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Quantitation of Pseudomonas aeruginosa in wound biopsy
samples: from bacterial culture to rapid ‘real-time’ polymerase
chain reaction
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Statement of findings

We developed a real-time detection (RTD) polymerase chain reaction (PCR) with rapid
thermal cycling to detect and quantify Pseudomonas aeruginosa in wound biopsy samples.
This method produced a linear quantitative detection range of 7 logs, with a lower detection
limit of 103 colony-forming units (CFU)/g tissue or a few copies per reaction. The time from
sample collection to result was less than 1 h. RTD-PCR has potential for rapid quantitative
detection of pathogens in critical care patients, enabling early and individualized treatment.
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CFU = colony-forming units; ELISA = enzyme-linked immunosorbent assay; EtBr = ethidium bromide; MTP = microtitre plate; PCR = polymerase
chain reaction; RTD = real-time detection.

Introduction: Early diagnosis of wound colonisation or
prediction of wound sepsis provides an opportunity for
therapeutic intervention. There is need for qualitative and
quantitative tests that are more rapid than bacterial culture.
Pseudomonas aeruginosa results in high morbidity and
mortality rates, is inherently resistant to common antibiotics,
and is increasingly being isolated as a nosocomial pathogen.
We developed three PCR-based methods to detect and
quantify P aeruginosa in wound biopsy samples: conventional
PCR, enzyme-linked immunosorbent assay (ELISA)-PCR, and
RTD-PCR with rapid thermal cycling (LightCycler™ technology),
all based on the amplification of the outer membrane
lipoprotein gene oprL. We compared the efficacy of these
methods to bacterial culture by quantitatively measuring levels
of P aeruginosa in serial dilutions, in reconstituted skin samples
and 21 burn wound biopsy samples.
Materials and methods: Serial 10-fold dilutions were made
from an overnight P aeruginosa culture and plated out onto
Luria-Bertani and cetrimide agar plates. The agar plates were
incubated overnight at 37°C, and the colonies were counted in
order to estimate the number of CFU per dilution tube. A

sample was taken from each dilution tube as a template for the
three PCR-based methods.
Serial P aeruginosa dilutions (see above) were added to
uninfected cadaveric skin. The reconstituted biopsy samples
were homogenized using a tissue tearer and DNA was
extracted using XTRAX DNA buffer. The DNA was
resuspended in distilled water. A sample was taken as a
template for the PCR-based methods. 
Twenty-one burn wound biopsy samples were taken from nine
patients with suspected P aeruginosa burn wound infection.
The biopsy samples were longitudinally divided into two pieces.
From one piece, DNA was extracted (using XTRAX DNA buffer)
and used as a template for PCR-based techniques (see above).
The other piece was homogenized, in physiological water, using
a tissue tearer. Serial 10-fold dilutions of the suspension were
spread on Luria-Bertani and cetrimide agar plates. Colony
counts were performed after overnight incubation at 37°C.
The PCR mixture contained sterile distilled water, PCR buffer,
deoxynucleotide mixture or digoxigenin labelling mix, MgCl2,
diluted template, primers PAL1 and PAL2, and AmpliTaQ DNA
polymerase.  The amplification was performed in a GeneAmp®
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PCR System 2400. An aliquot of the reaction mixture was put
on an agarose gel for electrophoresis and visualisation of the
PCR product. An image of the gel was made using a digital
camera. Image analysis software was used to calculate the
band mass of the experimental bands.
An aliquot of the digoxigenin labelling reaction was denatured
and then hybridized with the biotinylated capture probe PrL.
Some of the resultant solution was transferred to a well of a
streptavidin-coated microtitre plate (MTP) and incubated for
3 h at 45°C. The solution was discarded. Peroxidase
conjugated antidigoxigenin was added and the MTP was
incubated for 30 min at 37°C. The solution was discarded and
ABTS substrate was added. The MTP was incubated for
30 min at 37°C. Absorbance was read at 405 nm.
The RTD-PCR mixture contained PCR grade sterile water,
diluted template DNA, primers PAL1 and PAL2, 3′ fluorescein
(FL)-labelled probe oprL-FL, 5′ LC Red 640-labelled and 3′
phosphorylated probe oprL-LC, MgCl2, and LC DNA Master
Hybridisation Probes, containing Taq DNA polymerase,
reaction buffer, dNTP mix with dUTP instead of dTTP and,
MgCl2. The amplification was performed in a LightCycler™. The
fluorescence signal of LC Red 640 was measured during the

