dex-
medetomidine is associated with shorter duration of
mechanical ventilation and ICU stay, and might be
helpful in preventing ICU-acquired infections.
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