annealing phase. The measured fluorescence data was
processed with analysis software.
Results and discussion: The three methods showed a good
concordance with the culture results. Conventional PCR was at
least 100 times less sensitive than bacterial culture and had a
low dynamic range (2 logs). With a lower detection limit of
103 CFU/g tissue, ELISA-PCR was ten times more sensitive than
conventional PCR. The dynamic range, however, did not
increase. ELISA-PCR is very time consuming (8 h). The RTD-
PCR produced a linear quantitative detection range of 7 logs
with a lower detection limit of 103 CFU/g tissue. More important,
however, was that the time from sample collection to result was
less than 1 h. Two biopsy specimen scored significantly higher in
ELISA-PCR and RTD-PCR than in bacterial culture. This could
indicate that DNA from dead bacteria was amplified. One out of
ten culture positive biopsy samples was found negative by all
PCR-based methods. Topical antimicrobial agents possibly
inhibited PCR. These results show that RTD-PCR has potential
for the rapid quantitative detection of pathogens in critical care
patients, enabling early and individualized treatment. Further
study is required to assess the reliability of this new technology,
and its impact on patient outcome and hospital costs.
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Introduction
Although effective topical antimicrobial chemotherapy
and early excision of burn wounds have significantly
reduced the occurrence of invasive burn wound infec-
tions, sepsis is still a major problem [1–3]. The risk of
septicaemia increases in proportion to the degree of
cutaneous infection [4–6]. Many investigators have
reported [6–11] that quantitative biopsy culture was the
best method for early detection of sepsis. Heininger et al
[12] stressed that only 4–12% of blood cultures is found
positive. Conversely, McManus et al [13] reported in
1987 that high tissue counts did not necessarily indicate
invasion, and that the principal value of quantitative
biopsy culture was the demonstration of the predominant
burn wound flora. Even so, when sepsis ensues, while
awaiting the results of blood cultures, a knowledge of the
organisms that colonize a burn wound can facilitate
prompt and appropriate antibiotic treatment that is based
on the expected sensitivity of the identified germs, rather
than initiating a purely empirical therapy. There is need for
qualitative and quantitative tests that are more rapid than
bacterial culture.

We decided to develop such a test for the rapid detection
and quantitation of Pseudomonas aeruginosa in burn
wound biopsy samples. This bacterium is ubiquitous, is
inherently resistant to common antibiotics, and therefore is
one of the most problematic pathogens in modern hospitals

[14–17]. Burn wound patients, mechanically ventilated
patients and cystic fibrosis patients are particularly sus-
ceptible to P aeruginosa infection [1,18,19]. Biopsy
samples are, with respect to homogenization and DNA
extraction, very tough clinical samples and thus would be
an excellent test case for the applicability of the method
on direct clinical samples.

In 1997 our group developed a PCR test for the direct
detection and identification of P aeruginosa in clinical
samples that is based on the amplification of the outer
membrane lipoprotein gene oprL [20–22]. Since then we
developed several quantitative variants of this test, exploit-
ing the technology available at the time.

In the first instance, we amplified the oprL gene by means of
conventional PCR and visualized the PCR product by ethid-
ium bromide (EtBr) staining of agarose gels. The intensity of
the fluorescence produced by EtBr was quantified.

Second, we developed an ELISA-mediated PCR in order
to quantify the amplified oprL gene. PCR products were
labelled with digoxigenin during the amplification process
and quantitatively detected by absorbance reading in
microtitre plates.

Finally, we exploited the recently developed ‘real-time’
quantitative PCR technology [23–27]. We opted for the
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LightCycler™ [28] system (Roche Diagnostics, Brussels,
Belgium) because it features rapid capillary tube resistive
thermal cycling, reducing the amplification time dramati-
cally. Two adjacent hybridization probes, labelled with dif-
ferent fluorescent dyes, are used to monitor the
appearance of PCR product. The emitted light signal is
proportional to the amount of specific DNA product avail-
able for hybridization, and thus increases every cycle [29].
The probes were designed to be complementary to a con-
served region of the oprL gene, as determined by
sequence analysis of the oprL gene of 85 nonrelated clini-
cal P aeruginosa isolates.

In the present report we compare the assay performance
of the above-mentioned methods, in terms of practicability,
to bacterial culture. For this purpose three types of
samples were assayed: serial P aeruginosa dilutions, unin-
fected skin spiked with P aeruginosa and 21 burn wound
biopsy samples. All methods were useful, but only Light-
Cycler™ RTD-PCR allowed rapid quantitative detection of
P aeruginosa in skin biopsies with an adequate detection
limit and a wide log-linear range.

Materials and methods
Sample preparation
Serial Pseudomonas aeruginosa dilutions
Serial 10-fold dilutions were made from an overnight
P aeruginosa culture (strain PAO-1, ATCC 15692) in
order to look for the lower detection limit and the dynamic
range of the PCR-based methods. Dilutions were made in
physiological water. Aliquots (100 µl) were plated out, in
triplicate, onto Luria-Bertani (Gibco-BRL Life Technolo-
gies, Paisley, Scotland) and cetrimide (Sanofi Pasteur,
Brussels, Belgium) agar plates. The agar plates were incu-
bated overnight at 37°C, and the colonies were counted in
order to estimate the number of CFU per dilution tube. A
sample (5 µl) was taken from each dilution tube as a tem-
plate for the three PCR-based methods. Standards
ranging from 1 to 106 CFU/5 µl were assayed.

Reconstituted biopsy samples
Reconstituted biopsy samples were prepared in sterile
5-ml tubes (Nunc; Roskilde, Denmark) by adding 10 µl
serial P aeruginosa dilutions (see above) to 50 mg un-
infected cadaveric skin, at final concentrations of
10–109 CFU/g tissue. XTRAX DNA extraction buffer (1 ml;
Gull Laboratories, Salt Lake City, UT, USA) was added,
and the reconstituted biopsy samples were homogenized
for 1 min, at 30000 rpm, using a tissue tearer (BioSpec
Products, Bartlesville, Oklahoma, USA). The suspensions
were transferred to a 1.8-ml cryotube (Nunc) with a loos-
ened cap and were microwaved for 13 s at 600 W. The
tubes were gently shaken to mix the contents and were
microwaved for a further 6 s. The tubes were cooled for
3 min at room temperature and centrifuged for 1 min at
10000 g in order to pellet the proteins.

Supernatant (500 µl) was transferred to a microcentrifuge
tube (Eppendorf, Hamburg, Germany). Molecular grade
isopropanol (500 µl; Sigma Aldrich, Deisenhofen,
Germany) was added, and the contents of the tube were
mixed thoroughly by inverting the tube 10 times. The tube
was centrifuged for 1 min at 10 000 g in order to pellet the
DNA. The supernatant was discarded by decanting, and
the tube was allowed to stand upside down for 2 min to
allow the remaining fluid to drain. The DNA was resus-
pended in 30 µl distilled water. A sample (5 µl) was taken
as a template for conventional PCR and ELISA-PCR, and
3 µl was taken for RTD-PCR. Standards ranging from 103

to 109 CFU/g skin tissue were assayed.

Clinical burn wound biopsy samples
Twenty-one burn wound biopsy samples, weighing
20–170 mg (mean 54 mg), were assayed. The biopsy
specimens were aseptically taken from nine patients with
suspected P aeruginosa burn wound infection, using a
4-mm punch biopsy needle (Labo Stiefel, Leuven,
Belgium; n = 15) or a lancet (n = 6).

The samples were longitudinally divided into two pieces
using a sterile scalpel and weighed. From one piece DNA
was extracted using XTRAX DNA buffer and used as tem-
plate for the PCR-based techniques (see above). The
other piece was collected in a sterile 5-ml tube containing
10 µl physiological water/mg tissue, and was homoge-
nized, on ice, for 1 min at 30 000 rpm using a tissue
tearer. Serial 10-fold dilutions of the homogenized wound
biopsy samples were spread, in triplicate, on Luria-Bertani
and cetrimide agar plates. Colony counts were performed
after overnight incubation at 37°C.

Conventional polymerase chain reaction and digoxigenin
labelling
The PCR was completed in 200-µl microcentrifuge tubes.
The PCR mixture (50 µl final volume) contained the follow-
ing: 26.5 µl sterile distilled water; 5 µl 10 × PCR buffer
(500 mmol/l KCl and 100 mmol/l Tris-HCl: pH 8.3); 5 µl of
a deoxynucleotide mixture (dGTP, dTTP, dATP and dCTP;
2 mmol/l each) or 5 µl digoxigenin-labelling mix from
Boehringer-Mannheim (Brussels, Belgium; 2 mmol/l
dGTP, dATP and dCTP, and 1.9 mmol/l digoxigenin-
dUTP); 6 µl MgCl2 (2.5 mmol/l); 5 µl diluted template
DNA; 1 µl primer PAL1 (25 µmol/l); 1 µl primer PAL2
(25 µmol/l); and 0.5 µl AmpliTaQ DNA polymerase
(5 U/µl). The primers had the following sequences: PAL1,
5′-ATGGAAATGCTGAAATTCGGC-3′; and PAL2, 5′-
CTTCTTCAGCTCGACGCGACG-3′. All PCR reagents
were purchased from PE Applied Biosystems (Nieuwerk-
erk a/d Ijssel, The Netherlands).

A reaction mixture containing all of the ingredients except
the template was made. The amplification was performed in
a GeneAmp® PCR System 2400 (PE Applied Biosystems).



The amplification program was set at 35 cycles of denatura-
tion at 94°C for 30 s or 45 s (digoxigenin labelling), anneal-
ing at 57°C for 30 s or 1 min (digoxigenin labelling), and
elongation at 72°C for 30 s or 2 min (digoxigenin labelling).

Some of the reaction mixture (10 µl) was put on an
agarose gel of 2% (weight/volume) for electrophoresis
and visualization of the PCR product after staining with
EtBr on a ultraviolet transilluminator. An image of the gel
was made using a DC40 digital camera (Eastman Kodak
Company, Rochester, New York, USA). Using the intensity
measured for the bands originating from the standards,
P aeruginosa serial dilutions or reconstituted samples,
Kodak Digital Science 1D image analysis software was
used to calculate the band mass of the experimental
bands using linear regression.

Digoxigenin detection
Some of the digoxigenin labelling reaction (35 µl) was
transferred to a sterile microcentrifuge tube (Eppendorf).
Denaturation solution (40 µl) was added and the tube was
incubated for 10 min at room temperature. The tube was
filled up to 500 µl with hybridization solution, which con-
tained 50 pmol/ml biotinylated capture probe PrL with the
following sequence: 5′-AAGCCGGAAGCCATGCGCG-
CT-3′. Some of the resultant solution (200 µl) was trans-
ferred to a well of a streptavidin-coated microtitre plate
(MTP). The MTP was incubated for 3 h at 45°C on a MTP
shaker. The solution was discarded and the well was
washed five times with 250 µl washing solution. A quantity
(200 µl) of a peroxidase conjugated antidigoxigenin solu-
tion (10 mU/ml) was added, and the MTP was incubated
for 30 min at 37°C on a MTP shaker. The solution was dis-
carded and the well was washed five times with washing
solution. ABTS substrate solution (200 µl) was added and
the MTP was incubated for 30 min at 37°C on a MTP
shaker. Absorbance was read at 405 nm. All digoxigenin
detection reagents were purchased from Boehringer-
Mannheim.

Real-time detection polymerase chain reaction
The RTD-PCR mixture (20 µl final volume) contained the
following: 3.8 µl PCR grade sterile water; 3 µl diluted tem-
plate DNA; 2 µl primer PAL1 (5 µmol/l); 2 µl primer PAL2
(5 µmol/l); 2 µl of the 3′ fluorescein-labelled probe oprL-
FL (2 µmol/l); 4 µl of 5′ LC Red 640-labelled and 3′ phos-
phorylated probe oprL-LC (2 µmol/l); 1.2 µl MgCl2
(25 mmol/l); 2 µl LC DNA Master Hybridisation Probes
containing Taq DNA polymerase; reaction buffer; dNTP
mix with dUTP instead of dTTP; and 10 mmol/l MgCl2. All
reagents were purchased from Roche Molecular Bio-
chemicals (Brussels, Belgium). The probes were manufac-
tured by the TIB MOLBIOL synthesis laboratory in Berlin,
Germany, and had the following sequences: oprL-FL, 5′-
TGCGATCACCACCTTCTACTTCGAGT-FL-3′; and oprL-
LC, 5′-LC Red 640-CGACAGCTCCGACCTGAAG-p-3′.

Samples were spun into glass capillary tubes, capped and
placed in the LightCycler™. After an initial denaturation at
95°C for 30 s, amplification was performed for 45 cycles
of denaturation at 95°C for 2 s, annealing at 59°C for 10 s
and elongation at 72°C for 10 s. The fluorescence signal
of LC Red 640 was measured during the annealing phase.
The measured fluorescence data was processed with
analysis software.

Results and discussion
Conventional polymerase chain reaction
With a lower detection level between 104 and 105 CFU/g,
wound biopsy tissue conventional PCR was at least 100
times less sensitive than bacterial culture (Table 1). This
problem was related to the limited amount of sample, as
compared with bacterial culture, that can be incorporated
into one PCR reaction. Concentration of DNA or division of
the sample over multiple PCR reactions could resolve this
problem, but would result in a more elaborate method. Con-
ventional PCR had a low dynamic range; bands that were
very close to the background level gave poor results, and
bands that were saturated also skewed the results (Fig. 1).

Ten out of 21 burn wound biopsy samples turned out to
be culture positive; five of them, with a density lower than
104 CFU/g, were not detected by conventional PCR. All
culture-negative samples were also negative in PCR.

Enzyme-linked immunosorbent assay polymerase chain
reaction
With a detection limit of 103 CFU/g tissue, ELISA-PCR
was at least 10 times more sensitive than conventional
PCR (Table 1). However, the linear response range did
not increase, but shifted to lower concentrations along
with the detection limit (Fig. 1). This technique is very time
consuming and involves handling that increase the risk of
contamination of PCR product (Fig. 2). Only one culture-
positive wound biopsy, out of 10, containing 3000 CFU/g
tissue, was found to be negative by ELISA-PCR. Topical
antimicrobial agents possibly inhibited PCR.

Two biopsy specimens with approximately 200 and
400 CFU/g tissue, as determined by bacterial culture,
scored significantly higher in ELISA-PCR: 1200 and
1450 CFU/g tissue, respectively. This could indicate that
DNA from nonproliferating or dead bacteria was amplified.
The question regarding whether quantitative estimates of
bacteria, determined using PCR-based methods, correlate
with the number of viable bacteria has been raised before
[30]. For this reason, PCR-based tests are probably not
appropriate for the monitoring of treatment efficacy. They
should be considered as complementary indicative tests in
critical care settings. On the other hand, PCR-based
methods could detect bacteria that were inhibited in their
growth by residual concentrations of antimicrobials in the
sample [31], overgrown by other bacteria present in the
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sample, autolyzed during incubation [32], or difficult to
cultivate in vitro [33], and are thus under-diagnosed by
bacterial culture. PCR-ELISA has merit with regard to its
sensitivity, but is too time-consuming and expensive to
implement in a clinical laboratory (Fig. 2).

Real-time detection polymerase chain reaction
RTD-PCR produced a linear quantitative detection range
of 7 logs with a lower detection limit of 103 CFU/g tissue,
or a few copies per reaction (Table 1). RTD-PCR uses a
kinetic approach rather than an end-point approach.
Kinetic quantification in the log phase of the reaction, the
phase of constant efficiency, clearly generates a larger
linear response than end-point detection in the plateau
phase of the reaction (Fig. 1). Also, there is no need for
any post-PCR sample manipulation, eliminating PCR cont-
amination concerns. The recent introduction of a second
dye for the LightCycler™ system offers the prospect of an
internal control, addressing the problem of tube-to-tube
variations and PCR inhibition, and thus improving the relia-
bility of the results. However, the greatest merit of Light-

Cycler™ RTD-PCR is its rapidity. Rapid thermal cycling
reduced the time of amplification, detection and analysis
of DNA from several hours to 30 min (Fig. 2). The RTD-
PCR results for the burn wound biopsy samples were con-
cordant with those obtained using ELISA-PCR; the
false-negative result and the two over-diagnosed biopsies
were also observed using RTD-PCR. The use of capillar-
ies instead of tubes permits smaller reaction volumes, thus
lowering the reagent costs. The set-up costs, however,
may be beyond the capabilities of some laboratories
(Table 1).

Conclusion
Up until now, RTD-PCR has been applied for the detec-
tion of food-borne pathogens [34], cancer [35–37],
genetic diseases [38] and infectious diseases [39–42].

Although a limited number of clinical specimens were
tested, the present results indicate that RTD-PCR, and
more specifically LightCycler™ technology, has potential
for quantitative applications in the clinical laboratory. In
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Figure 1

Standard curves for reconstituted biopsy samples.



particular, it has applications for the critical care popula-
tion, at the point of care, and it is important that the test is
subjected to further optimization and evaluation. Early
infection diagnosis remains a difficult problem for patients
with burn wounds or cystic fibrosis, and for critical care
patients in general. Prognosis and survival are often
dependent on an early, individualized treatment. Auto-
mated extraction of DNA from a variety of clinical samples
(blood, expectorations, urine, etc.) and subsequent rapid,
online, quantitative detection of pathogens (P aeruginosa,
Staphylococcus aureus, Haemophilus influenzae, among
others) by RTD-PCR is now possible, allowing early thera-
peutic decisions to be made. Multiple colour detection will
open the door to multiplex RTD-PCR. Further studies are
necessary to assess the impact of rapid RTD-PCR on
patient outcome and hospital costs [43,44].
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